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Matrix Representations of Graphs

Chapter Goals

Define adjacency matrix for a
graph.

Define the (reduced) incidence
matrix for a graph.

Present the Matrix-Tree Theo-
rem for graphs.

Define the (fundamental) circuit
matrix for a graph.

Define the (fundamental) edge
cut matrix for a graph.

Derive relationships among these
matrices for a graph.

Present an application in a
switching network.

Present an application in electri-
cal network analysis.

10.1 Introduction

Although a pictorial representation of a graph is very convenient for visual study,
other representations are better for computer processing. A matrix is a convenient
and useful way of representing a graph to a computer. Matrices lend themselves
easily to mechanical manipulations. Besides, numerous known results of matrix
algebra can be readily applied to study the structural properties of graphs from
an algebraic point of view. In many applications of graph theory, such as in
electrical network analysis and operations research, matrices also turn out to be
a natural way of expressing problems.
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We first consider the two most frequently used matrix representations of a
graph, the adjacency matrix in §10.2 and the incidence matrix in §10.3. In §10.4
we present the Matrix-Tree Theorem and its proof. We give an application to
electrical circuit analysis in §10.5. In §10.6, §10.7, and §10.8 we cover the cycle
matrix, fundamental cycle matrix, and edge cut matrix, respectively. We derive
correspondences between some graph-theoretic properties and matrix properties
in §10.9. In §10.10 we present path matrices. In view of the close tie between
matrices and vector spaces, this chapter should be viewed as a continuation of
Chapter 9. We assume some basic knowledge of matrices and matrix algebra.
Any course in elementary linear algebra should suffice as a prerequisite. Through-
out an m x n matrix X = [z;;] denotes the matrix with m rows and n columns,
where z;; is the entry in row ¢ and column j.

10.2 Adjacency Matrix

The adjacency matrix is probably the most frequently used matrix representation
of a graph. It is always a square matrix and can therefore be manipulated in many
more ways than nonsquare matrices.

Definition 10.1
Let G = (V,E, ) be a graph on n vertices that are labeled by V(G) =
{vi,...,vn}. Foreachi,j € {1,...,n} define the entry a;; by

a;j = |{e € E(G) : d(e) = {vi, v;}}.

That is, a;; Is the number of edges connecting v; and v;. The adjacency matrix
of G with respect to the labeling of V(G is defined as the n x n matrix

A(G) = laijlijeqr,..ny-

We look at a simple example to make the definition clear.

Example 10.2
Consider the simple graph GG shown in Figure 10.1. Assume the vertices are la-
beled V(G) = {vy, vo, v3,v4, v5,06}. The corresponding adjacency matrix A(G)
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Figure 10.1: A simple graph G on six vertices has a 6 X 6 adjacency matrix.

is

010011
100110
000100

MG =10 11011
110100

(10010 0]

0 Remark 10.3
> We note that for any graph G and any listing of its vertices, the adjacency
matrix A(G) is a symmetric matrix. That is, a;; equals a;; for all i and
j. Equivalently, the matrix is equal to its transpose A(G)' equals A(G).
Moreover, any symmetric n X n matrix A with a;; a nonnegative integer
is an adjacency matrix for some graph G on n vertices.

> If G is a simple graph as in Example 10.2, then A(G) is a symmetric binary
matrix. That is, a;; € {0,1} for all i and j. In addition, a;; equals zero
for each @ since G has no loops.

> The number of edges in G is the sum of all of the entries a;; where i is
greater than or equal to j. Since A(G) is symmetric, the number of edges
in G is also the sum of all a;; where i is less than or equal to j. So, we

have
E@)] =) a; =) a;.

i>] i<j



292 Matrix Representations of Graphs

> For each i the degree d¢(v;) is the sum of all entries in row (or column)
number i in A(G), where we count the entry a;; on the diagonal twice.

That is,
de(v;) = Zail +ay; = Zau + a;;.
=1 =1

The notation A(G) for the adjacency matrix of G' with respect to a given
labeling V(G) = {v1,...,v,} of the vertices suggests that the matrix only
depends on the graph itself. This is not quite true since we need a fixed labeling
of the vertices. Suppose we have another labeling V(G) = {v{,..., v}, where
v; = v, for some fixed permutation

o:{1,...,n} —={1,...,n}.

