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Incidence Matrix

Uy

The matrix element

a; =1, if jth edge e, is incident

=0, otherwise.




. Since every edge 1s incident on exactly two vertices, each column of
A has exactly two 1’s.

. The number of 1’s in each row equals the degree of the corresponding
vertex.

. A row with all 0’s, therefore, represents an isolated vertex.

. Parallel edges in a graph produce identical columns 1n its incidence
matrix, for example, columns 1 and 2 in Fig. 7-1.

. If a graph G is disconnected and consists of two components g, and
g,, the incidence matrix A(G) of graph G can be written in a block-
diagonal form as

(7-1)



THEOREM 7-1

Two graphs G and G, are isomorphic if and only
A(G,) and A(G,) differ only by permutations of rows :

THEOREM 7-2

If A(G) is an incidence matrix of a connected graph G with » vertices, the rank
of A(G)isn — 1.



Circuit Matrix

7-3. CIRCUIT MATRIX

Let the number of different circuits in a graph G be g and the number of
edges in G be e. Then a circuit matrix B = [b,;] of G is a q by e, (0, 1)-matrix
defined as follows:

b, =1, if ith circuit includes jth edge, and

= 0, otherwise.



a b ¢ d e f g h

B

0 0 00 0 O]

1

l

40 0



.

A column of all zeros corresponds to a noncircuit edge (i.e., an edge
that does not belong to any circuit).

2. Each row of B(G) is a circuit vector.

3.

Unlike the incidence matrix, a circuit matrix is capable of representing
a self-loop—the corresponding row will have a single 1.

4. The number of I’s in a row is equal to the

5.

corresponding circuit.

If graph G is separable (or disconnect
(or components) g, and g,, the circuit
a block-diagonal form as

E

Permutation of any two rows or columns in a circuit matrix simply
corresponds to relabeling the circuits and edges.

. Two graphs G, and G, will have the same circuit matrix if and only if

G, and G, are 2-isomorphic (Theorem 4-15). In other words, (unlike



THEOREM 7-4

Let B and A be, respectively, the circuit matrix and the incidence matrix (of a
self-loop-free graph) whose columns are arranged using the same order of edges.
Then every row of B is orthogonal to every row Aj; that is,

A-BT == B.AT =0  (mod 2), (7-4)

Proof: Consider a vertex » and a circuit I in the graph G. Either visin I or
it is not. If » is not in I, there is no edge in the circuit I' that is incident on v. On
the other hand, if v is in I', the number of those edges in the circuit I" that are

incident on v is exactly two.



Fundamental Circuit Matrix

A submatrix (of a circuit matrix) in which all rows corresj
fundamental circuits i1s called a fundamental circuit matrix B

As in matrices A and B, permutations of
affect B,. If nis the number of vertices and e t
ed graph, then B, 1s an (e —n 4 1) by e
fundamental circuits is e — »n + 1, each fun
by one chord.
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A matrix B, thus arranged can be written as
B, =[l.iBJ], (7-5)

where |, is an identity matrix of order 4 = e — n - 1, and B, is the remain-
ing u by (n — 1) submatrix, corresponding to the branches of the spanning
tree.

From Eq. (7-5) it is clear that the

rank of B, = g =e —n+ 1.



Application to Switching Network

a b ¢ Switch k
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(a,b,f, h, k), (a,b,g k), (a,ef g k), (a,e h,k),
(b,c,e, h k), (c,f,h k), (c,g k), (d k).

Solution: Consider the switching network as a graph whose edges repre-
sent switches. We can assume that the graph is connected, and has no self-
loop. Since a lit lamp implies the formation of a circuit, we can regard the
preceding list as a partial list of circuits in the corresponding graph. With
this list we form a circuit matrix:



a b c d e f g h
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Therefore, we can delete the first, third, and fifth rows from matrix B, without

any loss of information. Remaining is a 5 by 9 matrix B, :
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Adding the fourth row in B, to the first, we get B,.
number of edges E=9
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Cut-Set Matrix

¢, = 1, if ith cut-set contains jth edge, and
= (), otherwise.
. As In the case of the incidence matrix, a permutation of rows or

columns in a cut-set matrix corresponds simply to a renaming of the
cut-sets and edges, respectively.

