Simple Factory Pattern: Example

CS 619 Introduction to OO Design
and Development

Suppose that you are required to develop a system
that accepts orders for pizzas. There are three
types of pizzas, namely, cheese, Greek, and
pepperoni. The pizzas differ according to the dough
used, the sauce used and the toppings.

rns (Part 3)

Draw a class diagram for the system.

Fall 2014

Pizza orderPizza(String type) {
Pizza pizza;

Pizza
name
PizzaStore ‘s"a’ﬂgg if (t¥pe.equals(“cheese"-)) {

orderPizza() |1 1| toppings: 1.." pJ.z.za = new CheeseP:.zza()";
prepare() } else if (type.equals(greek)) {
bake() pizza = new GreekPizza();
cut() } else if (type.equals(“pepperoni”)) {
box() pizza = new PepperoniPizza();
get_name()
toString() }

|
i

l l
CheesePizza PepperoniPizza] GreekPizza
|

Problems with the design?

pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();
return pizza;

Pizza orderPizza(String type) {
How to Deal with Changes prosarpuesy

if (type.equals(“cheese”)) {
pizza = new CheesePizza();

} else if (type.equals(“greek”)) {
pizza = new GreekPizza();

} else if (type.equals(“pepperoni”)) {

e Programming to implementation like makes such
changes difficult.

e Creating a SimpleFactory to encapsulate the pizza = new PepperoniPizza();
code that changes will make the design more } else if (type.equals(sausage’)) {
flexible. pizza = new SausagePizza();

} else if (type.equals(“veggie”)) {
pizza = new VeggiePizza();

e Remove the code that creates a pizza — forms a
simple factory. }

pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();
return pizzaj;

Pizza orderPizza(String type) {
Pizza pizza;

47.) : public class PizzaStore {
if (type.equals(cheese)) { SimplePizzaFactory factory;
pizza = new CheesePizza();
} else if (iype.equals(‘gieek”)) { public PizzaStore(SimplePizzaFactory factory) {
pizza = new Greskrizza(); this.factory = factory;
} else if (type.equals(“pepperoni”)) { }
pizza = new Peppero?iPizzaa); public Pizza orderPizza(String type) {
} else if (type.equals(sausage)) { Pizza pizza;
pizza = new SausagePizza(); pizza = factory.createPizza(type);
} else if (type.equals(“veggie”)) {
pizza = new VeggiePizza(); pizza.prepare();
} pizza.bake();
pizza.cute();
pizza.prepare(); pizza.box();

pizza.bake();

Encapsulate!

pizza.cut(); return pizza;
pizza.box(); }

return pizza; }

The Simple Factory Pattern

public class SimplePizzaFactory {

public Pizza createPizza(String type) {

Pizza pizza = null;

if (type.equals('"cheese")) {
pizza = new CheesePizzal();

} else if (type.equals("pepperoni")) {
pizza = new PepperoniPizza();

} else if (type.equals('"clam")) {
pizza = new ClamPizza();

} else if (type.equals("veggie")) {

pizza = new VeggiePizza();
}

return pizza;

Simple Factory Pattern (not GoF)

Client SimpleFactory <<abstract>>
orderProduct() createProduct() Product
productMethod()
ConcreteProductA

ConcreteProductB| |ConcreteProductC

Example: Revised Class Diagram

PizzaStore SimpleFactory|

Pizza

orderPizza() createPizza()

name
dough
sauce
toppings: 1..*

prepare()
bake()
cut()

box()
get_name()
toString()

|
1

CheesePizza

ClamPizza

PepperoniPizza‘

VeggiePizza

More changes

Franchises in different parts of the country are

now adding their own special touches to the
pizza. For example, customers at the franchise

in New York like a thin base, with tasty sauce

and little cheese. However, customers in

Chicago prefer a thick base, rich sauce and a

lot of cheese.

You need to extend the system to cater for this.

