Catalin Zara

with modifications by Todor Milev

University of Massachusetts Boston

2014

## Outline

- Surfaces
  - Implicit functions
  - Parametrizations
  - Quadric Surfaces

• A surface *S* can be given in two different ways:

- A surface S can be given in two different ways:
  - Implicit form, as a level surface:

$$F(x,y,z)=0$$

.

- A surface S can be given in two different ways:
  - Implicit form, as a level surface:

$$F(x,y,z)=0$$

• Explicit form, as a graph surface:

$$z = f(x, y) \Longrightarrow \begin{cases} x = u \\ y = v \\ z = f(u, v) \end{cases}$$

- A surface S can be given in two different ways:
  - Implicit form, as a level surface:

$$F(x,y,z)=0$$

• Explicit form, as a graph surface:

$$z = f(x, y) \Longrightarrow \begin{cases} x = u \\ y = v \\ z = f(u, v) \end{cases}$$

• A graph surface z = f(x, y) can always be represented as a level surface:

$$z = f(x, y) \iff F(x, y, z) = 0$$
 for  $F(x, y, z) = z - f(x, y)$ .

Can a given level surface be represented as a graph surface?

Can a given level surface be represented as a graph surface?

 Globally, level surfaces are cannot be represented as graph surfaces.

Can a given level surface be represented as a graph surface?

- Globally, level surfaces are cannot be represented as graph surfaces.
- Example:  $x^2 + y^2 + z^2 = 1$ : can't solve for z globally.

Can a given level surface be represented as a graph surface?

- Globally, level surfaces are cannot be represented as graph surfaces.
- Example:  $x^2 + y^2 + z^2 = 1$ : can't solve for z globally. Informally,  $z = \pm \sqrt{1 x^2 y^2}$ , however this is not a function if we can't decide on choice of + or -.

Can a given level surface be represented as a graph surface?

- Globally, level surfaces are cannot be represented as graph surfaces.
- Example:  $x^2 + y^2 + z^2 = 1$ : can't solve for z globally. Informally,  $z = \pm \sqrt{1 x^2 y^2}$ , however this is not a function if we can't decide on choice of + or -.
- Locally, with additional requirements, a level surface can be represented as graph surfaces.

Can a given level surface be represented as a graph surface?

- Globally, level surfaces are cannot be represented as graph surfaces.
- Example:  $x^2 + y^2 + z^2 = 1$ : can't solve for z globally. Informally,  $z = \pm \sqrt{1 x^2 y^2}$ , however this is not a function if we can't decide on choice of + or -.
- Locally, with additional requirements, a level surface can be represented as graph surfaces.
  - Near P(0,0,1), the surface is the graph surface of  $z = \sqrt{1 x^2 y^2}$ .

### Can a given level surface be represented as a graph surface?

- Globally, level surfaces are cannot be represented as graph surfaces.
- Example:  $x^2 + y^2 + z^2 = 1$ : can't solve for z globally. Informally,  $z = \pm \sqrt{1 x^2 y^2}$ , however this is not a function if we can't decide on choice of + or -.
- Locally, with additional requirements, a level surface can be represented as graph surfaces.
  - Near P(0,0,1), the surface is the graph surface of  $z = \sqrt{1 x^2 y^2}$ .
  - Near P(1,0,0), the surface is not a graph surface w.r.t. to z.

• Let F(x, y, z)- function, let  $P(x_0, y_0, z_0)$  - point in the domain of F.

- Let F(x, y, z)- function, let  $P(x_0, y_0, z_0)$  point in the domain of F.
- Let  $F(x_0, y_0, z_0) = k$ .

