
9/23/2014

1

SPARQL
Querying Semantic Web

Erdoğan Doğdu

Notes from “Semantic Web for the Working Ontologist” Book
Some slides are adapted from Dieter Fensel and Federico Facca

(University of Innsbruck) notes

Motivation

• Having RDF data available is not enough
– Need tools to process, transform, and reason with

the information

– Need a way to store the RDF data and interact
with it

• Are existing storage systems appropriate to
store RDF data?

• Are existing query languages appropriate to
query RDF data?

9/23/2014

2

Databases and RDF

• Relational database are a well established technology to store
information and provide query support (SQL)

• Relational database have been designed and implemented to store
concepts in a predefined (not frequently alterable) schema.

• How can we store the following RDF data in a relational database?

<rdf:Description rdf:about="949318">

<rdf:type rdf:resource="&uni;lecturer"/>

<uni:name>Dieter Fensel</uni:name>

<uni:title>University Professor</uni:title>

</rdf:Description>

• Several solutions are possible

Databases and RDF

• Solution 1: Relational “Traditional” approach

• Approach: We can create a table “Lecturer” to store
information about the “Lecturer” RDF Class.

• Drawbacks: Every time we need to add new content we
have to create a new table -> Not scalable, not dynamic,
not based on the RDF principles (TRIPLES)

Lecturer

id name title

949318 Dieter Fensel University Professor

9/23/2014

3

Databases and RDF

• Solution 2: Relational “Triple” based approach

• Approach: We can create a table to maintain all the triples S P
O (and distinguish between URI objects and literals objects).

• Drawbacks: We are flexible w.r.t. adding new statements
dynamically without any change to the database structure…
but what about querying?

Resources

Id URI

101 949318

102 rdf:type

103 uni:lecturer

104 …

Statement

Subject Predicate ObjectURI ObjectLiteral

101 102 103 null

101 104 201

101 105 202

103 … … null

Literals

Id Value

201 Dieter Fensel

202 University Professor

203 …

… …

Why Native RDF Repositories?

• What happens if I want to find the names of all the
lecturers?

• Solution 1: Relation “traditional” approach:

SELECT NAME FROM LECTURER

• We need to query a single table which is easy, quick
and performing

• No JOIN required (the most expensive operation in a
db query)

• BUT we already said that Traditional approach is not
appropriate

9/23/2014

4

Why Native RDF Repositories?

• What happens if I want to find the names of all the
lecturers?

• Solution 2: Relational “triple” based approach:

SELECT L.Value FROM Literals AS L
INNER JOIN Statement AS S ON
S.ObjectLiteral=L.ID
INNER JOIN Resources AS R ON R.ID=S.Predicate
INNER JOIN Statement AS S1 ON
S1.Predicate=S.Predicate
INNER JOIN Resources AS R1 ON
R1.ID=S1.Predicate
INNER JOIN Resources AS R2 ON
R2.ID=S1.ObjectURI
WHERE R.URI = “uni:name”
AND R1.URI = “rdf:type”
AND R2.URI = “uni:lecturer”

Why Native RDF Repositories?

Solution 2

• The query is quite complex: 5 JOINS!

• This require a lot of optimization specific for RDF and triple
data storage, that it is not included in Relational DB

• For achieving efficiency a layer on top of a database is
required. More, SQL is not appropriate to extract RDF
fragments

• Do we need a new query language?

9/23/2014

5

Query Languages

• Querying and inferencing is the very purpose of
information representation in a machine-accessible
way

• A query language is a language that allows a user to
retrieve information from a “data source”
– E.g. data sources

• A simple text file
• XML file
• A database
• The “Web”

• Query languages usually includes insert and update
operations

Example of Query Languages

• SQL
– Query language for relational databases

• XQuery, XPointer and XPath
– Query languages for XML data sources

• SPARQL
– Query language for RDF graphs

• RDQL
– Query language for RDF in Jena models

9/23/2014

6

XPath: a simple query language for
XML trees

• The basis for most XML query languages
– Selection of document parts
– Search context: ordered set of nodes

