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Functions of Several Variables

So far, the functions we studied had one dimensional (scalar)
input.

Most mathematical models deal with phenomena where the
output depends on several variables.
Variables may be “dependent” or independent - issue dealt with in
the subject of probabilities/statistics.
We need to build and use functions with multidimensional input.
Such input is typically represented as a bundle of scalar variables.
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Functions of Several Variables Verbal description

Describing multivariable functions

When doing mathematical modeling, there are several ways to
define a function of several variables.

Usually: start with verbal description, then give specific meanings
to our input and output variables.
We explain by examples.
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Functions of Several Variables Verbal description

Verbal description examples

The apparent temperature, W , felt on exposed skin depends on
several factors, including the actual temperature, T , the wind
speed, v , and the humidity. The wind chill temperature is a
mathematical model for W under the assumption that the humidity
is 0 and that the only factors influencing W are T and v :

W = W (T , v) .

The domain of the function W consists of all reasonable pairs
(T , v).

The Cobb-Douglas production function models the production
output, P, under the assumption that the only factors are the
amount of labor, L, and the amount of capital, K :

P = P(L,K ) .
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Functions of Several Variables Verbal description

Verbal description examples

The magnitude G of the attraction force between two mass points
depends on the masses m and M of the bodies and the distance
d between them:

G = G(m,M,d) .

A set (ρ, φ, θ) of spherical coordinates determines the rectangular
coordinates (x , y , z) of a point. In this case, both the input and the
output are multidimensional:

(x , y , z) = F(ρ, θ, φ) ,
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Functions of Several Variables Verbal description

The wind velocity v at a point P depends on the position r of P,

v = V(r) .

In this case both the input and the output are vectorial quantities.

The electric force on a charge q displaced by r from a charge Q
depends on the two charges, the displacement, and the medium
in which the charges are placed:

E = E(q,Q, r) .

Note that in this case the output data is a vector and the input data
is a mix of scalar and vectorial quantities.
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Functions of Several Variables Numerical description

Numerical description

Verbal description is essential for understanding.

However this does not include quantitative or visual information.
A numerical description gives output data for a relevant set of
input data.
This facilitates construction/study of a mathematical model.
Numerical description is typically given by table.
This table contains numerical data collected through experiments
at selected input levels.
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Functions of Several Variables Numerical description

Examples: describing multivariable function via
numerical data.

the following is Wind Chill Chart provided by NOOA:
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Functions of Several Variables Numerical description

Another example is the Income Tax Table. Explain what the input
and output variables are in that case.
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Functions of Several Variables Analytical description

Analytical description of multivarible function

Numerical data has output data for selected inputs only.

If output is not tabulated for given input we need to approximate.
This is done by inter/extrapolation from given information.
It would be better to have procedure to determine output from any
reasonable input.
This would be an analytical description of the function.
By analytical description we mean giving a procedure to compute
the value of the function:

via formula or
via another algorithmic procedure.
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Functions of Several Variables Analytical description

From numerical to analytical description

One way is to try to guess a formula that fits approximately the
input data.

For wind chill, one such formula is:

W (T , v) = 35.74 + 0.6215T − 35.75v0.16 + 0.4275Tv0.16

with W and T in Fahrenheit and v in mph.
A proper mathematical model requires that we

compute unknown output for some input and
make a new measurement and compare with the model’s output to
see if model gives correct prediction.

Constructing mathematical models to fit numerical data
(approximately) is the subject of “Approximation theory”.
Mathematicians dealing with “approximation theory” are often
called “applied mathematicians”.
The above terms are not precisely defined and not fully agreed
upon.
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Functions of Several Variables Analytical description

For the Cobb-Douglas production function: economic analysis
motivates properties such function should have.

One formula (model) with these properties is:

P(K ,L) = cLaK 1−a ;

where a is a parameter between 0 and 1.
While the function P depends on three variables a, L, and K , we
treat them differently: we consider a to be a parameter of the
model; once we decide on the value of a, we treat it as a constant.
The transition formulas from spherical to rectangular coordinates
are a derived via geometric reasoning.
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Functions of Several Variables Analytical description

An important class of functions of several variables is the class of
polynomial functions.

Polynomial functions in n variables are obtained using n variables,
the constants and three easiest arithmetic operations - +,−, ·.
Polynomials of degree one in two and three variables are
parametrized by:

f (x , y) = ax + by + c
g(x , y , z) = ax + by + cz + d .

