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Edge Cuts and Connectivity

Chapter Goals

Define edge cuts and discuss Discuss the structure of 1- and
their basic properties. 2-connected graphs.

Examine edge and vertex connec- Explore 1- and 2-isomorphisms
tivity issues. for graphs.

Define separability and blocks of
a graph.

6.1 Introduction

This chapter deals with a number of connectivity issues. How can we gauge the
level of connectivity in a graph. One example is the number of edges or vertices
we need to delete before the graph breaks into pieces. The discussion begins
with a description of edge cuts in §6.2. In §6.3 we show how to generate edge
cuts. §6.4 relates fundamental cycles and edge cuts. We cover the notions of
edge and vertex connectivity in §6.5 and examine some practical applications of
these concepts. §6.6 addresses the ideas of separability and blocks. §6.7 and
6.8 present more general isomorphisms.
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6.2 Edge Cuts

In Chapter 5 we studied spanning trees, a minimal type of connected subgraph
of a connected graph . In this section we study edge cuts of a graph. This
is another type of subgraph of a connected graph. The removal of an edge cut
results in a disconnected graph. This concept is made precise in the following
definition.

Definition 6.1
Let G be a connected graph. An edge cut or simply a cut S of G is a set
S C E(Q) such that the graph G — S satisfies the following:

1. It is disconnected.

2. G — S' is connected for any proper set S’ C S.

O Remark 6.2

1. Anedge cut S is a set of edges. The induced subgraph G[S] of G consisting
of the edges of S together with their endvertices is uniquely determined by
S and vice versa. Hence, we sometimes talk about and view an edge cut
as a subgraph of G.

2. If e is a cut-edge, then the set consisting of e alone is an edge cut. By
Theorem 4.7 every edge of a tree is a cut-edge, so every edge of a tree
forms an edge cut.

The following example helps clarify the notion of edge cut.

0 Example 6.3

In Figure 6.1 the set of edges {a,c,d, f} is an edge cut. Some other edge cuts
in this graph are {a,b, g}, {a,b,e, f}, and {d, h, f}. The set {i} is also an edge
cut. The set of edges {a,c, h,d} is not an edge cut because one of its proper
subsets {a,c,h} is an edge cut.

To emphasize the fact that no proper subset of an edge cut can be an edge
cut, some authors refer to an edge cut as a minimal edge cut. This stresses the
fact that the removal of any proper subset of an edge cut does not disconnect
the graph.

There is another way of looking at an edge cut. If one partitions the vertices
of a connected graph G into two subsets, an edge cut is the set of edges that join
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Figure 6.1: (a) Original graph. (b) Removal of the edge cut {a, ¢, d, f} from the
graph “cuts” it into two.

any two vertices in separate sections of the partition. Removal of these edges
from GG destroys all paths between these two sets of vertices. For example, in
Figure 6.1(a) the edge cut {a,c,d, f} disconnects vertex set {uy,us, ug} from
vertex set {us, uq, us}.

Edge cuts are of great importance in studying properties of communication
and transportation networks. The following example illustrates one application.

[0 Example 6.4

Suppose the six vertices in Figure 6.1(a) represent cities and the edges represent
connection by telephone lines. We want to find out if there are any weak spots in
the network that need strengthening by means of additional telephone lines. In
order to do so, we need to look at all edge cuts of the graph. The edge cut with
the smallest number of edges indicates the most vulnerable area. In Figure 6.1(a)
the city represented by us can be severed from the rest of the network by the
destruction of just one edge, the cut-edge ©. By adding more telephone lines to
city uz some redundancy can be added to the system.

We shall present some more applications of edge cuts later, but first we need
some basic properties.

Theorem 6.5
Let G be a connected graph.

1. Every edge cut in G contains a branch of every spanning tree of G.

2. Conversely, every minimal set of edges containing a branch of each spanning
tree of G is an edge cut of G.
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Figure 6.2: Circuit and an edge cut in G

PROOF: Let S be an edge cut and T" a spanning tree of G. If SNE(T) = ()
then the edges of G — S contain E(T") and hence T as a subgraph. Therefore,
G — S is connected, contradicting the fact that S is an edge cut.

To prove the second statement, let () be a minimal set of edges that contains
a branch of each spanning tree of G. Since G — () has the same set of vertices
as (G and contains no spanning tree of G, it must be disconnected. On the other
hand, if e € ) then by minimality of ), there is a spanning tree 1" of G with no
branches in @\ {e}. This means that the graph G — (@ \ {e}) contains T" as a
subgraph and is therefore connected. By definition, we have that () is an edge
cut. 0O

We conclude this section with a theorem relating circuits to edge cuts.

