Spanning Trees

Chapter Goals

Introduce the notion of minimum
cost spanning tree.

Present a classic application of
trees to a problem in chemistry.

Describe KRUSKAL’S and
PRrim’s algorithms.

Define the concepts of spanning
tree and spanning forest.

Present Cayley's Theorem for
counting labeled trees.

Define Prufer codes and their
uses.

Present several applications of
spanning trees.

Examine degree-constrained
spanning trees.

Examine how to find all of the
spanning trees of a graph.

5.1 Introduction

Graph theory is full of many useful classes of trees. In this chapter we examine
some of the most important ones. In §5.2 we describe Cayley’s application of
trees to a problem in chemistry. This is one of the earliest applications of trees.
This practical application serves as a nice introduction to §5.3 and our discussion
of spanning trees—another important notion in graph theory. We present some

140

Spanning Trees

useful and practical methods for counting the number of spanning trees of a given
graph. We also present Cayley's classic result on finding the number of spanning
trees in the complete graph on n vertices. In §5.4 we present Cayley’s Theorem
for counting labeled trees. There we introduce Priifer codes that provide us with
another representation of trees. We explore how to find all the spanning trees
of a graph in §5.5. In §5.6 we study weighted graphs and present a couple of
classic algorithms for computing minimum cost spanning trees. We conclude
this chapter in §5.7 by looking at degree-constrained spanning trees. These have
important applications in electrical engineering and computer science.

5.2 Counting Hydrocarbons Using Trees

In 1857 Arthur Cayley discovered trees while he was trying to count the number of
structural isomers of the saturated hydrocarbons C Hyi 1o, where £ is a natural
number greater than or equal to one. He used a connected graph GG to represent
the Cy Hoj 1o molecule. Corresponding to their chemical valences, a carbon atom
was represented by a vertex of degree four and a hydrogen atom by a vertex of
degree one. So, a hydrogen atom was represented by a leaf. The total number of
vertices in such a graph is n = 3k + 2. So, by the Hand Shaking Theorem 1.24,
the total number of edges is as follows:

B@) = 5 Y dw)

ueV(Q)

= (4R 1 (26 +2)

= 3k+1

Since GG is connected and the number of edges is one less than the number
of vertices, GG is a tree. Thus counting structural isomers of a given hydrocarbon
is equivalent to counting trees having certain properties.

A graph in which each vertex is assigned an unique name or label is called a
labeled graph. A subtree of such a graph is called a labeled tree. Cayley asked
the following question: What is the number of different labeled trees that one
can construct with n vertices? If n equals four for instance, we have 16 trees.

vineet
Highlight

5.2 Counting Hydrocarbons Using Trees 141

B QI—I> Q SN Q B
Sy S Sy GNCU GN%
B Q =N Q SN Q%>
Sy GI—ICU GMCU S Sy
B Q =N Q SN QR>
Sy G::ICU GZCU S Sy
B Q =N Q SN Q B
N DN

bl
<
X
X

Q

D C D C D C

S

Figure 5.1: All 16 trees of four labeled vertices.

These labeled trees are shown in Figure 5.1. The reader can check that there
are no more labeled trees of four vertices.

The distinction between a labeled and an unlabeled graph is very important
when we are counting the number of different possible graphs. For instance,
the four graphs in the first row of Figure 5.1 are counted as four different trees
because the vertices are labeled differently even though the trees are isomorphic.

vineet
Highlight

142

Spanning Trees

If there were no distinction made between A, B, C', or D, these four trees would
be counted as one. A careful inspection of the graphs in Figure 5.1 reveals

that there are only two unlabeled trees on four vertices with no distinction made
between A, B, C, and D.

In the next section we examine an important class of trees called spanning
trees. This notion is a helpful one in working towards a solution to Cayley’s
question. We use spanning trees in §5.4 where we present Cayley’s Theorem for
counting labeled trees. There we come back to Cayley’s original question.

5.3 Spanning Trees

A fixed graph G has numerous subgraphs. In fact, a graph having |E(G)| edges
has 2/Z(@)I possible distinct subgraphs. Obviously, some of these subgraphs are
trees. Out of these trees, we are particularly interested in certain types of trees
called spanning trees.

