Inferencing

Erdoğan Doğdu

2012

Notes from "Semantic Web for the Working Ontologist" Book

Inferencing in Semantic Web

- Given some information
 - Determine other/related information
 - Discovering new relationships based on the data and based on some additional information in the form of a vocabulary, e.g. a set of rules (w3c)

- Books?
- SELECT ?item WHERE { ?item a :Book}

SELECT ?item WHERE { ?item a :Book}

:SemWeb4Dummies

:SemWeb4WO

 Rule: all members of the subclass are also members of the superclass

Inferencing

- Rule: all members of the subclass are also members of the superclass
- Meaning of rdfs:subClassOf

SELECT ?item WHERE { ?item a :Book}

:SemWeb4Dummies

:SemWeb4WO

Inferencing

- Why?
- How?
- When?

Why inference?

- To get more information
- To keep less information
- To align/integrate/link to more information (on the web)
- ...

http://www.slideshare.net/onlyjiny/inference-on-the-semantic-web

TBox inferencing

- Discovering new statements that describe the system in terms of controlled vocabularies
- Ex:

Given

:A rdfs:subClassOf :B

:B rdfs:subClassOf :C

Then

:A rdfs:subClassOf :C

ABox inferencing

- Tbox-complaint statements about the vocabulary
- Ex:

Given

:Sedan rdfs:subClassOf :Car

:Car rdfs:subClassOf :Vehicle

:VWSedan rdf:type :Sedan

Then

:VWSedan rdf:type :Car

:VWSedan rdf:type :Vehicle

Rule inferencing

- To produce valid statements <u>based on rules</u>
- Ex: defining hasWife/hasHusband relationships as a rule

If hasParent(?x, ?y) and hasParent(?x,?z) and Man(?y) and Woman(?z)

There has N(!fe(2x,2x), head to the red (2x,2x))

- Then hasWife(?y,?z), hasHusband(?z,?y)
- Syntax?
 - Rule languages

Asserted vs. Inferred Triples

- Asserted triples
 - Triples (statements) in the original RDF store/model
- Inferred triples
 - Additional triples that were asserted by the inference rules
 - Inferred triple could be asserted before!
 - No logical distinction between the two

Example

FIGURE 6.2

Asserted triples in the catalog model.

Example

All triples in the catalog model. Inferred triples are shown as dashed lines.

How?

- SPARQL
 - express rules in general and the inference rules of RDFS and OWL by using SPARQL CONSTRUCT
 - a CONSTRUCT query specifies new triples based on a graph pattern of triples found in the data

Inference when?

- When should the inferencing be done?
- · Outside the definition of RDFS/OWL
- But important
- Differs from implementation to implementation

Inferencing when?

Cached inferencing

- Store all statements (triples) in a single store whether asserted or inferred
- Risk: explosion of triples in the store
- Risk: when removing a triple, should we remove inferred triples and how?

· Just in time inferencing

- Never store any inferred triples
- Inference in response to queries only (computed at the latest possible moment)
- Risk: duplicating inference work

Inference-based SW App Architecture

More on RDFS inferencing

rdfs:subPropertyOf propagation

Example

domain and range

rdfs:domain inferrence

• rdfs:range inferrence

More

rdfs:domain and rdfs:subClassOf

Class intersection

Given

:C rdfs:subClassOf :A

:C rdfs:subClassOf :B

 $C \subseteq A \cap B$.

and

:x rdf:type :C

We can infer

:x rdf:type :A

:x rdf:type :B

then we can infer that

:Kildare rdf:type :Staff. :Kildare rdf:type :Physician.

Class union

Given

:A rdfs:subClassOf :C

 $A \cup B \subseteq C$

:B rdfs:subClassOf :C.

and

:x rdf:type :A

or

:x rdf:type :B

• implies

:x rdf:type :C

OWL inferencing

owl:equivalentClass

owl:sameAs

owl:FunctionalProperty