Theorem 6.6
Every circuit has an even number of edges in common with any edge cut.

ProOOF: Consider an edge cut S in a graph G (see Figure 6.2). Let the
removal of S partition V(G) into two disjoint subsets 1} and V5. Let C be a
circuit in G. The initial and final vertex u of C' is contained in either V; or V5,
say u € Vj. Starting from u and traversing along C', we go equally often from V;
to V5 along an edge in C' as from V5 to Vi, since we start and end at u. Because
every edge with one endvertex in V; and one in V5 is contained in S, the theorem
follows. O
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6.3 Generating All Edge Cuts in a Graph

In Example 6.4 it was pointed out how edge cuts are used to identify weak
spots in a communication network. For this purpose we list all edge cuts of the
corresponding graph and find which ones have the smallest number of edges. It
is apparent even from Example 6.4 that there is a large number of edge cuts in
general. Hence, we must develop a systematic method to generate all relevant
edge cuts.

Not only is a spanning tree is essential in defining a set of fundamental cycles,
it is also essential in defining a set of fundamental edge cuts. It will be beneficial
for you to look for the parallelism between circuits and edge cuts. We start with
the following observation.

Observation 6.7
Let G be a connected graph.

1. Let S be an edge cut of G. Then there is an unique partition
VI(G) = Vi(S) U Va(S)

of the vertex set of G such that G[Vi] and G[V3] are both connected
graphs.

2. Likewise, let V(G) = V1 U V4, be a partition such that G[V1] and G[V5] are
connected. Then there is a corresponding cut set consisting of all of the
edges of G with one endvertex in V| and the other in V,. We denote this
cut set by S(V1,Vs).

With this correspondence between the partitions of V' (G) and the edge cuts
of GG, we can put forth the following definition.

Definition 6.8

Let G be a connected graph. Let T be a spanning tree of G and b a branch of T'.
By Theorem 4.7 the subgraph'T'—b of G has exactly two components. Therefore,
it determines an unique partition V (G) = V1 UV, and hence the corresponding
edge cut S = S(V1,V3) of G. Such an edge cut is called a fundamental edge
cut of G with respect to T'. We denote the fundamental edge cut for a branch
b by Sy.
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Figure 6.3: Fundamental edge cuts of a graph with respect to a fixed spanning
tree shown in bold.

Note 6.9
If G is a connected graph and T is a spanning tree of GG, then by Theorem 6.5
every edge cut of G will contain at least one branch of T'. An edge cut S that

contains exactly one branch of T' is a fundamental edge cut of G with respect
toT.

Example 6.10

Figure 6.3 shows a spanning tree T in thick lines. All five of the fundamental
edge cuts with respect to T' are shown as broken lines “cutting” through each
edge cut. The edge cuts determined by the branches b, ¢, e, h, and i are as
follows:

Sy = {a,b},

Se = {a,c.d},

Se = {d.e, [},

Sy, = {f,g,h}, and
Si = {f.9,i}.

Next we show how to generate a new edge cut of a graph from two given
ones.
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Theorem 6.11

Let G be a connected graph. Let S; and S, be two different edge cuts of G.
Then the symmetric difference S A Ss is either a new edge cut of G, or a
disjoint union of edge cuts.

ProOF: We sketch the proof. Let S; and S, be two edge cuts in a given
connected graph G. Let V(G) = V; UV, be the unique partitioning of the vertex
set of G with respect to S;. Let V(G) = V3UV} be the unique partitioning with
respect to S5. The top two graphs in Figure 6.4 illustrate the situation.

Clearly, we have
ViuV,=V(G) and ViNV,=10, and
VUV, =V(G) and V3NVy=0.
Now put
Vi = (VinVy)u(VanVs) and
Vo = (VinV3)u(VanVy),

and observe that the symmetric difference S; A S5 can only contain edges with
one endvertex in V5 and the other in V5. Also, we note that all such edges are
contained in Sy A Sy (see Figure 6.4). Since

VsUVs =V(G) and V5N Vs =0,

the set of edges S; A S, gives rise to a partitioning of V(G). We can conclude
that if both G[V;] and G[Vg] are connected subgraphs of G, then S} A Sy is an
edge cut. Otherwise, it is a disjoint union of edge cuts. O

Example 6.12
In Figure 6.3 consider the symmetric difference of the following three pairs of
edge cuts:

{de, [y s {f.9,hy = {d,e.g,h}, (6.1)
{a,b} & {b,ce, f} = {a.ce, [}, and (6.2)

{d,eg,h} £ {f,9,i} = {d,e f,h,i}
= {d,e f}U{h,i}. (6.3)

We see that Equations (6.1) and (6.2) give new edge cuts, and Equation (6.3)
provides a disjoint union of two edge cuts.
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S1AS,

Figure 6.4: Two edge cuts and their partitionings.