Polynomials of degree two in two and three variables are
parametrized by:

f (x , y) = a11x2 + a12xy + a22y2 + a1x + a2y + a0
g(x , y , z) = a11x2 + a22y2 + a33z2 + a12xy + a13xz + a23yz+

+a1x + a2y + a3z + a0

where the aij ’s are real numbers.
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Functions of Several Variables Analytical description

The formula for electric force is given by laws of physics: the
magnitude of the force is directly proportional to the charges q, Q,
and inversely proportional to the square of the distance between
them. The force acts along the line joining the two points, attracts
q to Q if the charges have different sign and rejects q from Q if the
charges have the same sign. The mathematical translation is

E(q,Q, r, ε) =
εqQ
|r|3

r ,

where ε is a proportionality constant, depending on the medium
the charges are placed in.
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Graphical descriptions Functions of two variables

An analytical description is technically best, but not easy to
interpret.

If output is a scalar, where does the function attain its extreme
values (maxima, minima)?
How do values change for nearby points - are they decreasing,
increasing, how fast?
We will learn to decode this information from the analytical
descriptions.
Even so, “a picture is worth a thousand words (and, say, 10 f-las)”.

Math 141 Lecture 6 2014



Graphical descriptions Functions of two variables

An analytical description is technically best, but not easy to
interpret.
If output is a scalar, where does the function attain its extreme
values (maxima, minima)?

How do values change for nearby points - are they decreasing,
increasing, how fast?
We will learn to decode this information from the analytical
descriptions.
Even so, “a picture is worth a thousand words (and, say, 10 f-las)”.

Math 141 Lecture 6 2014



Graphical descriptions Functions of two variables

An analytical description is technically best, but not easy to
interpret.
If output is a scalar, where does the function attain its extreme
values (maxima, minima)?
How do values change for nearby points - are they decreasing,
increasing, how fast?

We will learn to decode this information from the analytical
descriptions.
Even so, “a picture is worth a thousand words (and, say, 10 f-las)”.

Math 141 Lecture 6 2014



Graphical descriptions Functions of two variables

An analytical description is technically best, but not easy to
interpret.
If output is a scalar, where does the function attain its extreme
values (maxima, minima)?
How do values change for nearby points - are they decreasing,
increasing, how fast?
We will learn to decode this information from the analytical
descriptions.

Even so, “a picture is worth a thousand words (and, say, 10 f-las)”.

Math 141 Lecture 6 2014



Graphical descriptions Functions of two variables

An analytical description is technically best, but not easy to
interpret.
If output is a scalar, where does the function attain its extreme
values (maxima, minima)?
How do values change for nearby points - are they decreasing,
increasing, how fast?
We will learn to decode this information from the analytical
descriptions.
Even so, “a picture is worth a thousand words (and, say, 10 f-las)”.

Math 141 Lecture 6 2014



Graphical descriptions Functions of two variables

x y

z
Graph of a scalar function.
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Graphical descriptions Functions of two variables

Graph of a function

For one variable function, y = f (x), the graph of f is a set of points
in R2: the set of points (x , y) such that y = f (x).

Example: if f (x) = x2, then (3,9) is on the graph, because 9 = 32,
but (2,5) is not because 5 6= 22.
We can extend this graphical representation for functions with two
dimensional input and one dimensional (scalar) output.
The graph of the function f : D → R, where D is a region in R2, is
the set of points P(x , y , z) in R3 whose coordinates satisfy the
condition

z = f (x , y) .

For example, the graph of f (x , y) = 2x − y + 3 is the set

{(x , y , z) | z = 2x − y + 3} =⇒ plane 2x − y − z + 3 = 0 .
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the set of points P(x , y , z) in R3 whose coordinates satisfy the
condition

z = f (x , y) .

For example, the graph of f (x , y) = 2x − y + 3 is the set

{(x , y , z) | z = 2x − y + 3} =⇒ plane 2x − y − z + 3 = 0 .
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Graphical descriptions Slices and level curves

A motivating example

g(x , y) = x2 + 2y2

What does the graph Γ of g look like?

Γ = points in R3 such that z = x2 + 2y2. The set is not a plane:
what does it look like?
To answer look at sections. Use imaginary CT scan to cut the
graph; assemble resulting sections into a graph.
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Graphical descriptions Slices and level curves

A motivating example

g(x , y) = x2 + 2y2

x

y

z

y

z

The plane x = a.

Cut by vertical planes x = a,
a-constant, parallel to the Oyz−plane.
In other words, treat x as constant
and study the f-n
y → z = a2 + 2y2 = g(a, y).
The cross-sections are the curves:
{(a, y , z) where z = a2 + 2y2}
These are parabolas lying inside the
plane x = a with vertices at

(
a,0,a2).