If A(G)" = la};]ijequ...ny is the adjacency matrix with respect to this labeling,
then clearly

;= Ao(i)o(j)- (10.1)

Let 5(7) denote the column vector with a one in row o(7) and zero everywhere
else. We can define the square permutation matrix

Py =1[o(1) |---[&(n)].

Here the vertical bars are used to separate columns. This matrix is orthogonal,
its inverse is given by its transpose, P, ! equals P’. Moreover, if o and p are two
permutations on {1,...,n}, then we have

PsP, = Psp,

where op denotes the usual composition of permutations (see Exercise 1). By
Equation (10.1) we have

A(G) = PLA(G)P, = P,'A(G)P,.

Definition 10.4
We say that two n x n matrices X and Y are orthogonally equivalent if there is
a permutation matrix P such that Y = P~ 'XP.

The proof of the following observation is left as Exercise 2.
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Observation 10.5
Orthogonal equivalence among n X n matrices is an equivalence relation.

Two graphs G and G’ being isomorphic means in particular that we have
a bijective vertex map f; : V(G) — V(G') so there are equally many edges
between u and v in G as there are between fi(u) and fi(u') in G'. If now

V(G) =A{uy,...,u,}
and
V(G ={uy,...,u}

then there must be a permutation o such that fi(u;) = uj; for each i €
{1,...,n}. Hence, we have the following.

Observation 10.6
The following statements are equivalent:

> The graphs G and G’ are isomorphic.

> The adjacency matrices A(G) and A(G") are orthogonally equivalent with
respect to any labeling of their vertices.

We present an example to illustrate how various matrix manipulations relate
to graph-theoretic properties.

Example 10.7
Consider the simple graph G with its labeling as given in Example 10.2. By
squaring the adjacency matrix A(G), we get the symmetric matrix

310310
131122

, o1 1011
MG =13 10410
121132
(02102 2

We now interpret the entries of this resulting square matrix. For each i and j

denote by ag.) the entry in row i and column j in A(G)?. In general, ag?) denotes



294

Matrix Representations of Graphs

the entry in row i and column j in A(G)*. By the rules of matrix multiplication,

we have
n

2) _ —
a;;° = g QjiQj = Q31015 + Q2025 + * -+ Qinlnj-

=1
We observe that a; a;; equals one only if v; is connected to v; and v, is connected
(2)

i counts the number of

to v; in G. Otherwise, a;a,; equals zero. Therefore, a;
walks of length two between v; and v; in G.

Similarly, we can consider the third power A(G)? of the adjacency matrix of
G.

2 73276
741 8 5 2
310410
3 _
AlG)” = 2 84 287
7518 4 2
| 6 2 07 2 0 |
For any square matrix X, we have X> = X - X2, Hence, in particular for A(G),

we have
n

ald) = Z a,»lag) = aﬂag-) + aiza%) R o aina%).

=1
We note that a; equals one if and only if the vertex v; is a neighbor of v;.
Otherwise, it is zero. For each neighbor v, of v; the entry a,?j) in A(G) counts
the number of walks of length two between v, and v;. So, ag-’)
of walks from v; to v; of length three.

For example, ag) = a?l) = 7, indicating seven possible walks between v, and

vs in G. Namely,

counts the number

wy = (U1,€1,V2,€1,01,€2,V5),

Wy = (U1,€2,Us5,€2,V1,€2, Vs

Y

w3 = V1, €, Vs, €6, V1, €2, Us

Y

ws = (U1, €6,VUp, €7, V4, €5, Vs

Y

wg = (v1,e2,Us,€5,V4,€5,05), and

( )
( vs)
( vs)
wy = (v, e,0s,€3, s, €3,U5),
( vs)
( vs)
( )-

wr = U1, €1, V2, €4, U4, €5, Vs
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Generalizing Example 10.7 we obtain the following theorem.