- Let F(x, y, z)- function, let  $P(x_0, y_0, z_0)$  point in the domain of F.
- Let  $F(x_0, y_0, z_0) = k$ .
- We say the level surface is a graph surface around P if there is a function z = f(x, y) such that:

- Let F(x, y, z)- function, let  $P(x_0, y_0, z_0)$  point in the domain of F.
- Let  $F(x_0, y_0, z_0) = k$ .
- We say the level surface is a graph surface around P if there is a function z = f(x, y) such that:
  - f is defined on an open disk D around  $(x_0, y_0)$ ;

- Let F(x, y, z)- function, let  $P(x_0, y_0, z_0)$  point in the domain of F.
- Let  $F(x_0, y_0, z_0) = k$ .
- We say the level surface is a graph surface around P if there is a function z = f(x, y) such that:
  - f is defined on an open disk D around  $(x_0, y_0)$ ;
  - $f(x_0, y_0) = z_0$ ;

- Let F(x, y, z)- function, let  $P(x_0, y_0, z_0)$  point in the domain of F.
- Let  $F(x_0, y_0, z_0) = k$ .
- We say the level surface is a graph surface around P if there is a function z = f(x, y) such that:
  - f is defined on an open disk D around  $(x_0, y_0)$ ;
  - $f(x_0, y_0) = z_0$ ;
  - F(x, y, f(x, y)) = 0 for all (x, y) in the disk D.

- Let F(x, y, z)- function, let  $P(x_0, y_0, z_0)$  point in the domain of F.
- Let  $F(x_0, y_0, z_0) = k$ .
- We say the level surface is a graph surface around P if there is a function z = f(x, y) such that:
  - f is defined on an open disk D around  $(x_0, y_0)$ ;
  - $f(x_0, y_0) = z_0$ ;
  - F(x, y, f(x, y)) = 0 for all (x, y) in the disk D.
- If the level surface is a graph surface, we say that the equation F(x, y, z) = k implicitly defines z = f(x, y) satisfying the condition  $f(x_0, y_0) = z_0$ .

- The equation  $x^2 + y^2 + z^2 = 1$  implicitly defines  $z = \sqrt{1 x^2 y^2}$  as the unique function z = f(x, y) such that
  - $x^2 + y^2 + (f(x, y))^2 = 1$  for all (x, y) in a disk around (0, 0);
  - f(0,0) = 1.
- The equation  $x^2 + y^2 + z^2 = 1$  implicitly defines  $z = -\sqrt{1 x^2 y^2}$  as the unique function z = f(x, y) such that
  - $x^2 + y^2 + (f(x, y))^2 = 1$  for all (x, y) in a disk around (0, 0);
  - f(0,0) = -1.

• So far: focused on functions with scalar output.

- So far: focused on functions with scalar output.
- We've seen examples of functions with vectorial output.

- So far: focused on functions with scalar output.
- We've seen examples of functions with vectorial output.
- Example: vectorial parametric equation of a plane through  $P_0(\mathbf{r}_0)$ , parallel to directions  $\mathbf{u}$  and  $\mathbf{v}$  is given by

$$\mathbf{r} = \mathbf{r}_0 + s\mathbf{u} + t\mathbf{v}$$
,

- So far: focused on functions with scalar output.
- We've seen examples of functions with vectorial output.
- Example: vectorial parametric equation of a plane through  $P_0(\mathbf{r}_0)$ , parallel to directions  $\mathbf{u}$  and  $\mathbf{v}$  is given by

$$\boldsymbol{r} = \boldsymbol{r}_0 + \boldsymbol{s}\boldsymbol{u} + \boldsymbol{t}\boldsymbol{v} \; ,$$

• The function  $\mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}^3$ ,  $\mathbf{f}(s,t) = \mathbf{r}_0 + s\mathbf{u} + t\mathbf{v}$  globally identifies  $\mathbb{R}^2$  with the plane  $\mathcal{P}$ .

- So far: focused on functions with scalar output.
- We've seen examples of functions with vectorial output.
- Example: vectorial parametric equation of a plane through  $P_0(\mathbf{r}_0)$ , parallel to directions  $\mathbf{u}$  and  $\mathbf{v}$  is given by

$$\boldsymbol{r} = \boldsymbol{r}_0 + \boldsymbol{s}\boldsymbol{u} + \boldsymbol{t}\boldsymbol{v} \; ,$$

- The function  $\mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}^3$ ,  $\mathbf{f}(s,t) = \mathbf{r}_0 + s\mathbf{u} + t\mathbf{v}$  globally identifies  $\mathbb{R}^2$  with the plane  $\mathcal{P}$ .
- Each point of  $\mathcal{P}$  corresponds uniquely to pair (s, t).

