
Fall 2014

CS 619 Introduction to OO Design
and Development

GoF Patterns (Part 4)

Restricting Object Creation
!  problem: sometimes we will really only ever

need one instance of a particular class
–  examples: keyboard reader, bank data collection,

printer spooler
–  we'd like to make it illegal to have more than one,

just for safety's sake

!  why we care:
–  creating lots of objects can take a lot of time
–  extra objects take up memory
–  it is a pain to deal with different objects floating

around if they are essentially the same
�

!  consider a singleton class RandomGenerator
that generates random numbers

public class RandomGenerator {
 private static RandomGenerator gen = new

RandomGenerator();

 public static RandomGenerator getInstance() {
 return gen;
 }

 private RandomGenerator() {}

 public double nextNumber() {
 return Math.random();
 }
}

Singleton example 1

�

!  variation: don't create the instance until
needed

// Generates random numbers.
public class RandomGenerator {
 private static RandomGenerator gen = null;

 public static RandomGenerator getInstance() {
 if (gen == null)
 gen = new RandomGenerator();
 return gen;
 }
}

!  What could go wrong with this version?

Singleton example 2

�

Thread'Example'

A dual processor machine, with two threads calling the
getInstance() method for RandomGenerator

Thread'1' Thread'2'
public static RandomGenerator

!getInstance()!

public static RandomGenerator
!getInstance(!

if (gen == null)!

if (gen == null)!

gen = new RaddomGenerator()!

gen = new RaddomGenerator()!

return gen;!

return gen;! 5 �

!  variation: solve concurrency issue by locking

// Generates random numbers.
public class RandomGenerator {
 private static RandomGenerator gen = null;

 public static synchronized
 RandomGenerator getInstance() {
 if (gen == null)
 gen = new RandomGenerator();
 return gen;
 }
}

Singleton example 3

�

public class RandomGenerator {
 private volatile static RandomGenerator gen = null;

 public static RandomGenerator getInstance() {
 if (gen == null) {
 synchronized (RandomGenerator.class) {
 if (gen == null) // must check again

 gen = new RandomGenerator();
 }
 }
 return gen;
 }
}

Singleton example 4 (Double-
checked locking)

�

Summary'

!  The singleton pattern ensures that there is just one
instance of a class.

!  The singleton pattern provides a global access point.
!  The pattern is implemented by using a private constructor

and a static method combined with a static variable.
!  Possible problems with multithreading.

2

 Bob TarrDesign Patterns In Java The Singleton Pattern
33

The Singleton PatternThe Singleton Pattern

l Structure

l Consequences
È Benefits

› Controlled access to sole instance
› Permits a variable number of instances

 Bob TarrDesign Patterns In Java The Singleton Pattern
44

Singleton ImplementationSingleton Implementation

l OK, so how do we implement the Singleton pattern?
l We'll use a static method to allow clients to get a reference to the

single instance and we’ll use a private constructor!

 /**

 * Class Singleton is an implementation of a class that

 * only allows one instantiation.

 */

 public class Singleton {

 // The private reference to the one and only instance.

 private static Singleton uniqueInstance = null;

 // An instance attribute.

 private int data = 0;

	

Pattern: Memento

a memory snapshot of an object's state

Originator
state

SetMemento()
CreateMemento()

m = create Memento
m.SetState (state)
return m

state = m.GetState()

Memento
state

SetState()
GetState()

Caretaker

!  problem: sometimes we want to hold onto a
version of an important object's state at a
particular moment

!  memento: a saved "snapshot" of the state of
an object or objects for possible later use;
useful for:
–  writing an Undo / Redo operation
–  ensuring consistent state in a network
–  persistency; save / load state between executions

of program
–  we'll examine Memento in the context of saving

an object to disk using streams

GoF Memento pattern

��

I/O streams, briefly
!  stream: an abstraction of a source or target

of data
!  bytes "flow" to (output) and from (input)

streams
!  can represent many data sources:

–  files on hard disk
–  another computer on network
–  web page
–  input device

(keyboard, mouse, etc.)

��

Serialization
!  serialization: reading / writing

objects and their exact state
using I/O streams

–  allows objects themselves to be
written to files, across network,
to internet, etc.

–  lets you save your objects to
disk and restore later

–  avoids converting object's state
into arbitrary text format

��

Classes used for serialization
in java.io package:
!  ObjectOutputStream class represents a connection to

which an object can be written / sent (saved)
public class ObjectOutputStream

public ObjectOutputStream(OutputStream out)
public void writeObject(Object o)
 throws IOException

!  ObjectInputStream class represents a connection from

which an object can be read / received (loaded)
public class ObjectInputStream

public ObjectInputStream(InputStream in)
public Object readObject() throws Exception

��

Serialization example
!  recommendation: use a Memento class that has save/load

code
// write the object named someObject to file "file.dat"
try {
 OutputStream os = new FileOutputStream("file.dat");
 ObjectOutputStream oos = new ObjectOutputStream(os);
 oos.writeObject(someObject);
 os.close();
} catch (IOException e) { ... }

// load the object named someObject from file "file.dat"
try {
 InputStream is = new FileInputStream("file.dat");
 ObjectInputStream ois = new ObjectInputStream(is);
 ArrayList someList = (ArrayList)ois.readObject();
 is.close();
} catch (Exception e) { ... }

��

Memento sequence diagram

��

!  must implement the (methodless)
java.io.Serializable interface for your class to be
compatible with object input/output streams

public class BankAccount implements Serializable
{
 ...