We now have a method of generating additional edge cuts from a number of
given edge cuts. Obviously, we cannot start with any two edge cuts in a given
graph and hope to obtain all of its edge cuts by this method. So, it is natural to
ask how can we describe a minimal set of edge cuts from which every edge cut
of GG is obtained by taking symmetric differences? Theorem 6.13 provides the
answer, but the proof is in Chapter 9. Recall that the operation of symmetric
difference on sets is associative.
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Theorem 6.13
Let G be a connected graph and T' a spanning tree of G. If F(T) = {Si,..., Sk}
is the set of all fundamental edge cuts of G' with respect to T', then

{S1ASyA-+- NSk}

contains all edge cuts of 5.

6.4 Fundamental Cycles and Edge Cuts

In this section we further explore the connection between fundamental cycles and
fundamental edge cuts with respect to a fixed spanning tree of a given graph.

Theorem 6.14

Let G be a connected graph and T' a fixed spanning tree of G. For a chord ¢
of G with respect to T, let I'. be the fundamental cycle of G determined by
c. For a branch b of G with respect to T', let S, be the fundamental edge cut
determined by b. Then

c € Syifandonlyifbel,.

PROOF: Let ¢ be a fixed chord of G with respect to 1T'. If b € I'., then
the branch b is also contained in the fundamental edge cut Sy. S, determines
a partition with vertices in V; or V5. Let b’ be another branch of T'. Clearly, ¢/
has both its endvertices in 1/ or both in V5. Hence, ¥’ cannot be contained in
Sy (see Figure 6.5). By Theorem 6.6 I'. and S, have an even number of edges
in common. So besides b, the edge c is the only other possible edge common to
both I'. and S;,. This holds for any branch b of G, which is contained in I'., with
respect to 7. So, c€ S ifbeT,.

On the other hand, if b & I'. then the vertices of T', are all in V] or are all
contained in V5. Hence, the edge c is not contained in Sy. This whole argument
holds for any chord ¢, so we have the theorem. O

The following example illustrates Theorem 6.14.
Example 6.15

Consider the spanning tree with edges {b,c,e, h,i} shown in thick lines in Fig-
ure 6.3. The fundamental cycle made by chord f has edges {f,e, h,i}. The
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Figure 6.5: A spanning tree, a chord, and two branches.

three fundamental edge cuts determined by the three branches e, h, and i are
{d,e, f}, {f,g,h}, and {f,g,i}, respectively. Note that the chord f occurs in
each of these three fundamental edge cuts and there is no other fundamental
edge cut that contains f.

Consider the branch e of the spanning tree shown in Figure 6.3 with edge
set {b,c,e, h,i}. The fundamental edge cut determined by e is {e,d, f}. The
fundamental cycles determined by chords d and [ are {d,c,e} and {f, e, h,i},
respectively. The branch e is contained in both of these fundamental cycles, and
none of the remaining fundamental cycles contains branch e.

6.5 Connectivity

If a connected graph has a cut-edge, then we can disconnect the graph with the
removal of one edge. We say that the edge connectivity of the graph is one.
Clearly, this is not restricted to connected graphs. This observation motivates
the following definition.

Definition 6.16
Let G be a given graph. The smallest number of edges whose removal disconnects
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Figure 6.6: Vertex u is a cut-vertex.

G is called the edge connectivity of G, denoted '(G). We say that G is k-edge-
connected if k is less than or equal to r'(G).

U Remark 6.17
Note the following about edge connectivity:

1. If G is a disconnected graph, then k'(G) equals zero.
2. If G is connected then r'(G) is the size of the smallest edge cut of G.

3. If G is a graph and G' is the graph we get from G by removing all of its
loops, then

K (G) = k'(G").

The next example illustrates edge connectivity.

0 Example 6.18
The edge connectivity of any tree is one. The edge connectivities of the graphs
in Figures 6.1(a), 6.3, and 6.6 are one, two, and three, respectively.