## Example: parametrization of part of sphere

• Consider  $f\colon (0,2\pi) imes (0,\pi) o \mathbb{R}^3$  given by  $f(t,s) = (R\sin s\cos t, R\sin s\sin t, R\cos s) \ .$ 

# Example: parametrization of part of sphere

- Consider  $f \colon (0,2\pi) \times (0,\pi) \to \mathbb{R}^3$  given by  $f(t,s) = (R \sin s \cos t, R \sin s \sin t, R \cos s) \; .$
- The image of *f* is a subset of the sphere of radius *R* centered at the origin.

# Example: parametrization of part of sphere

- Consider  $f \colon (0,2\pi) \times (0,\pi) \to \mathbb{R}^3$  given by  $f(t,s) = (R \sin s \cos t, R \sin s \sin t, R \cos s) \; .$
- The image of *f* is a subset of the sphere of radius *R* centered at the origin.
- Which points of the sphere are not covered by the image of f?

### Quadratic surfaces

• The level sets for second degree polynomial functions

$$f(x, y, z) = Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J.$$
  
are called quadratic surfaces.

### Quadratic surfaces

• The level sets for second degree polynomial functions

$$f(x, y, z) = Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J.$$
  
are called quadratic surfaces.

 At least one of the second-degree terms is required to be non-zero.

### Quadratic surfaces

• The level sets for second degree polynomial functions

$$f(x, y, z) = Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J.$$
  
are called quadratic surfaces.

- At least one of the second-degree terms is required to be non-zero.
- The coefficients are allowed to be zero.

Through rigid motions (translations and rotations) a quadratic surface can be reduced to one of the two canonical forms.

Through rigid motions (translations and rotations) a quadratic surface can be reduced to one of the two canonical forms.

•

$$Ax^2 + By^2 + Cz^2 + D = 0,$$

$$(A, B, C) \neq (0, 0, 0).$$

Through rigid motions (translations and rotations) a quadratic surface can be reduced to one of the two canonical forms.

•

$$Ax^2 + By^2 + Cz^2 + D = 0,$$

$$(A, B, C) \neq (0, 0, 0).$$

•

$$Ax^2 + By^2 + Iz = 0,$$

$$(A, B) \neq (0, 0), I \neq 0.$$

Through rigid motions (translations and rotations) a quadratic surface can be reduced to one of the two canonical forms.

•

$$Ax^2 + By^2 + Cz^2 + D = 0,$$

 $(A, B, C) \neq (0, 0, 0)$ . These quadratics posses central symmetry:

•

$$Ax^2+By^2+Iz=0,$$

$$(A, B) \neq (0, 0), I \neq 0.$$

#### Canonical forms of quadratic surfaces.

Through rigid motions (translations and rotations) a quadratic surface can be reduced to one of the two canonical forms.

•

$$Ax^2 + By^2 + Cz^2 + D = 0,$$
  
 $A(-x)^2 + B(-y)^2 + C(-z)^2 + D = 0,$ 

 $(A, B, C) \neq (0, 0, 0)$ . These quadratics posses central symmetry: if (x, y, z) belongs to the surface, so does (-x, -y, -z).

0

$$Ax^2 + By^2 + Iz = 0,$$

$$(A, B) \neq (0, 0), I \neq 0.$$

#### Canonical forms of quadratic surfaces.

Through rigid motions (translations and rotations) a quadratic surface can be reduced to one of the two canonical forms.

 $Ax^2 + By^2 + Cz^2 + D = 0,$  $A(-x)^2 + B(-y)^2 + C(-z)^2 + D = 0,$ 

 $(A, B, C) \neq (0, 0, 0)$ . These quadratics posses central symmetry: if (x, y, z) belongs to the surface, so does (-x, -y, -z).

 $Ax^2 + By^2 + Iz = 0,$ 

 $(A, B) \neq (0, 0), l \neq 0$ . These quadratics do not posses central symmetry.