Creator Class

PizzaStore

createPizza()
orderPizza()

!
|

NYPizzaStore ChicagoPizzaStore

createPizza() createPizza()

Factory Method Pattern

<<abstract>> <<abstract>>
Product Creator
abstract factoryMethod()
N ;
operation()
IS-A
IS-A
HAS-A
ConcreteProduct ConcreteCreator
factoryMethod()

No more SimpleFactory class
Object creation is back in our class, but ...
delegated to concrete sub-classes

Product Class

Pizza

name
dough
sauce
toppings: 1..*

prepare()
bake()
cut()
box()

get_name()
toString()
‘NYSterCheesePizza ‘ ‘ChicagoSterCheesePizza‘
‘ - - |
NY StyleClamPizza ‘ L{ChlcagoStyleCIamPnzza ‘

1
NY StylePepperoniPizza ‘
|

1
ChicagoStylePepperoniPizza|
|

ChicagoStyleVeggiePizza ’

NY StyleVeggiePizza ‘ ‘

Abstract Creator: the PizzaStore

public abstract class PizzaStore {
abstract Pizza createPizza(String item);
public Pizza orderPizza(String type) {
Pizza pizza = createPizza(type);
pizza.prepare();
pizza.bake();
pizza.cut();

pizza.box();
return pizza;

Add a new store (the concrete creator) The Factory Method Pattern

public class NYPizzaStore extends PizzaStore { PizzaStore nyStore = new NYPizzaStore();
PizzaStore chicagoStore = new ChicagoPizzaStore();
Pizza createPizza(String item) {
if (item.equals("cheese")) {
return new NYStyleCheesePizza();
} else if (item.equals("veggie")) {

Pizza pizza = nyStore.orderPizza('"cheese");
System.out.println("Ethan ordered a " +
pizza.getName() + "\n");

retan ngw NYStyleVeggiePizza(); pizza = chicagoStore.orderPizza("cheese");
} else if (item.equals('clam")) { System.out.println("Joel ordered a " +
return new NYStyleClamPizza(); pizza.getName() + "\n");

} else if (item.equals("pepperoni")) {
return new NYStylePepperoniPizza();
} else return null;

pizza = nyStore.orderPizza('"clam");
System.out.println("Ethan ordered a " +
pizza.getName() + "\n");

}
More Ingredience
The Factory Method Pattern e We want to list the exact list of ingredients for each
concrete pizza. For example :
e The factory method pattern defines an interface for creating - Chicago Cheese Pizza : Plum tomato Sauce, Mozzarella,
an object, but lets subclasses decide which class to Parmesan, Oregano;
instantiate. Factory method lets a class defer instantiation - New York Cheese Pizza : Marinara Sauce, Reggiano, Garlic.
to subclass. e Each “style” uses a different set of ingredients,
e Use Factory Method when: e \We could change implement Pizza as in:
- A class can’ t anticipate the class of objects it must create public class Pizza {
- A class wants its subclasses to specify the objects it zough doughf
auce sauce;
creates Veggies veggies][];
- Classes delegate to one of several helper subclasses, and Cheese cheese;
you want to localize knowledge about which is the Pepperoni pepperoni;

delegate Clams clam;

e and the constructor naturally becomes
something like :

public Pizza(Dough d, Sauce s, Cheese c, Veggies
v, Pepperoni p, Clams c)

{
dough = d;

sauce = s;
veggies = v;
cheese = c;
pepperoni = p;
clam = c;

® How about this sulution?

dough ... | PiZZa Sauce ..o | PiZZa
ThickCrustDougT ThinCrustDough PlumTomatoSauce/| MarinaraSauce

This looks fine...but does it reflect our intention?

Would it really make sense to have a pizza, with Chicago Thick
Crust + NY Marinara Sauce?

Model should not include any ”binding” between related
products.

e but then:

public class NYPizzaStore extends PizzaStore {
Pizza createPizza (String item) ({
if (item.equals("cheese")) {
return new NYStyleCheesePizza (new ThinCrustDough(),
new Marinara(), new Reggiano(), null, null);
} else if (item.equals ("veggie")) {
return new NYStyleVeggiaPizza (new ThinCrustDough(),

new Marinara (), new Reggiano(), mew Garlic()
null) ;

’

This will cause a lot of maintenance headaches!
Imagine what happens when we create a new pizzal

The Abstract Factory

e A Dough and a Sauce are not — as seen from a type
point-of-view — related

e Would be somewhat artificial — or perhaps even
impossible — to introduce a common base class

e However, we can enforce the binding through a shared
factory class!

PizzalngredientFactory
createDough()
createSauce()

Aﬁ

NYPizzalngredientFactory ChicagoPizzalngredientFactory

® We know that we have a certain set of ingredients that are
used for New York..yet we have to keep repeating that set with
each constructor. Can we define this unique set just once?