If a connected graph has a cut-vertex, then the minimum number of vertices
whose removal disconnects the graph is one. In Figure 6.6 the vertex u is a
cut-vertex of the graph. We can generalize connectivity for vertices as well.

Definition 6.19

Let G be a graph. The minimum number of vertices whose removal disconnects
G or creates a graph with a single vertex is called the connectivity of G, denoted
k(G). If k is less than or equal to k(G), then G is said to be k-connected.
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0 Remark 6.20

A couple of observations about vertex connectivity are worth noting.

1. If G is a disconnected graph, then x(G) equals zero.

2. For a graph G, let G' be the graph obtained from G by removing all the
loops from G and changing all multiple edges to single ones. In this case
we have

k(G) = k(G").

3. The set of vertices removed in order to disconnect the graph or reduce it
to a single vertex is called a vertex cut. It is instructive to compare and
contrast the notion of vertex cut with that of edge cut (see Definition 6.1).

The next example illustrates vertex connectivity.

0 Example 6.21

For natural numbers m and n greater than or equal to one, we have the following:

1. For the null graph N,,, we have (N, equals zero.

For any tree T on two or more vertices, we have k(T equals one.

“wC N

For any cycle C,, on three or more vertices, we have k(C,,) equals two.
4. For the complete graph K,, we have k(K,) equals n — 1.

5. For the complete bipartite graph K,,,, we have k(K,) = min({m,n}).
(Can you see why?)

We will use this terminology in the following applications in allocations of
stations to be connected.

Example 6.22

Suppose we are given n stations that are to be connected by means of e telephone
lines, bridges, railroads, tunnels, or highways, where ¢ is greater than or equal to
n — 1. What is the best way to connect the stations? By best we mean that the
network should be as invulnerable to the destruction of individual stations and
individual lines as possible. In other words, we need to construct a graph with n
vertices and e edges that has the maximum possible vertex and edge connectivity.
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Figure 6.7: Graph with 8 vertices and 16 edges representing a network of stations.

The graph in Figure 6.6 has n equal to 8 and e equal to 16. It has vertex
connectivity of one and edge connectivity of three.

Another graph having 8 vertices and 16 edges is shown in Figure 6.7. It can
easily be seen that the vertex connectivity as well as the edge connectivity of this
graph is four. Consequently, even after any three stations are bombed, or any
three connections destroyed, the remaining stations can continue to “communi-
cate” with each other. Thus the network of Figure 6.7 is better connected, and
hence less vulnerable, than the network of Figure 6.6.

What is the highest vertex and edge connectivity we can achieve for a graph
with n vertices and e edges? The next two theorems constitute the answer to
this question. First, we need a definition.

Definition 6.23
For any graph G let

A(G) = max({dg(u) |u € V(G)}), and
0(G) = min({da(u) | u € V(G)}),

be the maximum degree and minimum degree, respectively of a vertex in G.
When unambiguous, we write A (§) instead of A(G) (respectively, 6(QG)).

Theorem 6.24
Let G be a graph. We have that

k(G) < K'(G) < 8(G).
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PROOF: Suppose u is a vertex with dg(u) equal to 6(G). We can isolate
u by removing all of the edges having u as one endvertex. There are at most
dc(u) edges to remove; there are exactly dg(u) if G has no loops. Hence, we
have that x'(G) is less than or equal to §(G).

For the other inequality, we can assume G is connected. Let S be an edge cut
consisting of x/'(G) edges. Let V(G) =V} U V4, be the corresponding partition
and let n; = |V;|. We can assume n; is greater than or equal to two since
otherwise the theorem follows easily. By the first part of this theorem, we have

K(G) < 8(G) < AG) < |[V(G) =1 < my + 1y — 1.

Since (ny — 1)(ne — 1) > 0, we have that /'(G) is less than nyn,. Hence, there
are two vertices u; € Vi and uy € V5 that are not neighbors. For each edge
{u,v} € S pick either u or v so that your choice is not equal to u; nor u,. Let
W denote this set of vertices. The size of IV is less than or equal to x'(G) = |S|.
The removal of W eliminates all edges in S from GG. Furthermore, the remaining
graph consists of at least two components—one containing u; and the other us.
Therefore,

k(G) < K'(G).
This completes the proof of the theorem. O

Note 6.25
The bounds in Theorem 6.24 can be reached. They can take any positive integer
value. If n is greater than or equal to one, we have

k(K,) =K (K,) =6K,) =n—1.

The following theorem shows how invulnerable a graph on n vertices and e
edges can be, where n and e are given fixed numbers.