Definition 5.1
Let G be a graph.

1. A subtree T of G is called a spanning tree if T' contains all of the vertices
of G. Thatis, V(T) equals V(G).

2. A subforest F' of G is called a spanning forest if F'N H is a spanning tree
for each of the components H of (5.

3. The number of distinct spanning forests in G is denoted 7(G).

In Figure 5.2 we depict a seven-node graph. A spanning tree of the graph is
shown in thick lines. The set of edges in the spanning tree is {b; : 1 < i < 6}.

O Remark 5.2

1. If a graph G is connected, then 7(G) is the number of spanning trees in
G.

2. If G' is the graph we get from G by removing all the loops from G, then
7(G) equals 7(G').

The following observation is easy to prove.

vineet
Highlight

5.3 Spanning Trees 143

Figure 5.2: A spanning tree.

Observation 5.3
Let G' be a graph.

1. If G is a tree, then T7(G) equals one.

2. IfG4,...,Gy are the components of G, then
7(G) = 7(Gy) x -+ x 7(Gy).

Before we continue with our discussion of the spanning trees of a graph G, it
is helpful to recall Definition 3.12. We defined the contraction of G by an edge
e € E(G). This contraction is denoted G - e. With this definition in mind, we
can prove the following theorem. This theorem is useful for counting the number
of spanning trees of a graph.

Theorem 5.4
Let G be a graph and e € E(G), where e is not a loop. We have that

(@) = 7(G-e)+7(G —e) ifeis not a cut-edge
T (G e if e is a cut-edge

PROOF: By Observation 5.3 we can assume that G is connected. Let 7(G)
denote the set of all spanning trees of G. So, 7(G) equals |T(G)|. By setting

To. = {TeT(G):ec E(T)} and
To = {TeT(Q):eg E(T)},

144

Spanning Trees

we get a partition of 7(G) into two disjoint sets 7 (G) = T; U Ts.

If e is not a cut-edge, then 75, = T (G — e). If on the other hand € is a
cut-edge, then 7, = (). The map

Y:Ti — T(G-e) defined by
W(T) = T-e

is clearly bijective. Therefore, |Ti| = |T(G - €)|. Since 7(G) = |Ti| + |T3], the
theorem follows. O

Note that G — e has one less edge than GG but the same number of vertices.
So, the number |V (G)| + |E(G)| decreases by one in G — e. However, G - ¢
has one edge and one vertex less than G, so |V(G)| + |E(G)| decreases by two
in G - e. This suggests a way to use Theorem 5.4 to prove various properties
of 7(G) by induction on |V(G)| + |E(G)|. We also can use Theorem 5.4 to
calculate the number of spanning trees of any graph G recursively as shown in
Example 5.5. A different way to compute 7(G) for a given connected graph G
is given by the Matrix-Tree Theorem 10.27.

Example 5.5

We illustrate how Theorem 5.4 can be applied to compute the number of spanning
trees of the graph GG shown in Figure 5.3. Noting that e is not a cut-edge and
applying Theorem 5.4, we get the following:

7(G) = 7(G-e)+7(G—¢e)
= 7(G-e)+1
since G — e is a tree. Continuing along these lines, we get
7(G-e) = 7((G-¢e)-)+7((G-e)—¢),
= 7((G-e))-€)+1.

By Remark 5.2 we have that 7((G - ¢€)) - €') equals one by removing the loop.
Hence, we have that 7(G) equals three.

Calculations like those in Example 5.5 become cumbersome for large graphs.
This technique does not provide an efficient method to calculate 7(G). However,
there is one interesting corollary we get for any graph G by induction on |V (G)|+

|E(G)].

5.4 Cayley’s Theorem for Counting Labeled Trees

145

ANNAVAN

O/.

(G-e)- (G-e)—¢

Figure 5.3: A recursive way to calculate 7(G) for any graph G.

Corollary 5.6

For any graph G, we have that 7(G) is greater than or equal to one. That is, any
graph has a spanning forest. In particular, any connected graph has a spanning
tree.

