Math 141 Lecture 6

Catalin Zara

with modifications by Todor Milev

University of Massachusetts Boston

2014

Outline

Functions of Several Variables

- Verbal description
- Numerical description
- Analytical description

Outline

Functions of Several Variables

- Verbal description
- Numerical description
- Analytical description

Graphical descriptions

- Functions of two variables
- Slices and level curves
- Level sets
- Vector Fields

• So far, the functions we studied had one dimensional (scalar) input.

- So far, the functions we studied had one dimensional (scalar) input.
- Most mathematical models deal with phenomena where the output depends on several variables.

- So far, the functions we studied had one dimensional (scalar) input.
- Most mathematical models deal with phenomena where the output depends on several variables.
- Variables may be "dependent" or independent issue dealt with in the subject of probabilities/statistics.

- So far, the functions we studied had one dimensional (scalar) input.
- Most mathematical models deal with phenomena where the output depends on several variables.
- Variables may be "dependent" or independent issue dealt with in the subject of probabilities/statistics.
- We need to build and use functions with multidimensional input.

- So far, the functions we studied had one dimensional (scalar) input.
- Most mathematical models deal with phenomena where the output depends on several variables.
- Variables may be "dependent" or independent issue dealt with in the subject of probabilities/statistics.
- We need to build and use functions with multidimensional input.
- Such input is typically represented as a bundle of scalar variables.

Describing multivariable functions

• When doing mathematical modeling, there are several ways to define a function of several variables.

Describing multivariable functions

- When doing mathematical modeling, there are several ways to define a function of several variables.
- Usually: start with *verbal* description, then give specific meanings to our input and output variables.

Describing multivariable functions

- When doing mathematical modeling, there are several ways to define a function of several variables.
- Usually: start with *verbal* description, then give specific meanings to our input and output variables.
- We explain by examples.

• The apparent temperature, *W*, felt on exposed skin depends on several factors, including the actual temperature, *T*, the wind speed, *v*, and the humidity. The *wind chill temperature* is a mathematical model for *W* under the assumption that the humidity is 0 and that the only factors influencing *W* are *T* and *v*:

$$W = W(T, v)$$
.

The domain of the function W consists of all reasonable pairs (T, v).

• The apparent temperature, *W*, felt on exposed skin depends on several factors, including the actual temperature, *T*, the wind speed, *v*, and the humidity. The *wind chill temperature* is a mathematical model for *W* under the assumption that the humidity is 0 and that the only factors influencing *W* are *T* and *v*:

$$W = W(T, v)$$
.

The domain of the function W consists of all reasonable pairs (T, v).

• The Cobb-Douglas production function models the production output, *P*, under the assumption that the only factors are the amount of labor, *L*, and the amount of capital, *K*:

$$P=P(L,K)$$
.

• The magnitude *G* of the attraction force between two mass points depends on the masses *m* and *M* of the bodies and the distance *d* between them:

$$G = G(m, M, d)$$

.

• The magnitude *G* of the attraction force between two mass points depends on the masses *m* and *M* of the bodies and the distance *d* between them:

$$G = G(m, M, d)$$

A set (ρ, φ, θ) of spherical coordinates determines the rectangular coordinates (x, y, z) of a point. In this case, both the input and the output are multidimensional:

$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{F}(\rho, \theta, \phi) ,$$

• The wind velocity **v** at a point *P* depends on the position **r** of *P*,

$$\mathbf{v} = \mathbf{V}(\mathbf{r})$$
 .

In this case both the input and the output are vectorial quantities.

• The wind velocity **v** at a point *P* depends on the position **r** of *P*,

 $\mathbf{v} = \mathbf{V}(\mathbf{r})$.

In this case both the input and the output are vectorial quantities.

• The electric force on a charge *q* displaced by **r** from a charge *Q* depends on the two charges, the displacement, and the medium in which the charges are placed:

$$\mathsf{E} = \mathsf{E}(q, Q, \mathsf{r})$$
 .

Note that in this case the output data is a vector and the input data is a mix of scalar and vectorial quantities.

• Verbal description is essential for understanding.

- Verbal description is essential for understanding.
- However this does not include quantitative or visual information.

- Verbal description is essential for understanding.
- However this does not include quantitative or visual information.
- A *numerical* description gives output data for a relevant set of input data.

- Verbal description is essential for understanding.
- However this does not include quantitative or visual information.
- A numerical description gives output data for a relevant set of input data.
- This facilitates construction/study of a mathematical model.

- Verbal description is essential for understanding.
- However this does not include quantitative or visual information.
- A numerical description gives output data for a relevant set of input data.
- This facilitates construction/study of a mathematical model.
- Numerical description is typically given by table.

- Verbal description is essential for understanding.
- However this does not include quantitative or visual information.
- A numerical description gives output data for a relevant set of input data.
- This facilitates construction/study of a mathematical model.
- Numerical description is typically given by table.
- This table contains numerical data collected through experiments at selected input levels.

Examples: describing multivariable function via numerical data.