Theorem 6.26
Let G be a graph on n vertices having e greater than or equal to n — 1 edges.
In this case we have

K@) < K(C) < H |

n

PROOF: By the Hand Shaking Theorem (Theorem 1.24), we have

né(G) < Y da(u) = 2e.

ueV(Q)
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So, §(G) < 2e/n, and the inequality follows from Theorem 6.24. O

The following example illustrates an interesting class of regular graphs having
maximum possible connectivity.

Example 6.27

Assume n and e are such that e is greater than or equal to n — 1, k equals
|2e/n|, and k is an even number less than or equal to n — 1. We can construct
a k-regular graph H on n vertices by connecting each vertex u on the cycle C),
to all vertices of distance k/2 or less from u in C,,. This graph is sometimes
called the k-regular Harary graph on n vertices due to Frank Harary. The graph
shown in Figure 6.7 is a 4-regular Harary graph on eight vertices.

One can argue that the graph resulting from removing any k — 1 vertices from
H is connected. Therefore, k(H) is greater than or equal to k. In fact, k(H)
equals k (see Exercise 9). This shows that the upper bound in Theorem 6.26
can be reached in this case. Similar constructions can be developed when k is
odd (see Exercise 10).

6.6 Separability

This section focuses on graphs having connectivity one or two. They are of
special interest since their structures are relatively simple to describe. We begin
with an important definition.

Definition 6.28
Let G be a connected graph on three or more vertices.

1. GG is said to be separable if it has at least one cut-vertex. Otherwise, G is
nonseparable.

2. A maximal nonseparable connected subgraph in G is called a block of G.

It makes sense to talk about the blocks of any graph G even if GG is not
connected. We just consider each component at a time; a block of a component
of G is then a block of G.

The next example illustrates Definition 6.28.
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B

By

B;
B,

Figure 6.8: A connected graph with four blocks.

[0 Example 6.29

In Figure 6.1(a) the vertex uy is a cut-vertex, so the graph is separable. The
blocks of this graph are G[{us, us}], consisting of just an edge and its endvertices,
and G[{u, us, us, us, ug}|. (The Harary graph in Figure 6.7 is nonseparable and
hence a block itself.) In Figure 6.8 the vertex u is a cut-vertex, and the graph
is separable with four blocks By, By, B3, and By. In a tree every vertex with
degree greater than one is a cut-vertex (see Exercise 18). So trees with more
than two vertices are separable.

The next lemma is needed in the proof of Theorem 6.32.

Lemma 6.30
If By and By are two distinct blocks in a graph G, then By N By is either empty
or consists of a single vertex.

PROOF: Assume that B; and B, have two distinct vertices © and v in
common. We argue that By U Bs is nonseparable as follows.

Removing a vertex w ¢ {u, v} from one of the blocks, say B, will leave a
subgraph (B; — w) U By of By U Bs. Since By is a block it is connected, and so
is By. If v € V(B; —w) and y € V(By), then there are paths from z to u in
By —w, and from u to y in By, respectively. Hence, (B; —w)U By is connected.
Likewise, removing either u or v, say u, from B; U By will yield a subgraph
(By —u) U (By — u) of By U By. Every vertex in V(B; — u) can be connected
to every vertex in V(B — u) via the vertex v. So, in any case, the removal of a
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single vertex from B; U B, yields a connected graph. Therefore, B; U B;, which
properly contains both B; and B,, is nonseparable. This contradicts the fact
that By and B, are blocks of G. O

Definition 6.31

Let G be a connected graph. Let C(G) C V(G) be the set of G's cut-vertices.
Let B(G) be the set of blocks of G. The block-cutpoint graph is the graph with
vertex set C'(G) U B(G) and edge set

{{u,B} :u € C(G),B € B(G), and u € V(B)}.
It is denoted by BC(G).

We note that BC(G) is a bipartite graph with vertex partition C'(G)) U B(G).
Moreover, we have the following.

Theorem 6.32
For a connected graph G, the block-cutpoint graph BC(G) is a tree. In addition,
all the leaves of BC(G') are contained in B(G).

PROOF: If G is a connected graph, then clearly BC(G) is also connected.
Assume that we have a simple cycle (u1, By, ug, Ba, ..., Upn, By, u1) in BC(G).
By Lemma 6.30, we have that m is greater than or equal to three. Also, there
is at least one cut-vertex u; of (G, i greater than or equal to two, that is not
contained in B;. Since G' = By U---U B,, is a connected graph, there is a path
P from us to u,, contained in G'. Now the subgraph B; U P in G is clearly
nonseparable and strictly contains both B; and the vertex u;. This contradicts
the fact that B; is a block of (5.