• Used extensively in XSLT
– XPath itself has non-XML syntax

• Navigate through the XML Tree
– Similar to a file system (“/“, “../“, “ ./“, etc.)
– Query result is the final search context, usually a set of nodes
– Filters can modify the search context
– Selection of nodes by element names, attribute names, type, content, value, relations

• Several pre-defined functions

• Version 1.0, W3C Recommendation 16 November 1999

• Version 2.0, W3C Recommendation 23 January 2007

Other XML Query Languages

• XQuery
– Building up on the same functions and data types

as XPath
– With XPath 2.0 these two languages get closer
– XQuery is not XML based, but there is an XML notation

(XQueryX)
– XQuery 1.0, W3C Recommendation 23 January 2007

• XLink 1.0, W3C Recommendation 27 June 2001
– Defines a standard way of creating hyperlinks in XML documents

• XPointer 1.0, W3C Candidate Recommendation
– Allows the hyperlinks to point to more specific parts (fragments) in the

XML document

• XSLT 2.0, W3C Recommendation 23 January 2007

9/23/2014

7

Why a New Language?

• RDF description (1):

<rdf:Description rdf:about="949318">

<rdf:type rdf:resource="&uni;lecturer"/>

<uni:name>Dieter Fensel</uni:name>

<uni:title>University Professor</uni:title>

</rdf:Description>

• XPath query:

/rdf:Description[rdf:type=

"http://www.mydomain.org/uni-ns#lecturer"]/uni:name

Why a New Language?

• RDF description (2):

<uni:lecturer rdf:about="949318">

<uni:name>Dieter Fensel</uni:name>

<uni:title>University Professor</uni:title>

</uni:lecturer>

• XPath query:

//uni:lecturer/uni:name

9/23/2014

8

Why a New Language?

• RDF description (3):

<uni:lecturer rdf:about="949318"

uni:name=“Dieter Fensel"

uni:title=“University Professor"/>

• XPath query:

//uni:lecturer/@uni:name

Why a New Language?

• What is the difference between these three definitions?

• RDF description (1):
<rdf:Description rdf:about="949318">

<rdf:type rdf:resource="&uni;lecturer"/>

<uni:name>Dieter Fensel</uni:name>

<uni:title>University Professor</uni:title>

</rdf:Description>

• RDF description (2):
<uni:lecturer rdf:about="949318">

<uni:name>Dieter Fensel</uni:name>

<uni:title>University Professor</uni:title>

</uni:lecturer>

• RDF description (3):
<uni:lecturer rdf:about="949318"

uni:name=“Dieter Fensel"

uni:title=“University Professor"/>

9/23/2014

9

Why a New Language?

• All three description denote the same thing:
#949318, rdf:type, <uni:lecturer>

#949318, <uni:name>, “Dieter Fensel”

#949318, <uni:title>, “University Professor”

• But the queries are different depending on a particular serialization:

/rdf:Description[rdf:type=

"http://www.mydomain.org/uni-ns#lecturer"]/uni:name

//uni:lecturer/uni:name

//uni:lecturer/@uni:name

SPARQL

• The standard query language of SemWeb

• SPARQL Protocol And RDF Query Language

• Similar to Xquery and SQL

• Based on specifying RDF triple patterns

• See: http://www.w3.org/TR/rdf-sparql-query
for all features of SPARQL

18

http://www.w3.org/TR/rdf-sparql-query

9/23/2014

10

Data

• Movies “James Dean” played in…

19

Query

• What did James Dean played in?

• Query pattern:

• :JamesDean :playedIn ?what

20

9/23/2014

11

Data

21

Query

• Who directed the movies that James Dean
played in?

• :JamesDean :playedIn ?what

• ?what :directedBy ?who

22

9/23/2014

12

Queries in SPARQL

• What did James Dean played in?
SELECT ?what
WHERE { :JamesDean :playedIn ?what }

Answer:
:Giant, :EastOfEden, :RebelWithoutaCause

• Who directed the movies that James Dean played
in?

SELECT ?who
WHERE { :JamesDean :playedIn ?what .

?what :directedBy ?who .}
Answer:

:GeorgeStevens, :EliaKazan, :NicholasRay, :FredGuiol

23

Query

• Movies and their directors in which James
Dean played in?

SELECT ?what ?who
WHERE { :JamesDean :playedIn ?what .