• the following is Wind Chill Chart provided by NOOA:

NEW NWS WIND CHILL CHART

	Temperature (T)																		
	Calm	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45
Wind (mph)	5	36	31	25	19	13	7	1	-5	-11	-16	-22	-28	-34	-40	-46	-52	-57	-63
	10	34	27	21	15	9	3	-4	-10	-16	-22	-28	-35	-41	-47	-53	-59	-66	-72
	15	32	25	19	13	6	0	-7	-13	-19	-26	-32	-39	-45	-51	-58	-64	-71	-77
	20	30	24	17	11	4	-2	-9	-15	-22	-29	-35	-42	-48	-55	-61	-68	-74	-81
	25	29	23	16	9	3	-4	-11	-17	-24	-31	-37	-44	-51	-58	-64	-71	-78	-84
	30	28	22	15	8	1	-5	-12	-19	-26	-33	-39	-46	-53	-60	-67	-73	-80	-87
	35	28	21	14	7	0	-7	-14	-21	-27	-34	-41	-48	-55	-62	-69	-76	-82	-89
	40	27	20	13	6	-1	-8	-15	-22	-29	-36	-43	-50	-57	-64	-71	-78	-84	-91
	45	26	19	12	5	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79	-86	-93
	50	26	19	12	4	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81	-88	-95
	55	25	18	11	4	-3	-11	-18	-25	-32	-39	-46	-54	-61	-68	-75	-82	-89	-97
	60	25	17	10	3	-4	-11	-19	-26	-33	-40	-48	-55	-62	-69	-76	-84	-91	-98
			100																

Temperature (°F)

FROSTBITE OCCURS IN 15 MINUTES OR LESS

• Another example is the Income Tax Table. Explain what the input and output variables are in that case.

Analytical description

Analytical description of multivarible function

• Numerical data has output data for selected inputs only.

- Numerical data has output data for selected inputs only.
- If output is not tabulated for given input we need to approximate.

- Numerical data has output data for selected inputs only.
- If output is not tabulated for given input we need to approximate.
- This is done by inter/extrapolation from given information.

Analytical description

- Numerical data has output data for selected inputs only.
- ٥ If output is not tabulated for given input we need to approximate.
- This is done by inter/extrapolation from given information. ٥
- It would be better to have procedure to determine output from any ٥ reasonable input.

- Numerical data has output data for selected inputs only.
- If output is not tabulated for given input we need to approximate.
- This is done by inter/extrapolation from given information.
- It would be better to have procedure to determine output from any reasonable input.
- This would be an *analytical* description of the function.
- By analytical description we mean giving a procedure to compute the value of the function:

Analytical description

- Numerical data has output data for selected inputs only.
- If output is not tabulated for given input we need to approximate.
- This is done by inter/extrapolation from given information.
- It would be better to have procedure to determine output from any ٥ reasonable input.
- This would be an *analytical* description of the function.
- By analytical description we mean giving a procedure to compute the value of the function:
 - via formula or

Analytical description

- Numerical data has output data for selected inputs only.
- If output is not tabulated for given input we need to approximate.
- This is done by inter/extrapolation from given information.
- It would be better to have procedure to determine output from any reasonable input.
- This would be an *analytical* description of the function.
- By analytical description we mean giving a procedure to compute the value of the function:
 - via formula or
 - via another algorithmic procedure.

 One way is to try to guess a formula that fits approximately the input data.

- One way is to try to guess a formula that fits approximately the input data.
- For wind chill, one such formula is:

 $W(T, v) = 35.74 + 0.6215T - 35.75v^{0.16} + 0.4275Tv^{0.16}$

with W and T in Fahrenheit and v in *mph*.

- One way is to try to guess a formula that fits approximately the input data.
- For wind chill, one such formula is:

 $W(T, v) = 35.74 + 0.6215T - 35.75v^{0.16} + 0.4275Tv^{0.16}$

with W and T in Fahrenheit and v in *mph*.

A proper mathematical model requires that we

- One way is to try to guess a formula that fits approximately the input data.
- For wind chill, one such formula is:

 $W(T, v) = 35.74 + 0.6215T - 35.75v^{0.16} + 0.4275Tv^{0.16}$

with W and T in Fahrenheit and v in *mph*.

- A proper mathematical model requires that we
 - compute unknown output for some input and

- One way is to try to guess a formula that fits approximately the input data.
- For wind chill, one such formula is:

 $W(T, v) = 35.74 + 0.6215T - 35.75v^{0.16} + 0.4275Tv^{0.16}$

- A proper mathematical model requires that we
 - compute unknown output for some input and
 - make a new measurement and compare with the model's output to see if model gives correct prediction.

- One way is to try to guess a formula that fits approximately the input data.
- For wind chill, one such formula is:

 $W(T, v) = 35.74 + 0.6215T - 35.75v^{0.16} + 0.4275Tv^{0.16}$

- A proper mathematical model requires that we
 - compute unknown output for some input and
 - make a new measurement and compare with the model's output to see if model gives correct prediction.
- Constructing mathematical models to fit numerical data (approximately) is the subject of "Approximation theory".

- One way is to try to guess a formula that fits approximately the input data.
- For wind chill, one such formula is:

 $W(T, v) = 35.74 + 0.6215T - 35.75v^{0.16} + 0.4275Tv^{0.16}$

- A proper mathematical model requires that we
 - compute unknown output for some input and
 - make a new measurement and compare with the model's output to see if model gives correct prediction.
- Constructing mathematical models to fit numerical data (approximately) is the subject of "Approximation theory".
- Mathematicians dealing with "approximation theory" are often called "applied mathematicians".

- One way is to try to guess a formula that fits approximately the input data.
- For wind chill, one such formula is:

 $W(T, v) = 35.74 + 0.6215T - 35.75v^{0.16} + 0.4275Tv^{0.16}$

- A proper mathematical model requires that we
 - compute unknown output for some input and
 - make a new measurement and compare with the model's output to see if model gives correct prediction.
- Constructing mathematical models to fit numerical data (approximately) is the subject of "Approximation theory".
- Mathematicians dealing with "approximation theory" are often called "applied mathematicians".
- The above terms are not precisely defined and not fully agreed upon.

• For the Cobb-Douglas production function: economic analysis motivates properties such function should have.

- For the Cobb-Douglas production function: economic analysis motivates properties such function should have.
- One formula (model) with these properties is:

$${\sf P}(K,L)={\it c}L^aK^{1-a}$$
 ;

where *a* is a parameter between 0 and 1.