We return to Cayley's question in the next section armed with our knowledge
of spanning trees.

5.4 Cayley’'s Theorem for Counting Labeled
Trees

The following well-known theorem for counting labeled trees was first stated and
proved by Cayley [5].

Theorem 5.7 (Cayley’s Theorem)
Let n be a natural number greater than or equal to two. The number of labeled
trees on n vertices is n" 2.

vineet
Highlight

146 Spanning Trees

PROOF: We sketch the proof using Priifer's idea. His proof gives a one-to-
one correspondence between the set of all labeled spanning trees of K, and the
set of all ordered (n — 2)-tuples of the natural numbers 1,...,n. The encoding
of each labeled tree into an ordered (n — 2)-tuple is called a Priifer code. Once
this bijection has been established, we have that the number of labeled trees on
n vertices is equal to the number of all possible (n — 2)-tuples of the natural
numbers 1,...,n. Hence, there are n"2 labeled trees on n vertices.

Assume that we have a tree T on n greater than or equal to two vertices
U1, ..., uU,. We want to encode T into an ordered tuple (ay, ..., a,_2) of natural
numbers 1,...,n. This procedure is called PRUFER CODE:

> Let 7" equal T.

> For s =1 to n — 2 do the following steps:

1. Let u equal the smallest numbered leaf in 7".
2. Let a; be the index of u's neighbor in T".
3. Let 7" be T" — {u}.

Assume we have a given ordered (n — 2)-tuple (ay,...,a, 2) of natural
numbers 1,...,n. We can construct a tree on vertices numbered 1,...,n by the
procedure called TREE TO PRUFER CODE:

> Let A equal (ay,...,a, 2).

> For ¢ =1 to n — 2 do the following steps:

1. Let b; be the least number among {1,...,n} that does not occur in

A.
2. Connect the vertices numbered a; and b; with an edge.

3. Remove a; from A and add b; to A to get the new (n — 2)-tuple
(ai+1, sy p 9, bl; ceey bz)

> Connect the two vertices that are not indexed by any of by,...,b, ».

5.4 Cayley’s Theorem for Counting Labeled Trees 147

4 3

T

Figure 5.4: The labeled tree T" has Priifer code (6,5,6,5,1).

We notice that the procedure TREE TO PRUFER CODE adds edges in the
same order that procedure PRUFER CODE removed them. We also see that
starting with an (n — 2)-tuple, applying TREE TO PRUFER CODE, and then
applying PRUFER CODE we end up with the original (n—2)-tuple. Hence, these
procedures give a bijection between the spanning trees of K, and the ordered
(n — 2)-tuples of the natural numbers 1,...,n. Therefore, we have the theorem.
O

Figure 5.4 shows a seven node tree and its corresponding Prifer code.

There are many different proofs of Cayley's Theorem (Theorem 5.7) with var-
ious approaches. An excellent summary of ten such proofs is given by Moon [23].
Other proofs are given in Example 10.28 and in Chapter 14.

0J Remark 5.8

In the actual counting of the isomers of CyHoy o, Cayley's Theorem is not
enough. This is because we are not interested in all labeled trees, but merely
all the trees that are not isomorphic. So, we really want to count the unlabeled
spanning trees of K,,, where n equals 3k + 2 and where the vertices have degree
either one or four. The problem of counting unlabeled trees of different types is
discussed more thoroughly in Chapter 14. In the next section we look at finding
all of the spanning trees of a graph.

vineet
Highlight

148

Spanning Trees

5.5 Finding all Spanning Trees of a Graph

In a given connected graph there are usually a large number of spanning trees. In
many applications we need to find all spanning trees. In this section we discuss
how to generate all of the spanning trees of a given graph GG. Using Theorem 4.7
we get the following definition.

Definition 5.9

Let G' be a connected graph and T a spanning tree of G. An edge in T is called
a branch of T in G. An edge in G that is not in T is called a chord of G' with
respect to T'. When we add one chord to T in G, we get an unique cycle whose
edges consist of edges from T plus the chord. This cycle is called a fundamental
cycle of G with respect to T'.