#### Canonical forms of quadratic surfaces.

Through rigid motions (translations and rotations) a quadratic surface can be reduced to one of the two canonical forms.

 $Ax^2 + By^2 + Cz^2 + D = 0,$  $A(-x)^2 + B(-y)^2 + C(-z)^2 + D = 0,$ 

 $(A, B, C) \neq (0, 0, 0)$ . These quadratics posses central symmetry: if (x, y, z) belongs to the surface, so does (-x, -y, -z).

 $Ax^2 + By^2 + Iz = 0,$ 

 $(A, B) \neq (0, 0), I \neq 0$ . These quadratics do not posses central symmetry.

The canonical forms above are in addition split into sub-forms depending on the sign of A, B, C, D, I.

$$Ax^2 + By^2 + Cz^2 + D = 0, A > 0, B > 0, C > 0, D > 0$$

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 

• Let A > 0, B > 0, C > 0, D > 0.

$$Ax^2 + By^2 + Cz^2 + D = 0, A > 0, B > 0, C > 0, D > 0$$

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 

- Let A > 0, B > 0, C > 0, D > 0.
- Then the surface is the empty set.

$$Ax^2 + By^2 + Cz^2 + D = 0, A > 0, B > 0, C > 0, D > 0$$

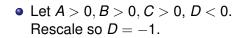
Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 

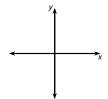
- Let A > 0, B > 0, C > 0, D > 0.
- Then the surface is the empty set.
- Example:

$$x^2 + 2y^2 + 3z^2 + 4 = 0.$$

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 





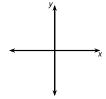


$$z = \frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 



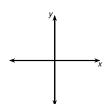
- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .



$$z = \frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 



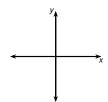


$$z = \frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) | \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1 \right\}.$

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 



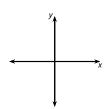


$$z = \frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 



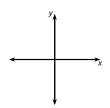


$$z = \frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 





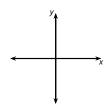
$$z = -3$$

$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 





$$z = -3$$

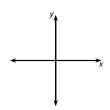
$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

$$= -\frac{5}{4}$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 





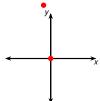
$$z = -2$$

$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 





$$z = -\frac{2}{2}$$

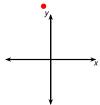
$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

$$= 0$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.
  - Two points for  $z = \pm 2$ .

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 





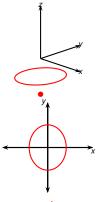
$$z = -1$$

$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$
=

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.
  - Two points for  $z = \pm 2$ .

#### $Ax^2 + By^2 + Cz^2 + D = 0, \overline{A > 0, B > 0, C > 0, D > 0}$

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 



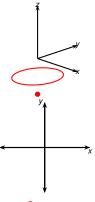
$$z = -1$$

$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

$$= \frac{3}{4}$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.
  - Two points for  $z = \pm 2$ .
  - Ellipses for  $z \in (-2, 2)$ .

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 

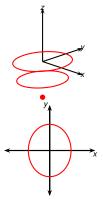


$$z = 0$$

$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$
=

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.
  - Two points for  $z = \pm 2$ .
  - Ellipses for  $z \in (-2, 2)$ .

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 



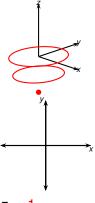
$$z = 0$$

$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

$$= 1$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.
  - Two points for  $z = \pm 2$ .
  - Ellipses for  $z \in (-2, 2)$ .

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 

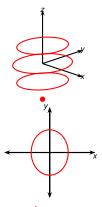


$$z = \frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.
  - Two points for  $z = \pm 2$ .
  - Ellipses for  $z \in (-2, 2)$ .

#### $Ax^2 + By^2 + Cz^2 + D = 0, \overline{A > 0, B > 0, C > 0, D > 0}$

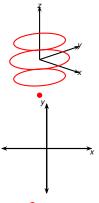
Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 



$$z = \frac{1}{2}x^{2} + \frac{1}{3}y^{2} = \frac{1 - \frac{z^{2}}{4}}{\frac{3}{4}}$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.
  - Two points for  $z = \pm 2$ .
  - Ellipses for  $z \in (-2, 2)$ .