- For the Cobb-Douglas production function: economic analysis motivates properties such function should have.
- One formula (model) with these properties is:

$$P(K,L)=cL^{a}K^{1-a}$$
 ;

where *a* is a parameter between 0 and 1.

• While the function *P* depends on three variables *a*, *L*, and *K*, we treat them differently: we consider *a* to be a parameter of the model; once we decide on the value of *a*, we treat it as a constant.

- For the Cobb-Douglas production function: economic analysis motivates properties such function should have.
- One formula (model) with these properties is:

$$P(K,L)=cL^{a}K^{1-a}$$
 ;

where *a* is a parameter between 0 and 1.

- While the function P depends on three variables a, L, and K, we treat them differently: we consider a to be a parameter of the model; once we decide on the value of a, we treat it as a constant.
- The transition formulas from spherical to rectangular coordinates are a derived via geometric reasoning.

 An important class of functions of several variables is the class of polynomial functions.

- An important class of functions of several variables is the class of polynomial functions.
- Polynomial functions in *n* variables are obtained using *n* variables, the constants and three easiest arithmetic operations - +, -, .

- An important class of functions of several variables is the class of polynomial functions.
- Polynomial functions in *n* variables are obtained using *n* variables, the constants and three easiest arithmetic operations - +, -, .
- Polynomials of degree one in two and three variables are parametrized by:

$$f(x, y) = ax + by + c$$

$$g(x, y, z) = ax + by + cz + d$$

- An important class of functions of several variables is the class of polynomial functions.
- Polynomial functions in *n* variables are obtained using *n* variables, the constants and three easiest arithmetic operations - +, -, .
- Polynomials of degree one in two and three variables are parametrized by:

$$f(x, y) = ax + by + c$$

$$g(x, y, z) = ax + by + cz + d$$

 Polynomials of degree two in two and three variables are parametrized by:

$$\begin{array}{rcl} f(x,y) &=& a_{11}x^2 + a_{12}xy + a_{22}y^2 + a_1x + a_2y + a_0 \\ g(x,y,z) &=& a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + a_{12}xy + a_{13}xz + a_{23}yz + \\ &+ a_1x + a_2y + a_3z + a_0 \end{array}$$

where the a_{ij} 's are real numbers.

Math 141

• The formula for electric force is given by laws of physics: the magnitude of the force is directly proportional to the charges *q*, *Q*, and inversely proportional to the square of the distance between them. The force acts along the line joining the two points, attracts *q* to *Q* if the charges have different sign and rejects *q* from *Q* if the charges have the same sign. The mathematical translation is

$$\mathsf{E}(\boldsymbol{q}, \boldsymbol{Q}, \mathbf{r}, \epsilon) = rac{\epsilon \boldsymbol{q} \boldsymbol{Q}}{|\mathbf{r}|^3} \mathbf{r} \; ,$$

where ϵ is a proportionality constant, depending on the medium the charges are placed in.

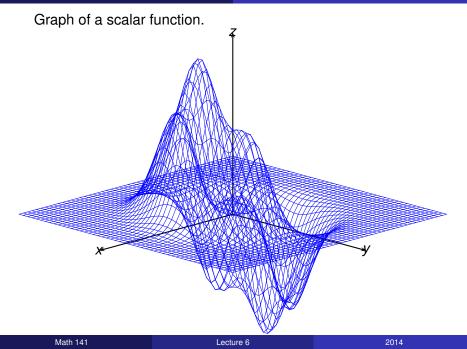
• An analytical description is technically best, but not easy to interpret.

- An analytical description is technically best, but not easy to interpret.
- If output is a scalar, where does the function attain its extreme values (maxima, minima)?

- An analytical description is technically best, but not easy to interpret.
- If output is a scalar, where does the function attain its extreme values (maxima, minima)?
- How do values change for nearby points are they decreasing, increasing, how fast?

- An analytical description is technically best, but not easy to interpret.
- If output is a scalar, where does the function attain its extreme values (maxima, minima)?
- How do values change for nearby points are they decreasing, increasing, how fast?
- We will learn to decode this information from the analytical descriptions.

- An analytical description is technically best, but not easy to interpret.
- If output is a scalar, where does the function attain its extreme values (maxima, minima)?
- How do values change for nearby points are they decreasing, increasing, how fast?
- We will learn to decode this information from the analytical descriptions.
- Even so, "a picture is worth a thousand words (and, say, 10 f-las)".



 For one variable function, y = f(x), the graph of f is a set of points in ℝ²: the set of points (x, y) such that y = f(x).

- For one variable function, y = f(x), the graph of f is a set of points in ℝ²: the set of points (x, y) such that y = f(x).
- Example: if $f(x) = x^2$, then (3,9) is on the graph, because $9 = 3^2$, but (2,5) is not because $5 \neq 2^2$.

- For one variable function, y = f(x), the graph of f is a set of points in ℝ²: the set of points (x, y) such that y = f(x).
- Example: if $f(x) = x^2$, then (3,9) is on the graph, because $9 = 3^2$, but (2,5) is not because $5 \neq 2^2$.
- We can extend this graphical representation for functions with two dimensional input and one dimensional (scalar) output.