?what :directedBy ?who .}

Answer: ?what ?who

:Giant :GeorgeStevens

:Giant :FredGuiol

:EastOfEden :EliaKazan

:RebelWithoutaCause :NicholasRay
24

9/23/2014

13

Query

• Actresses who played with James Dean in the
same movies

SELECT ?actress ?movie
WHERE { :JamesDean :playedIn ?movie .

?actress :playedIn ?movie .
?actress rdf:type :Woman }

25

Query

• What is the following query for?

SELECT ?actress ?movie

WHERE { :JamesDean :playedIn ?movie .

?actress :playedIn ?movie .

?actress a :Woman .

?actress :playedIn ?anotherMovie .

?anotherMovie :directedBy :JohnFord .}

26

9/23/2014

14

Properties

• SELECT ?property ?value
WHERE {:JamesDean ?property ?value}

27

Properties

• SELECT ?property
WHERE {:JamesDean ?property ?value}

28

9/23/2014

15

Properties

• SELECT DISTINCT ?property
WHERE { :JamesDean ?property ?value}

29

Querying schema

• What do Actors do?

SELECT DISTINCT ?property

WHERE { ?q0 a :Actor .
?q0 ?property ?object .}

30

9/23/2014

16

Querying schema

• Find all classes

SELECT DISTINCT ?class WHERE {?q0 a ?class}

• Find all properties

SELECT DISTINCT ?property

WHERE {?q0 ?property ?q1}

31

FILTER

• Excluding some results

• Actors who played in East of Eden, who were
born in 1930 or later?

SELECT ?actor
WHERE {?actor :playedIn :EastOfEden .
FILTER (?birthday > "1930-01-01"^^xsd:date)}

Answer: (none)

Why?

32

9/23/2014

17

FILTER

• Correct query
SELECT ?actor
WHERE {

?actor :playedIn :EastOfEden .
?actor :bornOn ?birthday .
FILTER (?birthday > "1930-01-01"^^xsd:date)

}

• Another one
SELECT ?person
WHERE { ?person a :Person .

?person :bornOn ?birthday .
FILTER (?birthday > "Jan 1, 1960"^^xsd:date)
FILTER (?birthday < "Dec 31, 1969"^^xsd:date) }

33

OPTIONAL

• Actors who played in Giant and their death date

SELECT ?actor ?deathdate

WHERE { ?actor :playedIn :Giant .

?actor :diedOn ?deathdate .}

• If they did not die (yet)

SELECT ?actor ?deathdate

WHERE {?actor :playedIn :Giant .

OPTIONAL {

?actor :diedOn ?deathdate .}}

34

9/23/2014

18

Negation

• SPARQL 1.1

• By specifying that certain triples do not exist

• UNSAID

– Find a matching graph for which UNSAID pattern does
not exist

• All of the living actors who played in Giant.
SELECT ?actor
WHERE { ?actor :playedIn :Giant .

UNSAID {?actor :diedOn ?deathdate .} }

35

ASK query

• Yes/no questions

• Is Elizabeth Taylor alive?
ASK WHERE {:ElizabethTaylor :diedOn ?any}

Answer: Yes

• Correct query
ASK WHERE {

UNSAID { :ElizabethTaylor :diedOn ?any}

}

Answer: No

36

9/23/2014

19

ASK query

• Was any actor in Giant born after 1950?

ASK WHERE {

?any :playedIn :Giant.

?any :bornOn ?birthday .

FILTER (?birthday > “1950-01-01”^^xsd:date)

}

37

CONSTRUCT query

• Query that returns a graph (triples)

CONSTRUCT { ?d rdf:type :Director .

?d rdfs:label ?name . }

WHERE { ?any :directedBy ?d .