Since each cut-vertex is contained in at least two blocks, every cut-vertex
must be an internal vertex of BC(G). Therefore, all the leaves in BC(G) are
contained in B(G). O

U Remark 6.33
If G is disconnected then BC(G) is a forest with the same number of components
as G. If G has components G+, ...,Gy, then

BC(G) = BC(G,) U - - - UBC(Gy).

By Theorem 4.4 we obtain the following.
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Corollary 6.34
Every connected separable graph has at least two blocks, where each contains
exactly one cut-vertex of G.

The previous results give us a way to reduce our consideration to the blocks
of a given separable graph. In particular, if we can demonstrate a property for
each block of given graph G, then we can use induction on the number of blocks
of GG using of Corollary 6.34. But in order to follow this course of action, we
need some description of the blocks.

By definition, a block of a connected graph GG has no cut-vertices. Therefore,
it is 2-connected. Likewise, each maximal 2-connected subgraph of GG is a block
of GG. Hence, describing the blocks of GG is the same as describing 2-connected
graphs in general.

Theorem 6.35
For a connected graph G on three or more vertices the following statements are
equivalent:

1. GG is 2-connected.

2. For every pair of distinct vertices, there is a cycle in G passing through
both of them.

3. For every pair of distinct vertices, there are two vertex disjoint paths in G
connecting them.

PRroOF: Clearly, we have that statement 3 is true if and only if statement 2
is true. For the other equivalences, we proceed as follows:

> 2=1:

Let x, y, and u be distinct vertices of (G, and 7 a simple cycle through
all three vertices. Then one of the paths from x to y will not contain the
vertex u. This holds for arbitrary x and ¥, so u is not a cut-vertex. Hence,
GG is 2-connected.

> 1=2

Let x and y be vertices of G. Let

U, ={u € V(G) : there is a cycle through x and u in G}.
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Figure 6.9: A cycle through = and u; .

Since G is 2-connected on three or more vertices, it cannot have any cut-
edges. Otherwise, one of the endvertices would be a cut-vertex. But any
edge e, which is not a cut-edge, must be contained in a cycle in G. This is
because there is an alternative path from one endvertex of e to the other
that does not include e. Hence, all the neighbors of = are contained in U,.

Assume now that y ¢ U,. We will derive a contradiction. Let a =
(wg, €1, U, ..., €q,u,) be a path from ug = x to u, = y. Let i be the
largest index such that u; € U,. From above, we have i is greater than or
equal to one and u; # x. Since GG is 2-connected, G — u; is connected.
So, there is a path 8 = (vo, f1,v1,. .., fp, ) from vy = x to vy, = Uy
that does not contain u;. Let 7 be a cycle through x and u,. Let k be
the largest index such that v, is on . At this point we construct a cycle
though = and u;., as follows (see Figure 6.9).

Let p; be the path from x to v along the path of « that does not contain
u;. If k equals zero, then p; consists of just one vertex. Let py be the path
from v; to w;;; along 3. Let ps be the path (u;i1,e;41,u;). Finally, we
let p, be the path from u; to x along the path of « that does not contain
vk. We now have a cycle

7' = p1papspa
through both x and w;, contradicting that u;,, & U,.

O

This theorem can be generalized to k-connected graphs as follows.
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Theorem 6.36

A connected graph G is k-connected if and only if every pair of vertices in G
are joined by k or more paths which, besides from their endvertices, are vertex-
disjoint.

A similar description holds for k-edge-connected graphs.

Theorem 6.37
A connected graph G is k-edge-connected if and only if every pair of vertices in
G is joined by k or more edge-disjoint paths.

For the proofs of Theorems 6.36 and 6.37, we refer the reader to [15, Chap-
ter 5] or [31, Section 4.2]. You are encouraged to look up these two proofs.
Although the proofs themselves are not too involved, they do require a bit of
new terminology that we will not need in this book.

6.7 1-lsomorphism

As mentioned earlier, when considering properties of graphs, one can often reduce
the study of a graph to that of its blocks. More precisely, a certain property can
hold for a given graph if and only if it holds for each of its blocks. Hence,
connected graphs that have the same set of blocks have a lot in common. We
explore such graphs in this section, beginning with a simple example.

Example 6.38
The graph GG in Figure 6.10 has three cut-vertices a, b, and ¢ and five blocks By,
BQ, Bg, B4, and B5.