In Figure 5.5 we show a graph G and three of its spanning trees 7T; with
1 <4 < 3. One reasonable way to generate spanning trees of (any graph) G is
to start with a given spanning tree 7). If we add a chord, say h, to the tree 77,
this forms a fundamental cycle F' = (us, b, us, ¢, us, h, w4, d, us). The removal of
any branch of T}, say ¢, from the fundamental cycle F' creates a new spanning
tree T,. Additional spanning trees can be found by repeating this process. Note
that 73 is another spanning tree of T" but was not found via this process from 7.
Our observation about how to form a new spanning tree motivates the following
definition.

Definition 5.10
Let G be a connected graph and T a spanning tree of G. Let b be a branch
of T" and ¢ a chord of G with respect to I'. The operation of forming the new
spanning tree

T'=(T-b)Uc

from T' is called a cyclic interchange.

Generating one spanning tree from another by adding a chord and deleting
an appropriate branch is often iterated to solve certain transportation problems.

In the previous discussion for generating spanning trees, instead of initially
deleting branch ¢, we could have deleted either branch b or d. In doing this
we would have obtained two additional spanning trees. The tree in Figure 5.5
corresponding to the deletion of b from the fundamental cycle F' has edges a, c,
d, and h. The tree corresponding to the deletion of d has edges a, b, ¢, and h.

vineet
Highlight

5.5 Finding all Spanning Trees of a Graph

149

Uy
%
us b
/ c d c
Uy 5 Us

G T,
a €
b
d f {
I I
T, T,

Figure 5.5: A graph and three of its spanning trees.

Moreover, after generating these three trees, each containing chord h, we could
restart with 77 and add a different chord (e, f, or g). We can then repeat the
process of obtaining a different spanning tree each time a branch is deleted from
the newly formed fundamental cycle. Thus we have a procedure for generating
spanning trees for any given graph G.

The procedure raises many questions. Can we start from any spanning tree
and get a desired spanning tree by a number of cyclic interchanges? Can we
get all spanning trees of a given graph in this fashion? How long do we have
to continue exchanging edges? Out of all possible spanning trees which is the
best one for starting the procedure? How efficient is this procedure? We will try
to answer some of these questions. It is helpful to recall Definition 3.5 of the
symmetric difference for two subgraphs of a given graph. The following definition

150

Spanning Trees

allows us to measure how closely two spanning trees are related.

Definition 5.11
Let G be a connected graph. Let T and T" be two spanning trees of G'. Define
the distance D(T,T") between the two trees T and T' by

1
D(I,T') = 5|E(T 6 T').

For example, in Figure 5.5 we have that D(T5,T3) equals three. The next
remark addresses how many steps are required to convert one spanning tree into
another.

O Remark 5.12

If G has n vertices, then by Theorem 4.7 both T' and T" in Definition 5.11 have
n — 1 edges. If they have k less than or equal to n — 1 edges in common, then
|E(T AT')| =2(n—1—k) is an even number. Therefore, D(T,T") is always a
natural number. It is not hard to see that this number is the minimum number
of cyclic interchanges needed to obtain 1" from T'.

For finite sets A, B, and C', we have the following result:
|AAB|<|AAC|+|C A B|. (5.1)

The proof of this inequality is Exercise 14. From Inequality 5.1, we get the
following.

Theorem 5.13
If G is a connected graph and T (G) is the set of all spanning trees of G, then
D :T(G)x T(G) — NCR is ametric on T(G).

Assume that a given graph G has n vertices and m edges. If T and 7" are
two spanning trees of G, then |E(T A T")| can be at most
|E(T)|+ |E(T)] < 2(n—1).

Hence,
max({D(T,T") | T,T" € T(G)}) <n—1.

Also, since T' (or T" for that matter) has n — 1 edges, no more than m — (n —1)
edges can be replaced in T to get 7". Hence,

max({D(T,T") | T,T' € T(G)}) <m — (n—1).

We summarize these observations in the following theorem.

5.6 Spanning Trees in a Weighted Graph

151

Theorem 5.14

Let G be a connected graph with n vertices and m edges. Starting from any
spanning tree, one can obtain every other spanning tree of G' by cyclic inter-
changes. Moreover, if T and 1" are two spanning trees, then one can form the
tree T' starting from the tree T by at most D(T,T") cyclic interchanges, where

D(T, T") <min({n —1,m —n+1}).