Theorem 10.8
Let G be a simple graph with vertex labeling V(G) = {u1,...,u,}. Let k be a

natural number greater than zero. The entry alk)

i; Is the number of distinct walks
from u; to u; of length k in G.

PROOF: The theorem follows easily by induction on k using the same method
as in Example 10.7 (see Exercise 6). O

A couple of corollaries follow from Theorem 10.8. Their proofs are left as
Exercises 7 and 8, respectively.

Corollary 10.9
Let G' be a connected graph with vertex labeling V(G) = {uy,...,u,}. The
distance between two distinct vertices u; and u; is the smallest natural number

k for which the entry az(-;c) in A(G)* is nonzero.

Corollary 10.10
Let G' be a graph on n vertices. Let

Y =A(G) +AG)? +AG)? + -+ A(G)" L.

Then G is connected if and only if all entries of Y are nonzero.

10.3 Incidence Matrix

In this section we consider another important matrix representation of a given
graph G, the incidence matrix of GG. Unlike the adjacency matrix, the incidence
matrix is not a square matrix in most cases. In addition to a labeling of the
vertices, the incidence matrix also needs a labeling of the edges of G. Strictly
speaking, the incidence matrix contains more information than the adjacency
matrix since it distinguishes between multiple edges between two given vertices.
The adjacency matrix does not.

Definition 10.11
Let G = (V,E, ¢) be a graph with vertex labeling V(G) = {uy,...,u,} and
edge labeling E(G) = {e1,...,en}. Foreachi € {1,...,n}andj € {1,...,m}
define bij by

bij = {ui} N pley)].
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€1

U
[

2

U3

€3

U1 €4 Ux

Figure 10.2: A graph G on six vertices and eight edges has a 6 x 8 incidence
matrix.

That is, bj; equals one if u; is an end vertex of e; and zero otherwise. The
incidence matrix of G with respect to these labelings of V(G) and E(G) is
defined as the n X m binary matrix

B(G) = [bijlicq1,..n}je{1,..m}-

We present an example to make the definition clear.

Example 10.12

Consider the graph G shown in Figure 10.2. Assume the vertices are labeled
V(G) = {v1,...,v6} and the edges E(G) = {ei,...,es}. According to this
labeling, we have that the incidence matrix is given by

00010100
00001111
00000001

B@=111101000
00110010

(1100000 0|

O Remark 10.13

> Each column has either one or two 1’s. Column j has exactly two 1's if
the edge e; has two distinct endvertices, and one 1 if e; is a loop.

> The number of 1's in row i, where the 1’s corresponding to a loop are
counted twice, is equal to dg(u;). In particular, if G has no loops, the
number of 1's in row i is precisely d¢(u;).
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> On the other hand, any n x m binary matrix such that each column has
one or two 1's is an incidence matrix for a graph on n vertices and m
edges.

As with the adjacency matrix, the incidence matrix B(G) depends on the
labelings of the vertices and the edges. Hence, two incidence matrices for a
given graph G only differ by a permutation of the rows and columns. To be
precise, let G and G’ be graphs, where

= {uy,...,u,},
= {e1,...,em},
= {u},...,u,}, and
= {el,...,e. }.

Assume f = (f1, f2) : G — G' is an isomorphism with

fl (ul) = Uo_(i), and

where o and p are some permutationson {1,...,n}and {1,...,m}, respectively.
Suppose P, and P, are the corresponding n x n and m X m permutation matrices
of o and p, respectively. The incidence matrices satisfy

B(G') = PLB(G)P,.

We summarize in the following observation.

Observation 10.14
Two graphs G and G’ on n vertices and m edges are isomorphic if and only if
there are n x n and m x m permutation matrices P and Q, respectively such
that

B(G') = P'B(G)Q.

As for adjacency matrices, this defines an equivalence relation among n x m
matrices (see Exercise 11).

Recall that the row space and the column space of an n X m matrix over any
field have the same dimension over the given field [17, Theorem 24, page 114].
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In particular, if we view the incidence matrix as a matrix of the Galois field Z,,
the row space and the column space of B(G) have the same dimension over Zo.
This dimension is called the rank of the matrix. We leave it as Exercise 12 to
show that if X and X’ are two n X m matrices such that X' = P!XQ, then they
have the same rank. Therefore, the following definition is sensible.