?d rdfs:label ?name . }

38

9/23/2014

20

Using SPARQL as a rule language

• CONSTRUCT {?q1 :hasSon :q2 .}
WHERE {?q2 :hasFather ?q1}

• No

– CONSTRUCT {?q1 :hasSon :q2 .}
WHERE {?q2 :hasFather ?q1. ?q2 a :Man. }

– CONSTRUCT {?q1 :hasDaughter :q2 .}
WHERE {?q2 :hasFather ?q1. ?q2 a :Woman. }

39

Using SPARQL as a rule language

• CONSTRUCT {?q1 a :Mortal}
WHERE {?q1 a :Man}

• CONSTRUCT {?q1 :hasUncle ?q2}
WHERE {?q2 :hasSister ?s .
?q1 :hasMother ?s .}

• CONSTRUCT {?q1 :hasSibling ?q2} WHERE {?q1 :hasBrother ?q2}

• CONSTRUCT {?q1 :hasSibling ?q2} WHERE {?q1 :hasSister ?q2}

• CONSTRUCT {?q1 :hasParent ?q2} WHERE {?q1 :hasFather ?q2}

• CONSTRUCT {?q1 :hasParent ?q2} WHERE {?q1 :hasMother ?q2}

40

9/23/2014

21

Transitive queries

• (SPARQL 1.1)

• Children of Joe

– SELECT ?member
WHERE {?member :hasParent :Joe}

• Grandchildren of Joe

– SELECT ?member
WHERE { ?int :hasParent :Joe .

?member :hasParent ?int .}

41

Transitive queries

• All children, grandchildren, great-
grandchildren, etc.

– SELECT ?member
WHERE {?member :hasParent* :Joe .}

• The result includes Joe as well

– SELECT ?member
WHERE {?member :hasParent+ :Joe .}

• At least one triple in the chain should exist,
Joe is excluded (correct query)

42

9/23/2014

22

Federating SPARQL Queries

• Querying from more than one data source
– Via SPARQL endpoints (SERVICE)

– Or via named graphs (GRAPH)

SELECT ?entry

WHERE { ?actor :playedIn :Giant .

?actor rdfs:label ?name .

SERVICE <http://dbpedia.org/sparql>

{ ?entry rdfs:label ?name .}

}

43

ORDER

• Order by date

SELECT ?title ?date

WHERE { :JamesDean :playedIn ?movie.

?movie rdfs:label ?title .

?movie dc:date ?date . }

ORDER BY ?date

44

9/23/2014

23

LIMIT

• Earliest James Dean movie

SELECT ?title

WHERE { :JamesDean :playedIn ?m.

?m rdfs:label ?title .

?m dc:date ?date . }

ORDER BY ?date

LIMIT 1

45

Aggregates and grouping

• (SPARQL 1.1)

• SELECT (COUNT (?movie) AS ?howmany)
WHERE {:JamesDean ?playedIn ?movie .}

• SELECT (SUM (?val) AS ?total)
WHERE { ?s a :Sale .

?s :amount ?val }

• SELECT ?year (SUM (?val) AS ?total)
WHERE { ?s a :Sale .

?s :amount ?val . ?s :year ?year }
GROUP BY ?year

46

9/23/2014

24

Subqueries (SPARQL 1.1)

SELECT ?company
WHERE {

{ SELECT ?company ((SUM(?val)) AS ?total09)
WHERE {
?s a :Sale .
?s :amount ?val .
?s :company ?company .
?s :year 2009 . }
GROUP BY ?company } .
{SELECT ?company ((SUM(?val)) AS ?total10)
WHERE {
?s a :Sale .
?s :amount ?val .
?s :company ?company .
?s :year 2010 .}
GROUP BY ?company } .
FILTER (?total10 > ?total09) . }

47

UNION

• All the actors who played either in Rebel Without
a Cause or Giant.

SELECT ?actor

WHERE {

{ ?actor :playedIn :Giant . }

UNION

{ ?actor :playedIn :RebelWithoutaCause . }

}

48

9/23/2014

25

Assignment

• SELECT (fn:concat (?first, " ", ?last) AS
?fullname)

WHERE {:WorkingOntologist dc:creator ?author .

?author :firstName ?first .

?author :lastName ?last .

}

49

References

• http://www.w3.org/TR/rdf-sparql-query

• http://dig.csail.mit.edu/2010/Courses/6.898/r
esources/sparql-tutorial.pdf

• Semantic Web for the Working Ontologist, 2nd
Ed., Wiley

50

http://dig.csail.mit.edu/2010/Courses/6.898/resources/sparql-tutorial.pdf
http://dig.csail.mit.edu/2010/Courses/6.898/resources/sparql-tutorial.pdf