It is natural to ask if there is a best spanning tree to start with if one needs

to obtain all other spanning trees of a connected graph GG. For a spanning tree
T of G, let

maxdistance(T) = max({D(T,T") | T" € mathcalT(G)}),

where T" runs through 7 (G)—the set of all spanning trees of G. The best
spanning tree to start with is called a central tree of T" and denoted T, where
maxdistance(7.) is a minimum. The concept of a central tree is also useful in
enumerating all trees of (G. In general, a central tree in a graph is not unique.
For more on central trees the reader should see [1] and [8].

The tree graph of GG is useful in a procedure for obtaining all spanning trees
of G. It is defined as the graph with vertex set 7(G), and edge set where we
connect two spanning trees 7" and 1" if and only if 7" can be obtained from T’
by one cyclic interchange. Note that in this case one can also get 1" from 7" by
one cyclic interchange.

From Theorem 5.14 we know that starting from any spanning tree we can
obtain all other spanning trees through cyclic interchanges. Therefore, the tree
graph of any given connected graph is connected. For additional properties of
tree graphs, the reader should refer to [7].

5.6 Spanning Trees in a Weighted Graph

We next discuss how to find the minimum cost spanning tree in a given graph
GG. After some preliminary definitions, we will present the problem formally.

Definition 5.15
Let G be a graph and W : E(G) — R be a function.

152

Spanning Trees

1. The ordered tuple (G, W) is called a weighted graph. The function W is
called a weight or weight function of (G, W).

2. If G is a subgraph of G then

W)= Y, W)

ecE(G")

is called the weight of G’ in G.

When there is no possibility of ambiguity, we write about the weighted graph
G instead of the tuple (G, W). In most applications we also assume that W (e)
is greater than or equal to zero for all e € E(G).

As we have seen, a spanning tree in a connected graph G is a minimal
subgraph connecting all vertices of GG. If the graph G is a weighted graph, then
clearly different spanning trees of G may have different weights. Among all
spanning trees of (&, the one with the smallest weight is of practical significance
in many applications. There may be several spanning trees with the smallest
weight. For instance, in a graph on n vertices in which every edge has unit
weight, each spanning tree has weight n — 1 units. These ideas motivate the
following definition.

Definition 5.16
For a connected weighted graph (G, W), the spanning tree T with the minimum
weight W (T') is called a minimum cost spanning tree.

The next example illustrates the practical significance of minimum cost span-
ning trees.

Example 5.17

Suppose that we are to connect n cities uy, . .., u, through a network of roads.
Suppose further that the cost C;; of building a direct road between u; and u; is
given for all pairs of cities where roads can be built. The costs are all greater
than zero. There may be pairs of cities between which no direct road can be
built. In this case we set C;; equal to infinity. (When programming a solution
to this problem, a value such as maxint can be used in place of infinity.) The
problem is to find the least expensive network that connects all n cities. It is
immediately evident that this connected network must be a tree. If not, we could
remove some edge(s) and get a connected graph with smaller weight.

5.6 Spanning Trees in a Weighted Graph

153

Thus the problem of connecting n cities with a least expensive network is
the problem of finding a minimum cost spanning tree in a connected weighted
graph of n. vertices. One can easily see how minimum cost spanning trees can be
used to solve many problems involving other types of networks including airline
routes, wiring layouts, and so forth.

How do we actually compute a minimum cost spanning tree? The following
algorithm, called KRUSKAL'S ALGORITHM, yields a minimum cost spanning
tree in any connected weighted graph.

KRUSKAL'S ALGORITHM
Input: A connected weighted graph (G, W).
Output: A minimum cost spanning tree 1" of G.
begin
T, =0;
fori=1to |V(G)| —1do {
let e; € E(G) \ E(T;) be a minimum weight edge and such
that 7; U ¢; is a forest;
Tiy1 =1T; Ue;
}
output 7' = T\V(G)|;
end.

The following theorem shows that KRUSKAL’S ALGORITHM computes a
minimum cost spanning tree.