The graph G' in Figure 6.11 has only two cut-vertices a' and b'. It has five
blocks B, B}, B}, B}, and B, where each block B} is isomorphic to the block
Bi of (5.

We see that G is connected with 11 vertices and G' is disconnected with 12
vertices. Although the graphs G and G' have the same blocks, the graphs are
far from being isomorphic.

The following definition introduces a new notion of isomorphism to capture
the similarities between G and G'.
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Figure 6.11: G’ has the same set of blocks as G.

Definition 6.39
Let G and G' be graphs. Let B(G) and B(G'") be their respective sets of blocks.
If there is a bijection

B:B(G) — B(G")

such that B and ((B) are isomorphic graphs for each B € B(G), then G and
G' are said to be 1-isomorphic.

The graphs GG and G’ in Figures 6.10 and 6.11, respectively are 1-isomorphic
since B; = B! for each i € {1,2,3,4,5}.
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Figure 6.12: G’ derived from G by a 1-split of the cut-vertex w.

Consider the following operation called a I-split. For a graph G, let u be a
cut-vertex of G. Let By, ..., B, be the set of blocks containing w.

> Introduce new vertices by, ..., b,,.

> In G —wu connect each vertex b; to the neighbors of u in B; while preserving
edge multiplicity. This results in a new graph G'.

The graph G’ has one less cut-vertex than GG. However, it is 1-isomorphic
to GG. The 1-split pulls the blocks connected by u apart and “splits” u into m
copies such that each block B; has a copy of u (see Figure 6.12).

By repeating the 1-split operation, we have the following observation.

Observation 6.40
Two graphs are 1-isomorphic if and only if they can become isomorphic under
repeated 1-split operations.

[0 Remark 6.41
Two isomorphic graphs are 1-isomorphic to each other. It is also apparent that
two nonseparable graphs are 1-isomorphic if and only if they are isomorphic.

Observe that under the 1-split operation, the number of edges stays the same,
|E(G)| = |E(G")|. Also, the number of components is increased by m — 1 and
the number of vertices is increased by m — 1. So, from Observation 6.40, we get
the following.
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Theorem 6.42
Suppose G and G' are two I-isomorphic graphs with ¢ and ¢’ components, re-
spectively. Then we have

|E(G)] = |E(G)] and
V(@) —c = V(G-

6.8 2-Isomorphism

In Section 6.7 we generalized the concept of isomorphism by introducing 1-
isomorphism. The concept of 1-isomorphism for nonseparable graphs is the same
as isomorphism. However, for separable graphs, 1-isomorphism is different from
isomorphism. We can generalize this concept further to broaden its scope for
2-connected graphs as follows.

Consider the following 2-split-glue operation. Let G' be a 2-connected graph.
Let v and v be a pair of vertices whose removal from G leaves the remaining
graph disconnected. That is, G — {u,v} = G; U G, is a disjoint union. We
modify G — {u, v} as follows:

> Introduce four new vertices: u; and us corresponding to u, and vy and vy
corresponding to v.

> Preserve the edge multiplicity of GG by connecting u; to the former neigh-
bors of u in Gy and by connecting u, to the former neighbors of u in G.
In the same manner, connect v; to the former neighbors of v in G; and
connect v, to the former neighbors of v in Gs.

> If w and v were connected in G with m edges, connect u; and v; with
m; edges, and connect v; and vy with my edges, where my, my > 0 and
my1 + ms = m. Any choice of m; and my is fine. At this point we have
two disjoint graphs G| and GY,.

> Connect u; and vy with an edge e, and connect us and v; with an edge
€91 to obtain the connected graph G'.

> Form the contraction (G’ - e12) - €9 to obtain the graph G”.
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Figure 6.13: G" obtained from G by a 2-split-glue operation.

Roughly speaking, the 2-split-glue operation “splits” the vertex u into u;
and uy and the vertex v into v; and v, in such a way that G is divided into two
disjoint graphs G| and G),. The vertices u; and v; go with G, and uy and v,
with GY,. Now the graphs G| and G, are joined by merging u; with vs and us
with v;. Edges whose endvertices were u and v in G could have gone with G
or G, without affecting the final graph G”. In Figure 6.13 we have taken m;
equal to one and m» equal to two.

Observation 6.43
If G is 2-connected and G" is obtained from G by a 2-split-glue operation, then
G" is also 2-connected.
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PRrROOF: A cut-vertex in G" is also a cut-vertex in G. O

The following definition makes precise another more general form of isomor-
phism.

