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Surfaces Implicit functions

A surface S can be given in two different ways:

Implicit form, as a level surface:

F (x , y , z) = 0

.
Explicit form, as a graph surface:

z = f (x , y) =⇒

 x = u
y = v
z = f (u, v)

A graph surface z = f (x , y) can always be represented as a level
surface:

z = f (x , y)⇐⇒ F (x , y , z) = 0 for F (x , y , z) = z − f (x , y) .
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Surfaces Implicit functions

Question
Can a given level surface be represented as a graph surface?

Globally, level surfaces are cannot be represented as graph
surfaces.
Example: x2 + y2 + z2 = 1: can’t solve for z globally.

Informally,
z = ±

√
1− x2 − y2, however this is not a function if we can’t

decide on choice of + or −.

Locally, with additional requirements, a level surface can be
represented as graph surfaces.

Near P(0,0,1), the surface is the graph surface of
z =

√
1− x2 − y2.

Near P(1,0,0), the surface is not a graph surface w.r.t. to z.
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Surfaces Implicit functions

Let F (x , y , z)- function, let P(x0, y0, z0) - point in the domain of F .

Let F (x0, y0, z0) = k .
We say the level surface is a graph surface around P if there is a
function z = f (x , y) such that:

f is defined on an open disk D around (x0, y0);
f (x0, y0) = z0;
F (x , y , f (x , y)) = 0 for all (x , y) in the disk D.

If the level surface is a graph surface, we say that the equation
F (x , y , z) = k implicitly defines z = f (x , y) satisfying the condition
f (x0, y0) = z0.
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Surfaces Implicit functions

The equation x2 + y2 + z2 = 1 implicitly defines z =
√

1− x2 − y2

as the unique function z = f (x , y) such that

x2 + y2 + (f (x , y))2 = 1 for all (x , y) in a disk around (0,0);
f (0,0) = 1.

The equation x2 + y2 + z2 = 1 implicitly defines
z = −

√
1− x2 − y2 as the unique function z = f (x , y) such that

x2 + y2 + (f (x , y))2 = 1 for all (x , y) in a disk around (0,0);
f (0,0) = −1.
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Surfaces Parametrizations

So far: focused on functions with scalar output.

We’ve seen examples of functions with vectorial output.
Example: vectorial parametric equation of a plane through P0(r0),
parallel to directions u and v is given by

r = r0 + su + tv ,

The function f : R2 → R3, f(s, t) = r0 + su + tv globally identifies
R2 with the plane P.
Each point of P corresponds uniquely to pair (s, t).
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Surfaces Parametrizations

Example: parametrization of part of sphere

Consider f : (0,2π)× (0, π)→ R3 given by

f (t , s) = (R sin s cos t ,R sin s sin t ,R cos s) .

The image of f is a subset of the sphere of radius R centered at
the origin.
Which points of the sphere are not covered by the image of f?
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Surfaces Quadric Surfaces

Quadratic surfaces

The level sets for second degree polynomial functions

f (x , y , z) = Ax2+By2+Cz2+Dxy +Exz +Fyz +Gx +Hy + Iz +J.

are called quadratic surfaces.

At least one of the second-degree terms is required to be
non-zero.
The coefficients are allowed to be zero.
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Surfaces Quadric Surfaces

Canonical forms of quadratic surfaces.

Through rigid motions (translations and rotations) a quadratic surface
can be reduced to one of the two canonical forms.

Ax2 + By2 + Cz2 + D = 0,

A(−x)2 + B(−y)2 + C(−z)2 + D = 0,

(A,B,C) 6= (0,0,0).

These quadratics posses central symmetry:
if (x , y , z) belongs to the surface, so does (−x ,−y ,−z).

Ax2 + By2 + Iz = 0,

(A,B) 6= (0,0), I 6= 0.

These quadratics do not posses central
symmetry.

The canonical forms above are in addition split into sub-forms
depending on the sign of A,B,C,D, I.
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Surfaces Quadric Surfaces

Ax2 + By2 + Cz2 + D = 0, A > 0,B > 0,C > 0,D > 0

Consider the surface C = {(x , y , z)|Ax2 + By2 + Cz2 + D = 0}.
Let A > 0,B > 0,C > 0,D > 0.

Then the surface is the empty set.
Example:

x2 + 2y2 + 3z2 + 4 = 0.
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Surfaces Quadric Surfaces

Ax2 + By2 + Cz2 + D = 0, A > 0,B > 0,C > 0,D > 0

Consider the surface C = {(x , y , z)|Ax2 + By2 + Cz2 + D = 0}.

x

y

z

x

y

z =
1
2x2 + 1

3y2 = 1− z2

4

=

Let A > 0,B > 0,C > 0, D < 0.
Rescale so D = −1.

Set A = 1
a2 , B = 1

b2 , C = 1
c2 .

Surface becomes:{
(x , y , z)|

( x
a

)2
+
( y

b

)2
+
( z

c

)2
= 1

}
.

We illustrate the theory on the
example: 1

2x2 + 1
3y2 + z2

4 = 1.

Rewrite: 1
2x2 + 1

3y2 = 1− z2

4 .
The level curves are:

None for z < 2 and z > 2.
Two points for z = ±2.
Ellipses for z ∈ (−2,2).

Figure is called ellipsoid.
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)2
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}
.

We illustrate the theory on the
example: 1

2x2 + 1
3y2 + z2

4 = 1.

Rewrite: 1
2x2 + 1

3y2 = 1− z2

4 .
The level curves are:

None for z < 2 and z > 2.
Two points for z = ±2.
Ellipses for z ∈ (−2,2).

Figure is called ellipsoid.
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Surfaces Quadric Surfaces

Summary: surfaces of form Ax2 + By2 + Cz2 + D = 0

A B C D x = x0 y = y0 z = z0 Example Name
> 0 > 0 > 0 > 0 empty empty empty x2 + 2y2 + 3z2 + 4 = 0 empty
> 0 > 0 > 0 = 0
> 0 > 0 > 0 < 0 ellipse ellipse ellipse x2 + 2y2 + 3z2 − 4 = 0 Ellipsoid
> 0 > 0 = 0 > 0
> 0 > 0 = 0 = 0
> 0 > 0 = 0 < 0
> 0 > 0 < 0 > 0
> 0 > 0 < 0 = 0
> 0 > 0 < 0 < 0
> 0 = 0 = 0 > 0
> 0 = 0 = 0 = 0
> 0 = 0 = 0 < 0

Fill in the rest of the table.
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Surfaces Quadric Surfaces

Quadratics Ax2 + By2 + Iz = 0 (no central symmetry)

Ax2 + By2 + Iz = 0
A B x = x0 y = y0 z = z0 Example Name

> 0 > 0 parabola parabola ellipse, point, or empty x2 + 2y2 + 3z = 0 Elliptic paraboloid
> 0 = 0
> 0 < 0

Fill in the rest of the table.
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