Theorem 5.18
Let (G,W) be a connected weighted graph. KRUSKAL’S ALGORITHM com-
putes a minimum cost spanning tree T of GG.

PROOF: It is clear that KRUSKAL’S ALGORITHM builds a spanning tree T’
of G because it constructs a tree having |V(G)| — 1 edges. We need to show
that if 7} is another spanning tree of G, then W(T) is less than or equal to

!

Assume we have labelings ey, ..., e, (€],..., el) of the edges of T' (respec-

tively, 71) such that W(e;) < --- < Wi(e,,) (respectively, W(e}) < -+ <
W {(el,)). Since T; is not equal to T, there is a least number k such that ey is
not equal to €. Notice that 73 Uey has an unique cycle C' that is not completely

contained in 7. Hence, there is an edge ¢’ in C that is not in 7. In this case we

154

Spanning Trees

have that
T2 = (T1 U €k) \ €I

is also a spanning tree of G. By the algorithm’s choice of e;, we have that 17 (e;)
is less than or equal to W (e'). Hence, W(T3) is less than or equal to W (T?).

However, we note that D(T,T5) is less than D(T,T}) since T, has one more
edge in common with 7" than 77. If T5 is not equal to 7', we can continue in this
fashion and get 73 with W (T3) less than or equal to W (T3) and D(T,T5) less
than D(T,T,). Continuing in this fashion, we end up with a sequence 71, ..., 7,
of spanning trees of G satisfying W (7Ty) > --- > W(T,), and more importantly

D(T,T) > D(T,T,) > --- > D(T,T,) = 0.
This means that 7" equals 7,. Hence, W(T) is less than or equal to W (7). O

From the proof of Theorem 5.18, we get an interesting corollary that provides
a necessary and sufficient condition for a spanning tree to be a minimum cost
spanning tree.

Corollary 5.19

Let (G,W) be a connected weighted graph. A spanning tree T' is a minimum
cost spanning tree if and only if there exists no other spanning tree T" of distance
one from T and with weight W (T") less than W (T).

We now consider an example of KRUSKAL'S ALGORITHM.

Example 5.20

A connected weighted graph G with six vertices and twelve edges is shown in
Figure 5.6. The weights of the graph’s edges are given in the symmetric 6 X 6
matrix in Table 5.1. The (i, j)th entry denotes the weight W ({u;, u;}).

KRUSKAL'S ALGORITHM begins by selecting a minimum cost edge to in-
clude in the forest it is constructing. So, the first edge selected for inclusion is
{uy,us}. The algorithm next selects a minimum cost edge from the remaining
edges. The next edge selected must not add a cycle to the forest already con-
structed. There are two edges of cost seven to choose from. For illustration
purposes we select edge {us,us} to include at this step. Notice the edge set
{{u1,us},{us,us}} forms a forest but not a tree. KRUSKAL'S ALGORITHM
maintains a forest at each iteration. The next three edges the algorithm selects
are {uy,ue}, {ug,us}, and {us,us} in that order. The resulting spanning tree
of G is shown in thick lines in Figure 5.6. The cost of this spanning tree is
D4+ T7+7+8+9.5=236.5. This is a minimum.

5.6 Spanning Trees in a Weighted Graph

155

Figure 5.6: Minimum cost spanning tree in a weighted graph G.

u

A3

%

6

G

=

1 10 U
9.5
u

3

U1 U9 us Ug Uy Ug
up | — 10 16 11 5 17
uy | 10 — 95 oo oo 195
uz |16 95 — 7 oo 12
ug | 11 oo 7 — 8 7
us | 5 oo oo 8 — 9
ug | 17 195 12 7 9 —

Table 5.1: The weights of the graph used in Examples 5.20 and 5.21.

The next algorithm, called PRIM’S ALGORITHM, yields a minimum cost
spanning tree in any connected weighted graph.

156

Spanning Trees

PRrRIM’S ALGORITHM
Input: A connected weighted graph (G, W) that has no loops.
Output: A minimum cost spanning tree 7" of G.
begin
T = ({wi}, 0);
fori=1to |V(G)| —1do {
let e; € E(G) \ E(T;) be a minimum weight edge and such
that |7;(V) Ne| = 1;
Tiy1 =T; Uey;
}
output 7' = T|V(G)|;
end.