- For one variable function, y = f(x), the graph of f is a set of points in ℝ²: the set of points (x, y) such that y = f(x).
- Example: if $f(x) = x^2$, then (3,9) is on the graph, because $9 = 3^2$, but (2,5) is not because $5 \neq 2^2$.
- We can extend this graphical representation for functions with two dimensional input and one dimensional (scalar) output.
- The graph of the function $f: D \to \mathbb{R}$, where D is a region in \mathbb{R}^2 , is the set of points P(x, y, z) in \mathbb{R}^3 whose coordinates satisfy the condition

$$z=f(x,y)$$

- For one variable function, y = f(x), the graph of f is a set of points in ℝ²: the set of points (x, y) such that y = f(x).
- Example: if $f(x) = x^2$, then (3,9) is on the graph, because $9 = 3^2$, but (2,5) is not because $5 \neq 2^2$.
- We can extend this graphical representation for functions with two dimensional input and one dimensional (scalar) output.
- The graph of the function $f: D \to \mathbb{R}$, where D is a region in \mathbb{R}^2 , is the set of points P(x, y, z) in \mathbb{R}^3 whose coordinates satisfy the condition

$$z = f(x, y)$$

• For example, the graph of f(x, y) = 2x - y + 3 is the set

$$\{(x, y, z) | z = 2x - y + 3\} \Longrightarrow$$
 plane $2x - y - z + 3 = 0$.

 $g(x,y) = x^2 + 2y^2$

• What does the graph Γ of g look like?

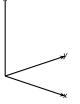
 $g(x,y)=x^2+2y^2$

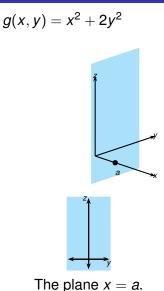
- What does the graph Γ of g look like?
- Γ = points in \mathbb{R}^3 such that $z = x^2 + 2y^2$. The set is not a plane: what does it look like?

 $g(x,y)=x^2+2y^2$

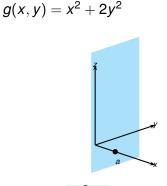
- What does the graph Γ of g look like?
- Γ = points in \mathbb{R}^3 such that $z = x^2 + 2y^2$. The set is not a plane: what does it look like?
- To answer look at sections. Use imaginary CT scan to cut the graph; assemble resulting sections into a graph.

$$g(x,y)=x^2+2y^2$$



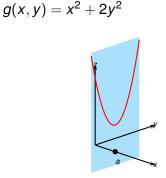


 Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.



- Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.
- In other words, treat x as constant and study the f-n

$$y \rightarrow z = a^2 + 2y^2 = g(a, y).$$



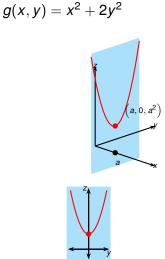
∠ ↓ ↓

The plane x = a.

- Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.
- In other words, treat x as constant and study the f-n

$$y \rightarrow z = a^2 + 2y^2 = g(a, y).$$

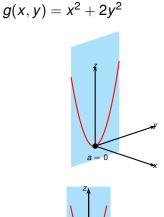
• The cross-sections are the curves: {(a, y, z) where $z = a^2 + 2y^2$ }



- Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.
- In other words, treat x as constant and study the f-n

$$y \rightarrow z = a^2 + 2y^2 = g(a, y).$$

- The cross-sections are the curves: $\{(a, y, z) \text{ where } z = a^2 + 2y^2\}$
- These are parabolas lying inside the plane x = a with vertices at $(a, 0, a^2)$.

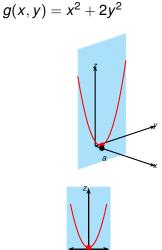


The plane x = a.

- Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.
- In other words, treat x as constant and study the f-n

$$y \rightarrow z = a^2 + 2y^2 = g(a, y).$$

- The cross-sections are the curves: $\{(a, y, z) \text{ where } z = a^2 + 2y^2\}$
- These are parabolas lying inside the plane x = a with vertices at $(a, 0, a^2)$.
- As *a* moves away from 0, the parabola vertex rises.

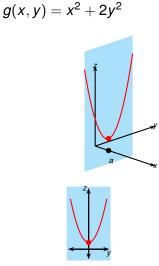


The plane x = a.

- Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.
- In other words, treat x as constant and study the f-n

$$y \rightarrow z = a^2 + 2y^2 = g(a, y).$$

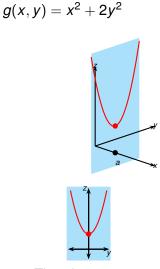
- The cross-sections are the curves: $\{(a, y, z) \text{ where } z = a^2 + 2y^2\}$
- These are parabolas lying inside the plane x = a with vertices at $(a, 0, a^2)$.
- As *a* moves away from 0, the parabola vertex rises.



- Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.
- In other words, treat x as constant and study the f-n

$$y \rightarrow z = a^2 + 2y^2 = g(a, y).$$

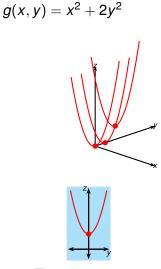
- The cross-sections are the curves: $\{(a, y, z) \text{ where } z = a^2 + 2y^2\}$
- These are parabolas lying inside the plane x = a with vertices at $(a, 0, a^2)$.
- As *a* moves away from 0, the parabola vertex rises.



- Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.
- In other words, treat x as constant and study the f-n

$$y \rightarrow z = a^2 + 2y^2 = g(a, y).$$

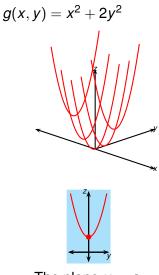
- The cross-sections are the curves: $\{(a, y, z) \text{ where } z = a^2 + 2y^2\}$
- These are parabolas lying inside the plane x = a with vertices at $(a, 0, a^2)$.
- As *a* moves away from 0, the parabola vertex rises.



- Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.
- In other words, treat x as constant and study the f-n

$$y \rightarrow z = a^2 + 2y^2 = g(a, y).$$

- The cross-sections are the curves: $\{(a, y, z) \text{ where } z = a^2 + 2y^2\}$
- These are parabolas lying inside the plane x = a with vertices at $(a, 0, a^2)$.
- As *a* moves away from 0, the parabola vertex rises.