!  ensure that all instance variables inside your class

are either serializable or declared transient
–  transient fields won't be saved when object is serialized

Making your classes serializable

��

!  Let's make our (singleton) game model
serializable

!  What can happen if a singleton is saved and
loaded?
–  Is it possible to have more than one instance of

the singleton's type in our system?
–  Does this violate the Singleton pattern? Will it

break our code? If so, how can we fix it?

Back to singleton...

��

Singleton example 5

!  Make our singleton serializable.
!  has strict checks to make sure that we have not

saved a stale reference to the singleton object

// Generates random numbers.
public class RandomGenerator {
 private static RandomGenerator gen = null;
 ...

 public double nextNumber() {
 // put code like this in methods that use/modify it
 if (this != gen)
 throw new IllegalStateException("not singleton");

 return Math.random();
 }
}
�	

GoF Pattern: Flyweight

!  a class that has only one instance for each unique
state

�

Problem of redundant objects
!  problem: existence of redundant objects can

bog down system
–  many objects have same state
–  intrinsic vs. extrinsic state

–  example: File objects that represent the same file

on disk
!  new File("mobydick.txt")
!  new File("mobydick.txt")
!  new File("mobydick.txt")

...
!  new File("notes.txt")
!  new File("notes.txt”)

��

GoF Flyweight pattern
!  flyweight: an assurance that no more than one

instance of a class will have identical state
–  achieved by caching identical instances of objects to

reduce object construction
–  similar to singleton, but has many instances, one for

each unique-state object
–  useful for cases when there are many instances of a

type but many are the same

–  can be used in conjunction with Factory pattern to

create a very efficient object-builder
–  examples in Java: String, Image / Toolkit, Formatter

��

Flyweight and Java Strings
!  Flyweighted strings

–  Java Strings are flyweighted by the compiler wherever
possible

–  can be flyweighted at runtime with the intern method

public class StringTest {
 public static void main(String[] args) {
 String fly = "fly", weight = "weight";
 String fly2 = "fly", weight2 = "weight";

 System.out.println(fly == fly2); // true
 System.out.println(weight == weight2); // true

 String distinctString = fly + weight;
 System.out.println(distinctString == "flyweight");// false

 String flyweight = (fly + weight).intern();
 System.out.println(flyweight == "flyweight"); // true
 }
}

��

Implementing a Flyweight

!  flyweighting works best on immutable objects
–  immutable: cannot be changed once constructed

class pseudo-code sketch:
public class Flyweighted {

static map/table of instances
private constructor
static method to get an instance

if we have created this type of instance before, get it from
map and return it
otherwise, make the new instance, store and return it

}

��

Flyweight sequence diagram

��

Implementing a Flyweight
public class Flyweighted {
 Map or table of instances

 private Flyweighted() {}

 public static Flyweighted getInstance(Object key) {
 if (!myInstances.contains(key)) {
 Flyweighted fw = new Flyweighted(key);
 myInstances.put(key, fw);
 return fw;
 } else
 return (Flyweighted)myInstances.get(key);
 }
}

��

Class before flyweighting
!  A class to be flyweighted

public class Point {
 private int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public int getX() { return this.x; }
 public int getY() { return this.y; }

 public String toString() {
 return "(" + this.x + ", " + this.y + ")";
 }
}

��

Class after flyweighting
!  A class that has been flyweighted!

public class Point {
 private static Map instances = new HashMap();

 public static Point getInstance(int x, int y) {
 String key = x + ", " + y;
 if (instances.containsKey(key))// re-use existing pt
 return (Point)instances.get(key);

 Point p = new Point(x, y);
 instances.put(key, p);
 return p;
 }

 private final int x, y; // immutable

 private Point(int x, int y) {
 ... ��

Summary'
!  OO'Basics'

–  Abstrac)on,
–  Encapsula)on,
–  Inheritance,
–  Polymorphism,

!  OO'Principles'
–  Encapsulate'what'varies'
–  Favor'composi<on'over'inheritance'
–  Program'to'interfaces'not'to'implementa<ons'
(Depend,on,abstracts.,Do,not,depend,on,concrete,
classes),

–  Classes'should'be'open'for'extension'but'closed'for'
modifica<on'(Strive,for,loosely,coupled,designs,
between,objects,that,interact.,)'