Definition 10.15
The rank of a graph G, denoted by rank(G), is the rank of its incidence matrix
B(G) with respect to any labeling of V(G) and E(G).

With this in mind, we can compute the rank of any connected graph G that
has no loops.

Theorem 10.16
If G is a connected graph on n vertices without loops, then rank(G) equals n—1.

PROOF: Since GG has no loops, there are exactly two 1's in each column of
B(G). Therefore, the sum of all row vectors of B(G) is the zero vector in Z7',
provided that GG has m edges. Hence, the dimension of the row space is n — 1
or less. Therefore,

rank(G) <n — 1.

Assume we have n, less than n — 1 rows that add up to the zero vector in Zj".
The other ny = n — ny rows must also add up to the zero vector in Z3" since
together they all add up to the zero vector. In this case we can permute the
vertices of GG in such a way that we first list the n; vertices that correspond to
the rows adding up to the zero vector in Z:', and then the remaining ny ones
that also add up to the zero vector. Since each column has exactly two 1's, each
pair of 1's must either both be among the first n; entries of that column, or in
the last n, ones. This means there is a permutation of the columns such that
the first m; columns contain all the pairs of 1's among the first n; rows, and the
last my = m — m;y columns contain all the pairs of 1's among the last ny rows.
This means that the incidence matrix of G with respect to the corresponding
labelings of V' (G) and E(G) has the form

50 = | *0 5@y |

where each B(G) is the incidence matrix for the subgraph of G induced by
the first n; vertices, and B((G3) is the incidence matrix induced by the last ng
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vertices of G. Since B(G) has this form, G = G; U G5 must be disconnected
(see Exercise 10). This contradicts our assumption. Since we are working in the
Galois field Zs, we can conclude the only equation that the row vectors satisfy
is that their sum is the zero vector in Z7'. Hence, the rank of B(G) is at least
n — 1. This completes the proof of the theorem. O

As a corollary, we get the following (see Exercise 13).

Corollary 10.17
A graph G on n vertices that has k components has rank(G) = n — k.

If we remove any one row from the incidence matrix of a connected graph,
the remaining n — 1 by m submatrix is by Theorem 10.16 of rank n — 1. In other
words, the remaining n — 1 row vectors sum up to the removed row. Thus we
need only n — 1 rows of an incidence matrix to specify the corresponding graph
completely, for n — 1 rows contain the same amount of information as the entire
matrix.

Definition 10.18

Any (n — 1) x m submatrix B;(G) of an n x m incidence matrix B(G) of a
connected graph G with no loops is called a reduced incidence matrix of the
graph G. The vertex corresponding to the deleted row of B(G) is called the
reference vertex with respect to this reduced incidence matrix.

[0 Remark 10.19
> Clearly, any vertex of a connected graph can be made the reference vertex.

> Since a tree is a connected loopless graph on n vertices and n — 1 edges,
its reduced incidence matrix is a square matrix of size and rank n — 1.

Recall that a square n x n matrix is nonsingular if it has rank n. Otherwise,
it is singular.

Corollary 10.20
A reduced incidence matrix of a loopless connected graph G' is nonsingular if and
only if G is a tree.

PrROOF: A graph with n vertices and n — 1 edges that is not a tree is
disconnected. The rank of the incidence matrix of such a graph is less than
n—1. Therefore, the (n—1) x (n— 1) reduced incidence matrix of such a graph
is singular. O
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Let det(M) denote the determinant of matrix M. Let G’ be a subgraph of
a graph G, where G has n vertices and m edges. Let B(G') and B(G) be their
incidence matrices, respectively. By permuting rows and columns, B(G') is a
submatrix of B(G). There is a one-to-one correspondence between each n x k
submatrix of the n x m incidence matrix B(G) and each subgraph of G having
k edges. Submatrices of B(G) corresponding to special types of subgraphs such
as cycles, spanning trees, or edge cuts in G exhibit special properties as the
following theorem shows.