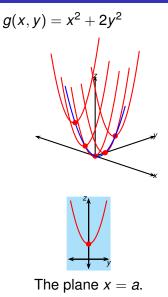


The plane x = a.

- Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.
- In other words, treat x as constant and study the f-n

$$y \rightarrow z = a^2 + 2y^2 = g(a, y).$$

- The cross-sections are the curves: $\{(a, y, z) \text{ where } z = a^2 + 2y^2\}$
- These are parabolas lying inside the plane x = a with vertices at $(a, 0, a^2)$.
- As *a* moves away from 0, the parabola vertex rises.

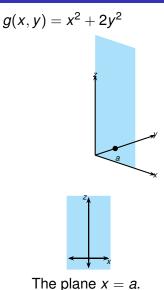


- Cut by vertical planes x = a, a-constant, parallel to the Oyz-plane.
- In other words, treat x as constant and study the f-n

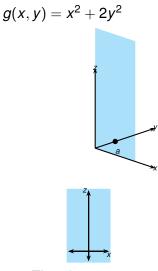
$$y \rightarrow z = a^2 + 2y^2 = g(a, y).$$

- The cross-sections are the curves: $\{(a, y, z) \text{ where } z = a^2 + 2y^2\}$
- These are parabolas lying inside the plane x = a with vertices at $(a, 0, a^2)$.
- As *a* moves away from 0, the parabola vertex rises.
- The vertices traverse the curve given by {(*a*, 0, *a*²)}.

Math 141



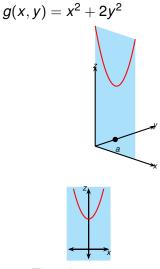
Similarly, cut by vertical planes y = a,
 i.e., planes parallel to the Oxz plane.



- Similarly, cut by vertical planes y = a,
 i.e., planes parallel to the Oxz plane.
- In other words, treat y as constant and study the f-n

$$z=g(x,a)=x^2+2a^2.$$

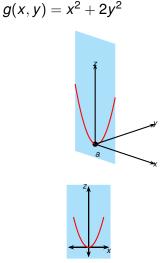
The plane x = a.



The plane x = a.

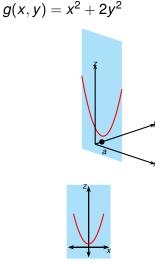
- Similarly, cut by vertical planes y = a,
 i.e., planes parallel to the Oxz plane.
- In other words, treat y as constant and study the f-n

$$z = g(x, a) = x^2 + 2a^2$$
.



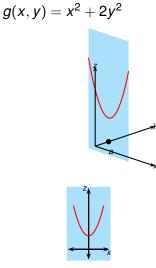
- Similarly, cut by vertical planes y = a,
 i.e., planes parallel to the Oxz plane.
- In other words, treat y as constant and study the f-n

$$z = g(x, a) = x^2 + 2a^2$$
.



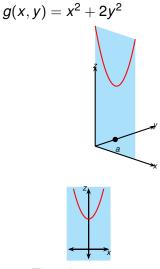
- Similarly, cut by vertical planes y = a,
 i.e., planes parallel to the Oxz plane.
- In other words, treat y as constant and study the f-n

$$z = g(x, a) = x^2 + 2a^2$$
.



- Similarly, cut by vertical planes y = a,
 i.e., planes parallel to the Oxz plane.
- In other words, treat y as constant and study the f-n

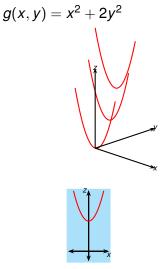
$$z = g(x, a) = x^2 + 2a^2$$
.



The plane x = a.

- Similarly, cut by vertical planes y = a,
 i.e., planes parallel to the Oxz plane.
- In other words, treat y as constant and study the f-n

$$z = g(x, a) = x^2 + 2a^2$$
.

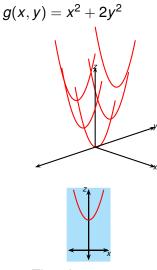


The plane x = a.

- Similarly, cut by vertical planes *y* = *a*, i.e., planes parallel to the *Oxz* plane.
- In other words, treat y as constant and study the f-n

$$z = g(x, a) = x^2 + 2a^2$$
.

- The cross-sections are the curves $\{(x, a, z) \text{ where } z = x^2 + 2a^2\}$. These are parabolas lying inside the plane y = a.
- → the vertical sections along both the x and y axes are parabolas.

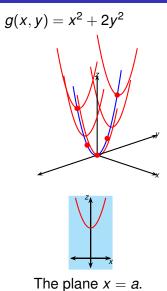


The plane x = a.

- Similarly, cut by vertical planes y = a, i.e., planes parallel to the Oxz plane.
- In other words, treat y as constant and study the f-n

$$z = g(x, a) = x^2 + 2a^2$$
.

- The cross-sections are the curves $\{(x, a, z) \text{ where } z = x^2 + 2a^2\}$. These are parabolas lying inside the plane y = a.
- ⇒ the vertical sections along both the x and y axes are parabolas.



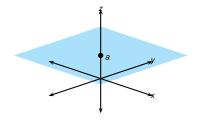
- Similarly, cut by vertical planes *y* = *a*, i.e., planes parallel to the *Oxz* plane.
- In other words, treat y as constant and study the f-n

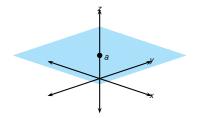
$$z = g(x, a) = x^2 + 2a^2$$
.