. Each row in C(G) is a cut-set vector.

3. A column with all 0’s corresponds to an edge forming a self-loop.

. Parallel edges produce identical columns in the cut-set matrix (e.g.,
first two columns in Fig. 7-5).

. In a nonseparable graph, every set of edges incident on a vertex is a
cut-set (Problem 4-8). Therefore, every row of incidence matrix A(G)
is included as a row in the cut-set matrix C(G). In other words, for a

B.CT=C:-B"=0 (mc



1 fo o o o o 0o o 1]
2 1 1 0 0 0 0 0 0
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THEOREM 7-6

The rank of cut-set matrix C(G) is equal to the rank of the incidence matrix
A(G), which equals the rank of graph G.



As in the case of a fundamental circuit matrix, a fundamental cut-set
matrix C, can also be partitioned into two submatrices, one of which is an
identity matrix |__, of order » — 1. That is,

n—1

Cf - [Cc i lrr- l]! (7'9)



Relationship between A, B;: and C;

]
Bf — [I.u | Br]*
Cf — [Cci ln-l]
b ¢ d : a e f g
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Similarly, since the columns in B, and C; are arranged in the same order,

A..BT E according to Eq. (7-4), we have (in mod 2 arithmetic)
f' f o
I ‘ Cf"B? sy 0.

* o - K. prt
[AC*A{][BT] O C'| l,u —*‘0

A, + A-BT =0 [Ceil-i)| g | = 0.

c t Cc ) _B‘T
Al-A = —BI. _ B’
= A A,

Since in mod 2 arithmetic —1 = 1,

BT = A l-A,.
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Path Matrix

U3

py; =1, if jth edge lies in ith path, and
= ), otherwise.
b

P(v,, v,) = 2

c d
0 0
1 0
1 1

S O O 8
S O —~ a
—_ O O ~

0
0
0

1. A column of all 0’s corresponds to ar
path between x and y.

2. A column of all I’s corresponds to a
between x and y.

3. There is no row with all 0’s.



THEOREM 7-7

If the edges of a connected graph are arranged in the same order for the columns
of the incidence matrix A and the path matrix P(x, »), then the product (mod 2)

A- PT(X, }") = Ms

where the matrix M has 1’s in two rows x and y, and the rest of the » — 2 rows
are all O’s.
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Adjacency Matrix

x,; =1, if there is an edge between ith

=0, if there is no edge between the

Y 0

Uy I 0 0 ] ] 0
X = UJ 0 0 0 ] 0 0

Uy 0 1 1 0 I I

v | 1 | o 1 0 0

ve | | 0 0 I 0 0 |



1. The entries along the principal diago
the graph has no self-loops. A self-loc
x; = 1.

2. The definition of adjacency matrix
edges. This i1s why the adjacency m
without parallel edges.f

5. A graph G is disconnected and is in two components g, and g, if and
only if its adjacency matrix X(G) can be partitioned as

X(G) = [E%QI?L_E____(}__}



Powers of X, Path MAtrix

The value of an off-diagonal entry in X2, tifl B
— number of I's in the dot product of ith

row) of X.
— number of vertices that are adjacent to bot X* =

— number of different paths of length two bety

= I ==

lj th entry in X2

N

= dot product of ith row X? and jth column (or row) of

3
number of all different edge sequencest of three o

X.
3 ikth entry of X?-kjth entry of X.
k=1
>
k=1

edges from ith to jth vertex via kth vertex.

== number of different edge sequences of three edges
between ith and jth vertices.
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THEOREM 7-8

Let X be the adjacency matrix of a simple graph G. Then the /jth entry in X*
is the number of different edge sequences of r edges between vertices v; and v;.

COROLLARY A

In a connected graph, the distance between two vertices »; and v; (for i # j)
is k, if and only if k is the smallest integer for which the 7, jth entry in x* is nonzero.

COROLLARY B
If X is the adjacency matrix of a graph G with »

Y =X+ X2+ X3+ oo X7 (in tk

then G is disconnected if and only if there exists at
that is zero.