As a moves away from 0, the
parabola vertex rises.
The vertices traverse the curve given
by {(a,0,a2)}.
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Graphical descriptions Slices and level curves

A motivating example

g(x , y) = x2 + 2y2

a

x

y

z

x

z

The plane x = a.

Similarly, cut by vertical planes y = a,
i.e., planes parallel to the Oxz plane.

In other words, treat y as constant
and study the f-n
z = g(x ,a) = x2 + 2a2.
The cross-sections are the curves
{(x ,a, z) where z = x2 + 2a2}. These
are parabolas lying inside the plane
y = a.
⇒ the vertical sections along both the
x and y axes are parabolas.
The vertices are rising as we move
away from the origin.
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Graphical descriptions Slices and level curves

A motivating example

g(x , y) = x2 + 2y2

a
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z
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y

x2 + 2y2 = a, a < 0.

For horizontal sections keep constant
the output variable, z = a.

When we intersect with z = a we get
the curve with equations
x2 + 2y2 = a, z = a.
For a < 0 intersection is empty.
For a = 0 intersection is (0,0,0).
For a > 0 intersection is an ellipse.
Figure is called ellipsoidal paraboloid.

Definition
The sets {(x , y ,a)|g(x , y) = a} are called
level curves of the function g.
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Graphical descriptions Slices and level curves

You should be familiarized with level curves if you have ever seen
a topographic map or from weather reports on the tv.
What are the functions in those cases?
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Graphical descriptions Level sets

Previously we considered functions z = g(x , y) with scalar output
and two dimensional input.

The graphs of such functions live in R3 = R2+1.
2 dimensions were used to represent the input.
1 dimension was used to represent the output.
To represent functions with 3 dimensional input (3 variables) and
scalar output: need 3 + 1 = 4 dimensions.
That’s difficult for eyes used to visualizing physical 3d- space.
Instead: label the level sets of the function with color or other
means to indicate value.
In this way we represent the f-n graphically using dimension equal
to the number of input variables.
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That’s difficult for eyes used to visualizing physical 3d- space.
Instead: label the level sets of the function with color or other
means to indicate value.
In this way we represent the f-n graphically using dimension equal
to the number of input variables.
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Graphical descriptions Level sets

Example

x

y

z

x

y

z

Let f (x , y , z) = x + y − z.

The graph consists of the quadruples
(x , y , z,w) in R4 such that
w = x + y − z. Can’t plot that
graphically (yet).
However, can represent with labeled
level sets.
The level set f (x , y , z) = d is the
surface x + y − z = d in R3, and that
surface is a plane.
For varying values of d we plot the
level set. f (x , y , z) = .
Darker color = larger d .
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Example
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Graphical descriptions Level sets

Example
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Graphical descriptions Level sets

To understand surfaces in space we need the following.

Remark
The level set f (x , y , z) = 0 for the function

f (x , y , z) = ax + by − z + d

is the same as the graph of the function g(x , y) = ax + by + c.

Graph surfaces can always be represented as level surfaces
The converse is not true: level surfaces can’t always be
represented as graph surfaces.
Example: a sphere centered at the origin is the level surface of
f (x , y , z) = x2 + y2 + z2 but it “fails the vertical line test in all
directions”, so it cannot be globally represented as a graph
surface, no matter how we change the coordinate system.
We’ll show that under reasonable assumptions, level surfaces can
locally be described as graph surfaces.
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Graphical descriptions Vector Fields

Vector fields

Vector fields are functions with multidimensional input and output.
Input is point in space; output is a vector, which we plot as a
vector with a tail at the input point.
Examples

Velocity of fluid/air at given point;
Electric force per unit of charge;
Gravitational field;
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Graphical descriptions Vector Fields

Coordinate representation of vector fields

In rectangular coordinates a vector field F can be decomposed
along the fundamental directions:

F(x , y , z) = F1(x , y , z)i + F2(x , y , z)j + F3(x , y , z)k .

For regions in the plane 2-dim vector fields are defined in a similar
fashion: as function from subsets of R2 to R:

F(x , y) = F1(x , y)i + F2(x , y)j
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Graphical descriptions Vector Fields

Example: define the vector field er on R2 \ {(0,0)} via
er = cos θ i + sin θ j = x

r i + y
r j = x√

x2+y2
i + y√

x2+y2
j

Similarly define the vector field eθ by:
eθ = − sin θ i + cos θ j = −y

r i + x
r j = − y√

x2+y2
i + x√

x2+y2
j .

From the picture it is evident what trajectory would be followed by
an object that “flows along the vector field”.
By “flowing” we mean an object whose velocity at each point is
given by the value of the field.
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