- The cross-sections are the curves $\{(x, a, z) \text{ where } z = x^2 + 2a^2\}$. These are parabolas lying inside the plane y = a.
- → the vertical sections along both the x and y axes are parabolas.
- The vertices are rising as we move away from the origin.

$$g(x,y)=x^2+2y^2$$

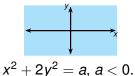
• For horizontal sections keep constant the output variable, *z* = *a*.



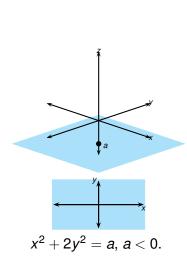


- For horizontal sections keep constant the output variable, *z* = *a*.
- When we intersect with *z* = *a* we get the curve with equations

$$x^2 + 2y^2 = a, z = a.$$

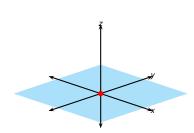


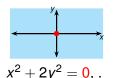
 $q(x, y) = x^2 + 2y^2$



- For horizontal sections keep constant the output variable, *z* = *a*.
- When we intersect with z = a we get the curve with equations x² + 2y² = a, z = a.
- For *a* < 0 intersection is empty.

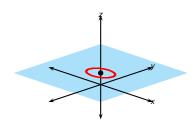
 $g(x, y) = x^2 + 2y^2$

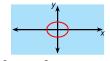




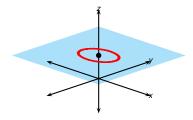
- For horizontal sections keep constant the output variable, *z* = *a*.
- When we intersect with z = a we get the curve with equations x² + 2y² = a, z = a.
- For *a* < 0 intersection is empty.
- For a = 0 intersection is (0, 0, 0).

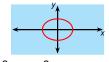
 $g(x, y) = x^2 + 2y^2$





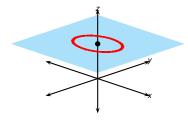
- For horizontal sections keep constant the output variable, *z* = *a*.
- When we intersect with z = a we get the curve with equations x² + 2y² = a, z = a.
- For *a* < 0 intersection is empty.
- For *a* = 0 intersection is (0, 0, 0).
- For a > 0 intersection is an ellipse.

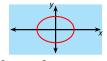




$$x^2 + 2y^2 = , a > 0.$$

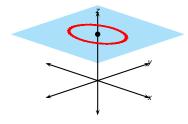
- For horizontal sections keep constant the output variable, z = a.
- When we intersect with z = a we get the curve with equations x² + 2y² = a, z = a.
- For *a* < 0 intersection is empty.
- For a = 0 intersection is (0, 0, 0).
- For a > 0 intersection is an ellipse.

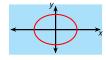




$$x^2 + 2y^2 = , a > 0.$$

- For horizontal sections keep constant the output variable, *z* = *a*.
- When we intersect with z = a we get the curve with equations x² + 2y² = a, z = a.
- For *a* < 0 intersection is empty.
- For a = 0 intersection is (0, 0, 0).
- For a > 0 intersection is an ellipse.

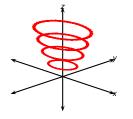


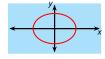


$$x^2 + 2y^2 = , a > 0.$$

- For horizontal sections keep constant the output variable, z = a.
- When we intersect with z = a we get the curve with equations x² + 2y² = a, z = a.
- For *a* < 0 intersection is empty.
- For a = 0 intersection is (0, 0, 0).
- For a > 0 intersection is an ellipse.

$$g(x,y)=x^2+2y^2$$

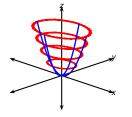


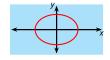


$$x^2 + 2y^2 = , a > 0.$$

- For horizontal sections keep constant the output variable, z = a.
- When we intersect with z = a we get the curve with equations x² + 2y² = a, z = a.
- For *a* < 0 intersection is empty.
- For a = 0 intersection is (0, 0, 0).
- For a > 0 intersection is an ellipse.

$$g(x,y)=x^2+2y^2$$

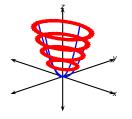


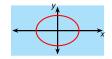


 $x^2 + 2y^2 = , a > 0.$

- For horizontal sections keep constant the output variable, z = a.
- When we intersect with z = a we get the curve with equations x² + 2y² = a, z = a.
- For *a* < 0 intersection is empty.
- For a = 0 intersection is (0, 0, 0).
- For *a* > 0 intersection is an ellipse.
- Figure is called ellipsoidal paraboloid.

$$g(x,y)=x^2+2y^2$$





 $x^2 + 2y^2 = , a > 0.$

- For horizontal sections keep constant the output variable, z = a.
- When we intersect with z = a we get the curve with equations x² + 2y² = a, z = a.
- For *a* < 0 intersection is empty.
- For a = 0 intersection is (0, 0, 0).
- For a > 0 intersection is an ellipse.
- Figure is called ellipsoidal paraboloid.

Definition

The sets $\{(x, y, a)|g(x, y) = a\}$ are called level curves of the function *g*.

- You should be familiarized with level curves if you have ever seen a topographic map or from weather reports on the tv.
- What are the functions in those cases?

 Previously we considered functions z = g(x, y) with scalar output and two dimensional input. • Previously we considered functions z = g(x, y) with scalar output and two dimensional input.

• Previously we considered functions z = g(x, y) with scalar output and two dimensional input.

- Previously we considered functions z = g(x, y) with scalar output and two dimensional input.
- The graphs of such functions live in $\mathbb{R}^3 = \mathbb{R}^{2+1}$.

- Previously we considered functions z = g(x, y) with scalar output and two dimensional input.
- The graphs of such functions live in $\mathbb{R}^3 = \mathbb{R}^{2+1}$.
- 2 dimensions were used to represent the input.