We now informally argue the correctness of PRIM’S ALGORITHM. At each
phase of the algorithm, the edges obtained thus far form a spanning tree of the
subgraph of G induced by these edges. This tree is a minimum cost spanning tree
in the corresponding weighted subgraph of G. Therefore, PRIM’S ALGORITHM
computes a minimum cost spanning tree of G. We ask for a formal induction
proof in Exercise 29.

Here is an example of PRIM’S ALGORITHM.

Example 5.21
We use the graph of Figure 5.6 with the weights shown in Table 5.1 to illustrate
this algorithm.

PRIM’S ALGORITHM starts from vertex uy. It then selects a minimum weight
edge that has u; as one of its endpoints. Thus it picks a smallest entry from
row one in Table 5.1. This entry from row one is five. The algorithm adds edge
{uy,us} to the tree being constructed. The closest neighbor of the subgraph
consisting of the edge {uy,us} and its endvertices is u,. This can be seen by
examining the unused entries in rows one and five. The three remaining edges
selected by following the above procedure are {uy,ug}, {us, us}, and {uq, us} in
this order. The resulting tree is a minimum cost spanning tree. The tree is shown
in Figure 5.6 in thick lines. The cost of this spanning tree is 5+7+7+8+9.5 =
36.5. This is a minimum.

It is interesting to compare Examples 5.20 and 5.21 to see how KRUSKAL’S
and PrIM’s algorithms relate. KRUSKAL'S ALGORITHM builds a forest that
may consist of many components. On the other hand, PRIM’S ALGORITHM

5.7 Degree-Constrained Spanning Trees 157

maintains a tree at each phase of its execution. In this case both algorithms
computed the same spanning tree. In the exercises we ask the reader to design
a connected weighted graph where the algorithms construct different minimum
cost spanning trees.

5.7 Degree-Constrained Spanning Trees

We conclude this chapter by considering a degree-constrained minimum cost
spanning tree problem. In this problem we want to find a spanning tree T of a
connected graph GG of total weight as small as possible, but where the degree of
each node in T is not to exceed a certain bound.

In @ minimum cost spanning tree 7T, resulting from preceding constructions,
the degree of a vertex in T ranges from one to n — 1. In some practical cases an
upper limit on the degree of every vertex (of the resulting spanning tree) must
be imposed. For instance, in an electrical wiring problem, one may be required
to wire together n pins (using as little wire as possible) with no more than three
wires wrapped around any individual pin. In this particular case, dr(u) is less
than or equal to three for all w € V(T') = V(G). In general, the problem may
be stated as follows.

0 Problem 5.22
Given a weighted connected graph (G, W) and a natural number A greater than
or equal to two find a minimum cost spanning tree T' of G such that

for every u € V(G). Such a spanning tree is called a degree-constrained mini-
mum cost spanning tree.

If A equals two, this problem reduces to the problem of finding the minimum
cost Hamiltonian path. It also reduces to the traveling salesman problem without
the salesman returning to his home base. We discussed the traveling salesman
problem at the end of Chapter 3. To date no efficient method of finding an
arbitrarily degree-constrained minimum cost spanning tree has been found.

158

Spanning Trees

Figure 5.7: A simple graph used in Exercises 3 and 6.

5.8 Exercises

10.

11.

12.

Draw all trees on n labeled vertices for n equals 1, 2, 3, and 5.
Draw all spanning trees of the graph GG shown in Figure 5.6.

Use Theorem 5.4 repeatedly to determine the number of spanning trees of
the graph shown in Figure 5.7.

. What is the Prufer code corresponding to the tree shown in Figure 5.4 if

you swap numbers one and six?
Draw the tree whose Priifer code is (1,1,1,1,6,5).
Draw all spanning trees of the graph GG shown in Figure 5.7.

Show that a leaf of a connected graph G is contained in every spanning
tree of GG.