Definition 6.44
Two graphs are said to be 2-isomorphic if and only if they can become isomorphic
under repeated operations—either 1-split or 2-split-glue.

From Definitions 6.39 and 6.44 it follows immediately that isomorphic graphs
are always 1-isomorphic, and l-isomorphic graphs are always 2-isomorphic. But
2-isomorphic graphs are not necessarily 1-isomorphic, and 1l-isomorphic graphs
are not necessarily isomorphic. However, for graphs with connectivity three or
more, isomorphism, 1-isomorphism, and 2-isomorphism are synonymous.

Under a 2-split-glue operation, the number of vertices, edges, and compo-
nents are fixed. Hence, we have the following.

Theorem 6.45
Suppose G and G' are two 2-isomorphic graphs with ¢ and ¢ components, re-
spectively. Then we have

[E(G)] = |E(G)] and
V(@) —c = V(G-

There is an alternative description of when two graphs are 2-isomorphic in
terms of their cycle correspondence.

Definition 6.46

Let G and G' be two graphs. Let C(G) and C(G") be the sets of their cycles,
respectively. The graphs are said to have a cycle correspondence, if there are
bijections

v:E(G) — E(G') and
y:C(G) — C(@),

such that E(¥(C)) = v(E(C)) for all cycles C € C(G). That is, the edges in
5(C') are formed by the images of the edges of C' under ~y.



186

Edge Cuts and Connectivity

In a separable graph G every cycle is confined to a particular block (see Exer-
cise 22). So, every cycle in G retains its edges as G undergoes a 1-split operation.
Hence, 1-isomorphic graphs have a cycle correspondence. The following theorem
is considered one of the most important descriptions of 2-isomorphic graphs.

Theorem 6.47 (Whitney’s)
Two graphs are 2-isomorphic if and only if they have cycle correspondence.

ProOF: We will prove the “only if” part. Let us consider what happens to
a cycle in a graph GG when it undergoes a 2-split-glue operation. We use the
notation given in the description of the 2-split-glue operation. A cycle C' € C(G)
will fall in one of three categories:

1. C'is comprised of edges all in G,
2. C'is comprised of edges all in G, or

3. C'is comprised of edges from both G and GY,.

In cases 1 and 2, C' is unaffected by the 2-split-glue operation. In case 3,
the cycle C' must include both vertices u and v. After the 2-split-glue operation,
the resulting cycle C” has the same set of edges as C' except that the order
of the edges in C' between vertices u and v in exactly one of the parts, G’ or

5, which constituted an edge of C', has been reversed. Thus every cycle in
a graph undergoing 2-split-glue operation retains its original edges. Therefore,

2-isomorphic graphs have a cycle correspondence.

The “if" part, which we omit, is more involved. The reader is referred to
Whitney's original paper [32] for a proof. O

The following example makes these ideas concrete.

Example 6.48

In Figure 6.14 we have two 2-isomorphic, 2-connected graphs G and G".
There is a bijection between E(G) and E(G") given by ~(e;) = el for
i€ {1,2,3,4,5,6,7}. For the cycle C = (ey,es,e3,€4,€5), we have a corre-
sponding cycle C" = (€Y, e}, e, el elf). Notice that the order of the indices of
the last two edges has been reversed.

A valid definition of 7 : C(G)) — C(G") can be given by the following rule:
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Figure 6.14: The order of one edge of the cycle C' has been reversed in C”.

1. Let C € C(G) be specified by C = (e;,, ..., e, ), where k is less than or
equal to five (since neither G nor G" has any cycle of length more than
five) and {iy, ..., it} € {1,2,3,4,5,6,7} is distinct.

2. Form the k-tuple (e;, ... e ).

3. Reverse the order of those possible two e;,'s that have iy € {4,5,6} and
obtain the cycle C" = (e} ,... €} ).

4. Define %(C) = C".

As we shall observe later, the ideas of 2-isomorphism and cycle correspon-
dence play important roles in the theory of networks in general and in the duality
of graphs. As we have seen, 2-isomorphism is very much related to the notion
of 2-connected graphs. The description of general k-connected graphs becomes
more and more cumbersome. A nice description of 3-connected graphs can be
found in [9, Section 3.2]. At this point we have reduced certain problems for
graphs to the classification shown in Figure 6.15.

6.9 Exercises

1. List all of the edge cuts separating the vertex pair us and us in the graph
shown in Figure 6.1(a).