- Previously we considered functions z = g(x, y) with scalar output and two dimensional input.
- The graphs of such functions live in $\mathbb{R}^3 = \mathbb{R}^{2+1}$.
- 2 dimensions were used to represent the input.
- 1 dimension was used to represent the output.

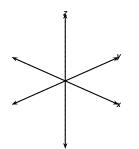
- Previously we considered functions z = g(x, y) with scalar output and two dimensional input.
- The graphs of such functions live in $\mathbb{R}^3 = \mathbb{R}^{2+1}$.
- 2 dimensions were used to represent the input.
- 1 dimension was used to represent the output.
- To represent functions with 3 dimensional input (3 variables) and scalar output: need 3 + 1 = 4 dimensions.

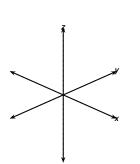
- Previously we considered functions z = g(x, y) with scalar output and two dimensional input.
- The graphs of such functions live in $\mathbb{R}^3 = \mathbb{R}^{2+1}$.
- 2 dimensions were used to represent the input.
- 1 dimension was used to represent the output.
- To represent functions with 3 dimensional input (3 variables) and scalar output: need 3 + 1 = 4 dimensions.
- That's difficult for eyes used to visualizing physical 3d- space.

- Previously we considered functions z = g(x, y) with scalar output and two dimensional input.
- The graphs of such functions live in $\mathbb{R}^3 = \mathbb{R}^{2+1}$.
- 2 dimensions were used to represent the input.
- 1 dimension was used to represent the output.
- To represent functions with 3 dimensional input (3 variables) and scalar output: need 3 + 1 = 4 dimensions.
- That's difficult for eyes used to visualizing physical 3d- space.
- Instead: label the level sets of the function with color or other means to indicate value.

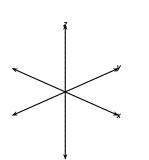
- Previously we considered functions z = g(x, y) with scalar output and two dimensional input.
- The graphs of such functions live in $\mathbb{R}^3 = \mathbb{R}^{2+1}$.
- 2 dimensions were used to represent the input.
- 1 dimension was used to represent the output.
- To represent functions with 3 dimensional input (3 variables) and scalar output: need 3 + 1 = 4 dimensions.
- That's difficult for eyes used to visualizing physical 3d- space.
- Instead: label the level sets of the function with color or other means to indicate value.
- In this way we represent the f-n graphically using dimension equal to the number of input variables.

• Let
$$f(x, y, z) = x + y - z$$
.

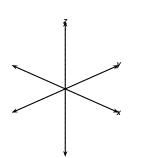




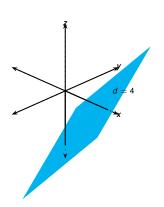
- Let f(x, y, z) = x + y z.
- The graph consists of the quadruples (x, y, z, w) in ℝ⁴ such that w = x + y z. Can't plot that graphically (yet).



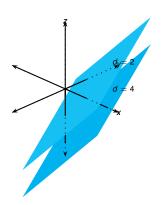
- Let f(x, y, z) = x + y z.
- The graph consists of the quadruples (x, y, z, w) in ℝ⁴ such that w = x + y z. Can't plot that graphically (yet).
- However, can represent with labeled level sets.



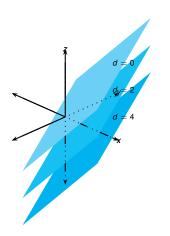
- Let f(x, y, z) = x + y z.
- The graph consists of the quadruples (x, y, z, w) in ℝ⁴ such that w = x + y z. Can't plot that graphically (yet).
- However, can represent with labeled level sets.
- The level set f(x, y, z) = d is the surface x + y z = d in \mathbb{R}^3 , and that surface is a plane.



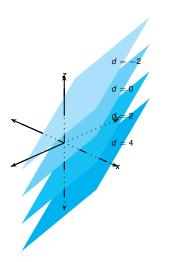
- Let f(x, y, z) = x + y z.
- The graph consists of the quadruples (x, y, z, w) in ℝ⁴ such that w = x + y z. Can't plot that graphically (yet).
- However, can represent with labeled level sets.
- The level set f(x, y, z) = d is the surface x + y z = d in \mathbb{R}^3 , and that surface is a plane.
- For varying values of *d* we plot the level set. f(x, y, z) = d = 4.
 Darker color = larger d.



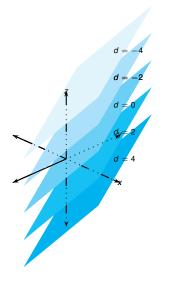
- Let f(x, y, z) = x + y z.
- The graph consists of the quadruples (x, y, z, w) in ℝ⁴ such that w = x + y z. Can't plot that graphically (yet).
- However, can represent with labeled level sets.
- The level set f(x, y, z) = d is the surface x + y z = d in \mathbb{R}^3 , and that surface is a plane.
- For varying values of *d* we plot the level set. f(x, y, z) = d = 2.
 Darker color = larger d.



- Let f(x, y, z) = x + y z.
- The graph consists of the quadruples (x, y, z, w) in ℝ⁴ such that w = x + y z. Can't plot that graphically (yet).
- However, can represent with labeled level sets.
- The level set f(x, y, z) = d is the surface x + y z = d in \mathbb{R}^3 , and that surface is a plane.
- For varying values of *d* we plot the level set. f(x, y, z) = d = 0.
 Darker color = larger d.



- Let f(x, y, z) = x + y z.
- The graph consists of the quadruples (x, y, z, w) in ℝ⁴ such that w = x + y z. Can't plot that graphically (yet).
- However, can represent with labeled level sets.
- The level set f(x, y, z) = d is the surface x + y z = d in \mathbb{R}^3 , and that surface is a plane.
- For varying values of *d* we plot the level set. f(x, y, z) = d = -2.
 Darker color = larger *d*.