Prove that any subgraph G’ of a connected graph G is contained in some
spanning tree of GG if and only if G’ contains no cycle.

How many chords does K, have with respect to any of its spanning trees?

What are D(T},T3) and D(T},Ts), where the T;'s are as given in Fig-
ure 5.57

Show that a Hamiltonian path of a graph is a spanning tree.

Let GG be a connected graph and T a spanning tree of G. If C'is a cycle
of GG, show that C' has at least one chord of G' with respect to 7.

5.8 Exercises

159

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Find a spanning tree of distance four from the spanning tree with edges
bi,...,by in Figure 5.2. List all fundamental cycles with respect to this
new spanning tree.

Prove the set-theoretic expression displayed in Inequality 5.1. Use it to
prove Theorem 5.13.

Explain why the distance function (presented in Definition 5.11) between
two trees always has a natural number as a value.

Can you construct the original graph G if you are given all of its spanning
trees? Give reasons explaining when this is possible and when it is not.

Let G be a connected graph. Show that the number of chords of G with
respect to any spanning tree does not change when you insert a new vertex
in the middle of an edge, or remove a vertex of degree two by merging two
edges incident to it.

Prove that any edge of a connected graph G is a branch of some spanning
tree of GG. Is it also true that any edge is a chord of GG with respect to
some spanning tree of G7

Let n be a natural number greater than one. Calculate 7(C,,).

Let n be a natural number greater than zero. Calculate 7(K5,). (Can you
calculate 7(K3,,)? Do you see a possible pattern?)

Let n be a natural number greater than two. Let u be a fixed vertex of the
complete graph K,,. Compute the number 7,(n) of spanning trees of K,
that contain the vertex u as a leaf. Use this to show that the probability
that a vertex in a tree on n vertices is a leaf is approximately 1/e, where
e = 2.71828182. .. is the base number for the natural logarithm.

Let 7} and T, be two spanning trees of a connected graph G. If e is an
edge in T} but not in T, prove that there exists another edge f in T5, but
not in 77, such that the subgraphs (77 —e) U f and (T3 — f) U e are also
spanning trees of G.

Construct the tree graph of Kj.

160

Spanning Trees

24.

25.

26.

27.

28.

29.

30.

31.

32.

Show that the tree graph of K, is Hamiltonian and that every edge is
contained in some Hamiltonian cycle. (This holds for general tree graphs
by a result of Cummins [7].)

Let (G, W) be a connected weighted graph. Assume that there is only one
edge e, of smallest weight in G. Show that every minimum cost spanning
tree must contain edge e;.

Let (G, W) be a connected weighted graph such that every edge belongs to
some cycle of GG. Assume that there is only one edge ¢; of largest weight.
Show that ¢; is not contained in any minimum cost spanning tree of G.

By providing a counterexample, show that in Exercise 26 the same can not
be said of the edge with the second largest weight.

Let (G, W) be a simple connected weighted graph. Let e, € E(G) be as
in Exercise 25 so that 1 (e;) is less than 1 (e) for all edges e not equal to
es. As we have seen, every minimum cost spanning tree of G must contain
the edge e;. Now let €/ € E(G) be such that W (e)) is less than W (e)
for all edges e not in {es, e, }. Must every minimum cost spanning tree
contain the edge .7 If €/ € E(G) is such that W (e”) is less than E(e)
for all edges e not in {es, €., e’} must every minimum cost spanning tree

$7 78
contain the edge €!/?

Using induction prove that PRIM’S ALGORITHM yields a minimum cost
spanning tree for a given connected weighted graph G.

Pick 15 large cities in the United States and obtain the distances between
them from the World Wide Web. Find a minimum cost spanning tree
connecting these cities using both KRUSKAL’S ALGORITHM and PRIM’S
ALGORITHM. Did you obtain the same trees? Explain your answer.

Draw a connected weighted graph for which KRUSKAL’S ALGORITHM and
PRrRiM’S ALGORITHM find different minimum cost spanning trees. Draw
the minimum cost spanning trees the algorithms construct.

Let u be a vertex of a connected graph G. Prove that there exists a
spanning tree T' of G such that the distance from u to every other vertex
in G is the same in both G and T