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 

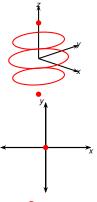


$$z = \frac{2}{2}$$

$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$
=

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.
  - Two points for  $z = \pm 2$ .
  - Ellipses for  $z \in (-2, 2)$ .

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 



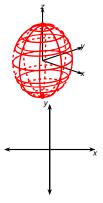
$$z = \frac{2}{2}$$

$$\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

$$= 0$$

- Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.
- Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .
- Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$
- We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .
- Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 \frac{z^2}{4}$ .
- The level curves are:
  - None for z < 2 and z > 2.
  - Two points for  $z = \pm 2$ .
  - Ellipses for  $z \in (-2, 2)$ .

Consider the surface  $C = \{(x, y, z) | Ax^2 + By^2 + Cz^2 + D = 0\}.$ 



$$z = \frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$$

• Let A > 0, B > 0, C > 0, D < 0. Rescale so D = -1.

• Set  $A = \frac{1}{a^2}$ ,  $B = \frac{1}{b^2}$ ,  $C = \frac{1}{c^2}$ .

• Surface becomes:  $\left\{ (x,y,z) \left| \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 + \left( \frac{z}{c} \right)^2 = 1 \right\}.$ 

• We illustrate the theory on the example:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 + \frac{z^2}{4} = 1$ .

• Rewrite:  $\frac{1}{2}x^2 + \frac{1}{3}y^2 = 1 - \frac{z^2}{4}$ .

• The level curves are:

• None for z < 2 and z > 2.

• Two points for  $z = \pm 2$ .

• Ellipses for  $z \in (-2, 2)$ .

Figure is called ellipsoid.

Lecture 7

## Summary: surfaces of form $Ax^2 + By^2 + Cz^2 + D = 0$

| Α   | В   | С   | D   | $x = x_0$ | $y = y_0$ | $z=z_0$ | Example                     | Name      |
|-----|-----|-----|-----|-----------|-----------|---------|-----------------------------|-----------|
| > 0 | > 0 | > 0 | > 0 | empty     | empty     | empty   | $x^2 + 2y^2 + 3z^2 + 4 = 0$ | empty     |
| > 0 | > 0 | > 0 | = 0 |           |           |         |                             |           |
| > 0 | > 0 | > 0 | < 0 | ellipse   | ellipse   | ellipse | $x^2 + 2y^2 + 3z^2 - 4 = 0$ | Ellipsoid |
| > 0 | > 0 | = 0 | > 0 |           |           |         |                             |           |
| > 0 | > 0 | = 0 | = 0 |           |           |         |                             |           |
| > 0 | > 0 | = 0 | < 0 |           |           |         |                             |           |
| > 0 | > 0 | < 0 | > 0 |           |           |         |                             |           |
| > 0 | > 0 | < 0 | = 0 |           |           |         |                             |           |
| > 0 | > 0 | < 0 | < 0 |           |           |         |                             |           |
| > 0 | = 0 | = 0 | > 0 |           |           |         |                             |           |
| > 0 | = 0 | = 0 | = 0 |           |           |         |                             |           |
| > 0 | = 0 | = 0 | < 0 |           |           |         |                             |           |

Fill in the rest of the table.

# Quadratics $Ax^2 + By^2 + Iz = 0$ (no central symmetry)

$$Ax^2 + By^2 + Iz = 0$$

| Α   | В   | $x = x_0$ | $y = y_0$ | $z = z_0$                | Example               | Name                |
|-----|-----|-----------|-----------|--------------------------|-----------------------|---------------------|
| > 0 | > 0 | parabola  | parabola  | ellipse, point, or empty | $x^2 + 2y^2 + 3z = 0$ | Elliptic paraboloid |
| > 0 | = 0 |           |           |                          |                       |                     |
| > 0 | < 0 |           |           |                          |                       |                     |

Fill in the rest of the table.