- Let f(x, y, z) = x + y z.
- The graph consists of the quadruples (x, y, z, w) in ℝ⁴ such that w = x + y z. Can't plot that graphically (yet).
- However, can represent with labeled level sets.
- The level set f(x, y, z) = d is the surface x + y z = d in \mathbb{R}^3 , and that surface is a plane.
- For varying values of *d* we plot the level set. f(x, y, z) = d = -4.
 Darker color = larger d.

Remark

The level set f(x, y, z) = 0 for the function

$$f(x, y, z) = ax + by - z + d$$

Remark

The level set f(x, y, z) = 0 for the function

$$f(x, y, z) = ax + by - z + d$$

is the same as the graph of the function g(x, y) = ax + by + c.

• Graph surfaces can always be represented as level surfaces

Remark

The level set f(x, y, z) = 0 for the function

$$f(x, y, z) = ax + by - z + d$$

- Graph surfaces can always be represented as level surfaces
- The converse is not true: level surfaces can't always be represented as graph surfaces.

Remark

The level set f(x, y, z) = 0 for the function

$$f(x, y, z) = ax + by - z + d$$

- Graph surfaces can always be represented as level surfaces
- The converse is not true: level surfaces can't always be represented as graph surfaces.
- Example: a sphere centered at the origin is the level surface of $f(x, y, z) = x^2 + y^2 + z^2$ but it "fails the vertical line test in all directions", so it cannot be globally represented as a graph surface, no matter how we change the coordinate system.

Remark

The level set f(x, y, z) = 0 for the function

$$f(x, y, z) = ax + by - z + d$$

- Graph surfaces can always be represented as level surfaces
- The converse is not true: level surfaces can't always be represented as graph surfaces.
- Example: a sphere centered at the origin is the level surface of $f(x, y, z) = x^2 + y^2 + z^2$ but it "fails the vertical line test in all directions", so it cannot be globally represented as a graph surface, no matter how we change the coordinate system.
- We'll show that under reasonable assumptions, level surfaces can *locally* be described as graph surfaces.

Vector fields

- Vector fields are functions with multidimensional input and output.
- Input is point in space; output is a vector, which we plot as a vector with a tail at the input point.
- Examples
 - Velocity of fluid/air at given point;
 - Electric force per unit of charge;
 - Gravitational field;

Coordinate representation of vector fields

• In rectangular coordinates a vector field **F** can be decomposed along the fundamental directions:

$$\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$$

Coordinate representation of vector fields

 In rectangular coordinates a vector field F can be decomposed along the fundamental directions:

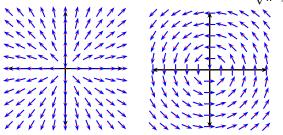
$$\mathbf{F}(x,y,z) = F_1(x,y,z)\mathbf{i} + F_2(x,y,z)\mathbf{j} + F_3(x,y,z)\mathbf{k}$$

 For regions in the plane 2-dim vector fields are defined in a similar fashion: as function from subsets of ℝ² to ℝ:

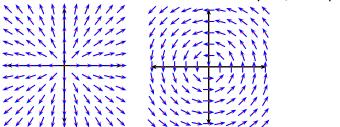
$$\mathbf{F}(x,y) = F_1(x,y)\mathbf{i} + F_2(x,y)\mathbf{j}$$

• Similarly define the vector field \mathbf{e}_{θ} by: $\mathbf{e}_{\theta} = -\sin\theta \,\mathbf{i} + \cos\theta \,\mathbf{j} = -\frac{y}{r} \,\mathbf{i} + \frac{x}{r} \,\mathbf{j} = -\frac{y}{\sqrt{x^2 + y^2}} \,\mathbf{i} + \frac{x}{\sqrt{x^2 + y^2}} \,\mathbf{j}$.

• Similarly define the vector field \mathbf{e}_{θ} by: $\mathbf{e}_{\theta} = -\sin\theta \,\mathbf{i} + \cos\theta \,\mathbf{j} = -\frac{y}{r} \,\mathbf{i} + \frac{x}{r} \,\mathbf{j} = -\frac{y}{\sqrt{x^2 + y^2}} \,\mathbf{i} + \frac{x}{\sqrt{x^2 + y^2}} \,\mathbf{j}$.

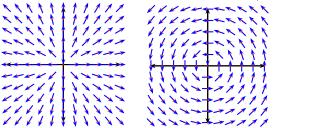


• Similarly define the vector field \mathbf{e}_{θ} by: $\mathbf{e}_{\theta} = -\sin\theta \,\mathbf{i} + \cos\theta \,\mathbf{j} = -\frac{y}{r} \,\mathbf{i} + \frac{x}{r} \,\mathbf{j} = -\frac{y}{\sqrt{x^2 + y^2}} \,\mathbf{i} + \frac{x}{\sqrt{x^2 + y^2}} \,\mathbf{j}$.



 From the picture it is evident what trajectory would be followed by an object that "flows along the vector field".

• Similarly define the vector field \mathbf{e}_{θ} by: $\mathbf{e}_{\theta} = -\sin\theta \,\mathbf{i} + \cos\theta \,\mathbf{j} = -\frac{y}{r} \,\mathbf{i} + \frac{x}{r} \,\mathbf{j} = -\frac{y}{\sqrt{x^2 + y^2}} \,\mathbf{i} + \frac{x}{\sqrt{x^2 + y^2}} \,\mathbf{j}$.



- From the picture it is evident what trajectory would be followed by an object that "flows along the vector field".
- By "flowing" we mean an object whose velocity at each point is given by the value of the field.