® After all we are creating concrete instances of dough,

ingredients etc. :

- let’s use the factory of ingredients!

public interface PizzalngredientFactory {

public
public
public
public
public
public

e Our Pizza class will remain an abstract class:

Dough createDough() ;

Sauce createSauce() ;

Cheese createCheese() ;
Veggies[] createVeggies() ;
Pepperoni createPepperoni () ;
Clams createClam() ;

public abstract class Pizza {
string name;

Dough dough;

Sauce sauce;

Cheese cheese;

Veggies veggies|[];

abstract void Prepare(); //now abstract
public virtual string Bake() {

Console.WriteLine ("Bake for 25 minutes at 350 \n“);

}

public virtual string Cut() {

Console.WriteLine ("Cutting the pizza into diagonal slices");

}
// ...
}

e We then “program to the interface” by implementing
different concrete ingredients factories. For example
here are the ingredients used in New York pizza style:

public class NYPizzaIngredientFactory : PizzalngredientFactory {
public Dough createDough() {
return new ThinCrustDough() ;
}
public Sauce createSauce() {
return new MarinaraSauce() ;
}
public Cheese createCheese() {
return new ReggianoCheese () ;

e and our concrete Pizza (the client of
PizzalngredientFactory) simply become:

public class CheesePizza : Pizza {

PizzalIngredientFactory ingredientFactory;

public CheesePizza (PizzaIngredientFactory ingredientFactory) ({
this.ingredientFactory = ingredientFactory;

}

void prepare() {
dough = ingredientFactory.createDough() ;
sauce = ingredientFactory.createSauce() ;
cheese = ingredientFactory.createCheese() ;

No need to instanciate an ingredient; the creation of the
ingredients is delegated to a factory.

e finally we must have our concrete Pizza Store:
public class ClamPizza : Pizza { public class NYPizzaStore : PizzaStore {

PizzaIngredientFactory ingredientFactory; protected Pizza createPizza(String item) {
public ClamPizza (PizzaIngredientFactory ingredientFactory) { Pizza pizza = null;
this.ingredientFactory = ingredientFactory; PizzalngredientFactory ingredientFactory =

} new NYPizzaIngredientFactory();

void prepare() | if (item.equals("cheese")) {
dough = ingredientFactory.createDough () ; pizza = new CheesePizza(ingredientFactory) ;
sauce = ingredientFactory.createSauce(); } else if (item.equals("veggie")) ({
cheese = ingredientFactory.createCheese(); pizza = new VeggiePizza(ingredientFactory);
clam = ingredientFactory.createClam() ; } else if (item.equals("clam")) {

} pizza = new ClamPizza(ingredientFactory) ;
} } else if (item.equals ("pepperoni")) {
pizza = new PepperoniPizza (ingredientFactory) ;
}
No need to instanciate an ingredient; the creation of the return pizza;

ingredients is delegated to a factory. }

Abstract Factory: Class Diagram Abstract Factory: Participants

o AbstractFactory

 declares interface for operations that create abstract
R
x products
| | » ConcreteFactory
J ConcreteProducta | { ConcreteProducta? | » implements operations to create concrete products
prmm—, ‘ » AbstractProduct
e declares an interface for a type of product object
RP— A » ConcreteProduct
— — « defines the product object created by concrete factory
[P | 4= [' | N .
| ConcreteFactoryi }" I ConcreteFactory?2 I" | ConcreteProductB1 | “ ConcreleProduclel « implements the AbstractProduct interface
» Client

» uses only interfaces of AbstractFactory /AbstractProduct

Abstract Factory — intent and context

e provides an interface for creating families of related or
dependent objects without specifying their concrete classes

e use AbstractFactory when

- a system should be independent of how its products are
created, composed, represented

- a system should be configured with one or multiple
families of products

- a family of related product objects is designed to be used
together and you need to enforce this constraint

- you want to provide a class library of products, and you
want to reveal just their interfaces, not their
implementations

Abstract Factory Summary

The creator gives you an interface for writing objects.

The creator specifies the “factory method”, e.g. the
createPizza()

Other methods generally included in the creator are
methods that operate on the product produced by the
creator, e.g. orderPizza().

Only subclasses implement the factory method.