Theorem 10.21

Let G be a connected loopless graph on n vertices and m edges. Let B(G) be its
nxm incidence matrix. An (n—1) x (n—1) submatrix B' of B(G) is nonsingular
if and only if the n — 1 edges corresponding to the n — 1 columns of this matrix
constitute a spanning tree of G. In this case we also have that det(B') = +1.
This also holds for the matrix B_,(G) where we have arbitrarily replaced one of
the 1's in each column of B(G) by a —1.

PROOF: Every square submatrix of size n — 1 in B(G) is the reduced inci-
dence matrix of the same subgraph in G with n — 1 edges, and vice versa. By
Corollary 10.20 an (n — 1) x (n — 1) square submatrix B’ of B(G) is nonsingular
if and only if the corresponding subgraph is a tree. The tree in this case is a
spanning tree because it contains n—1 edges of the graph G on n vertices. Since
every tree has a leaf, there is a row in B’ with exactly one 1 in it. Using induction
on n and expanding the determinant along that row completes the proof. O

10.4 The Matrix-Tree Theorem

In this section we present an important interpretation of the adjacency matrix of
a simple graph GG on n vertices. We assume that GG has m edges unless otherwise
stated.

As mentioned in the previous section, when a graph G has no loops, each
row of the incidence matrix B(G) has precisely two 1's. If in addition G has no
multiple edges then the adjacency matrix A(G) is also a binary matrix. Hence,
given a simple graph it is natural to ask about the relationship between the
incidence matrix and the adjacency matrix. We begin with some definitions.
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Definition 10.22

Let G be a graph and V(G) = {uy,...,u,} be a labeling of its vertex set. The
diagonal matrix D(G), where the i-th diagonal entry is the degree of u; is called
the degree matrix of G with respect to the labeling V (G).

Viewing B_;(G) from Theorem 10.21 as a row matrix
b

by

B.(G)=| .

)

N,

n

we see that the entry in row i and column j in the nxn matrix B_; (G)-B_;(G)" is
given by the dot product Bi-gj. In particular, we have that the i-th diagonal entry
equals d¢(u;) for each vertex u; of G. Also, if i does not equal j, then Bi-gj equals
zero if the vertices u; and u; are not connected. However, b;-b; = 1-(—1) = —1
if they are connected. From this we have the following relation between the
adjacency matrix A(G) and the incidence matrix B(G) of G.

Observation 10.23
For a simple graph G we have that

A(G) +B_i(G) - B_(G)" = D(G).

The matrix D(G) — A(G) from Observation 10.23 has some additional inter-
esting properties. We need the Binet-Cauchy Theorem to prove some of these
results. This theorem is usually not covered in the standard curriculum of linear
algebra so we record it here.

Theorem 10.24 (Binet-Cauchy)

Let m and n be nonnegative integers, where m is greater than or equal ton. Let
X be n x m matrix and Y an m X n matrix, where their entries are elements of
a given ring. Foreach S = {iy,...,i,} C{1,...,m}, let Xg (Ys) be then xn
square matrix obtained by choosing the columns (respectively, rows) number i,
through i,, from X (respectively, Y). In this case we have

det(XY) = > det(Xs)det(Ys),

where the sum is taken over all the (') subsets S of {1,...,m} that contain
precisely n elements.
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Before proving this theorem, we illustrate it with an example.

0 Example 10.25

Let
1 -1
xz{;1 j’ _g} andY=1| -2 0
3 -2

In this case n equals two, m equals three, and () equals three. So, we have
that det(XY) is the following sum:

det(XY) = det { 4 -3 ] . det { _1 1 ]

2 —1 2 -0
4 =2 1 -1
vaa [ 2] e [2 1]
-3 =2 -2 0
v [ 2 2] [ 2 0]
= 2-(-2)+4-1+(-2)-4
= 8.
Note that XY is
4 0
4 =2
and
4 0
det[4 _2] = 8.

To prove the Binet-Cauchy Theorem, we present the following technical
lemma. It can be viewed as a generalization of the Binet-Cauchy Theorem.
The statement of the result allows for a short proof.