COLORING, COVERING &
PARTITIONING



Coloring

v, ¢ Red

Chromatic number

Uy @ Pink

{2l
1. A graph consisting of only isolated verti

2. A graph with one or more edges (not a
2-chromatic (also called bichromatic).

3. A complete graph of n vertices 1s n-ch
adjacent. Hence a graph containing a (
at least r-chromatic. For instance, ever
least 3-chromatic.

Y ® Red

(b)

Us
Yellow

Uy

Yellow

Fig. 8-1 Proper colorings of a graph.
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THEOREM 8-1

Every tree with two or more vertices 1s 2-chromatic.

THEOREM 8-2

A graph with at least one edge is 2-chromatic if and only if it has no circuits
of odd length.

THEOREM 8-3
If d,.x is the maximum degree of the vertices in a graph G,

chromatic number of G < 1 | dnax.

Brooks [8-1] showed that this upper bound can be improved by | if G has no
complete graph of d,,, 1+ 1 vertices. In that case

chromatic number of G < d,,,,.



Chromatic Partitioning

A proper coloring of a graph naturally induces a partitioning of the ver-
tices into different subsets. For example, the coloring in Fig. 8-1(¢) produces
the partitioning

fvi, v}, {v,}, and {vy, v4}.

No two vertices in any of these three subsets are adjacent. Such a subset
of vertices is called an independent set; more formally:

A set of vertices in a graph is said to be an independent set of vertices or
simply an independent set (or an internally stable set) if no two vertices in the
set are adjacent. For example, in Fig. 8-3, {q, ¢, d} is an independent set. A
single vertex in any graph constitutes an independent set.

A maximal independent set (or maximal internally stable set) is an inde-
pendent set to which no other vertex can be added without destroying its
independence property. The set {a, ¢, d, f} in Fig. 8-3 1s a maximal indepen-

The number of vertices in the largest independent set of a graph G is called
the independence number (or coefficient of internal stability), B(G).

Consider a x-chromatic graph G of n vertices properly colored with x
different colors. Since the largest number of vertices in G with the same color
cannot exceed the independence number f(G), we have the inequality

n
B(G) = -



Finding Maximally independent Set

For a given graph G we must find a maximal subset of vertices that does
not include the two end vertices of any edge in G. Let us express an edge (x, y)
as a Boolean product, xy, of its end vertices x and y, and let us sum all such
products in G to get a Boolean expression

@ = X Xy for all (x, y) in G.
o' =fi+/fot+- 1y
¢ = ab + bc + bd + be + ce | de 1 ef |- eg 4 fg,
9 = (a' + b)Y + )b + dYb + e+ e)d + e)
(¢ -+ f')e + g)f + g)

ae-




aa = a,
a-+ a—=a,

a-+ab = a,
¢F — b!effl -I'— b!‘el‘gl‘ —-I— alctdlelff —I— al‘cl‘dl‘e!gf + b!cld!flgl‘

acdf, acdg, bg, bf, and ae.



Chromatic Partitioning

Dominating Sets: A dominating set (or an externally stable set) in a graph
G is a set of vertices that dominates every vertex v in G in the following sense:
Either v is included in the dominating set or is adjacent to one or more ver-
tices included in the dominating set. For instance, the vertex set {b, g} is a

o

5. Every maximal independent set i1s a dominating set.

6. An independent set has the dominance property only if it i1s a maximal
independent set. Thus an independent dominating set is the same as a
maximal independent set.

7. In any graph G,
a(G) < B(G).



Finding Minimal Dominating Set

Finding Minimal Dominating Sets: A method for obtaining all minimal
dominating sets in a graph will now be developed. The method, like the one
for finding all maximal independent sets, also uses Boolean arithmetic.

To dominate a vertex v, we must either include v, or any of the vertices
adjacent to v,, A minimum set satisfying this condition for every vertex v, 1s
a desired set. Therefore, for every vertex v, in G let us form a Boolean product
of sums (v, + v, + v, 4----+ v,), where v,,v,,...,v, are the vertices
adjacent to v, and d is the degree of v,:

=1l +v, +v,4 -+ 1v,) for all v, in G.
=@+ b)b+c+d+e+a)ct+ b+
(e+b+ctd+f+gf+e+ )
Since in Boolean arithmetic (x + y)x = x,

0 =(a+ b)b+ c+ e)b+ di
= ae + be + bf + bg + acdf



Chromatic Polynomial