Lemma 10.26

Let X and Y be n x m and m x n matrices, respectively. Let T C {1,...,m}
and let P be the m x m diagonal matrix whose i-th diagonal entry is equal to
one if and only ifi € T. Let M be the (m + n) x (m + n) matrix defined by

| Pr Y
=% 0



10.4 The Matrix-Tree Theorem 303

Let T" = {1,...,m} \T. If|T| is less than m — n, then det(M) equals zero.
Otherwise, using the notation from Theorem 10.24, we have that

det(M)= Y det(Xs)det(Ys),

T'CSC{1,...,m}

(o i)

subsets S that contain T' and have exactly n elements.

where the sum is taken over all

ProOOF: Clearly, if |T| is less than m — n, then the rows (or columns)
corresponding to 7" are linearly dependent and hence the determinant is zero.

Otherwise, we expand the determinant of M by any row (or column) numbered
1 € T and we get

_ Pr. Yi Py Y
det(M)—det[ X, 0 }eret[ X 0},

Here the first matrix is an (m +n — 1) x (m + n — 1) one, where P is the
(m—1) x (m—1) matrix obtained from Pz by removing row and column i, and X;
(Y;) is obtained from X (respectively, Y) by removing column (respectively row)
i from X (respectively, Y). Likewise, the second matrix is the (m +n) x (m+n)
one, where PY. is obtained from P7 by changing the i-th diagonal entry from one
to zero. The lemma now follows by induction on m +n + |T|. O

Using Lemma 10.26, we can now prove Theorem 10.24.

PROOF:(Theorem 10.24) We note that

ol el

where |, is the a X « identity matrix. From this we get that

—l Y| 1, Y
det[ X 0]—det[ 0 XY}’

and hence

det(XY) = — det { _)'(m g } : (10.2)
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Applying Lemma 10.26 on the right hand side of Equation (10.2) completes the
proof. O

At this point we can present the Matrix-Tree Theorem that describes an
important property of the n x n matrix D(G)) — A(G) for any simple graph G on
n vertices.

Let M be an n.xn matrix. Let B be the matrix obtained from M by omitting
the i-th row and j-th column. The cofactor of element a;; of M is equal to

(—1)i*7 det(B).

Theorem 10.27 (Matrix-Tree)
If G is a simple graph, then all of the cofactors of the matrix D(G) — A(G) are
equal to 7(G), the number of spanning trees of G.

PRrROOF: By Observation 10.23 we have that

From this we note that the (7,7)-th cofactor of D(G) — A(G) is obtained by the
matrix product B_1,;(G) - B_1,;(G)", where B_1,;(G) is obtained from B_;(G)
by removing the i-th row. By the Binet-Cauchy Theorem 10.24 det(B_,,(G) -
B_1.i(G)") equals the sum of all summands B’ - B", where B’ is a nonsingular
(n —1) x (n — 1) submatrix of B_{(G). By Theorem 10.21 there are precisely
7(G) such summands and each summand is equal to (+1)? = 1. We therefore
have that each (i,4)-th cofactor of D(G) — A(G) equals to 7(G).

To show every (i, j)-th cofactor is equal to 7(G), we first note that the sum
of all the rows in X = D(G) — A(G) is the zero vector. Consider now the
submatrices X;; and X;; we obtain from X by removing row ¢ and column j,
and row j and column j, respectively. The corresponding cofactors are

C;; = (=1)"7 det(X; ;) and
Cjj = (=1 det(X;;) = det(X; ;).

Recall that a determinant remains unaltered when we add a multiple of one row
to a given row. Hence, adding rows 1,...,2—1,7i+1,...,n to the i-th row in
X;; will not change Cj ;. Since the rows in X sum up to zero, the i-th row in
X; ;. after this alteration, equals minus the j-th row of X; ;. Finally moving this
altered i-th row to the j-th place, by means of |j — i| — 1 interchanges of rows,
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yields the matrix X, ;, where row 7 is multiplied by —1. Since each interchange
reverses the sign of the determinant, we finally have that

Ciy = (=1)H711(=Cy ) = Oy

This completes the proof of the theorem. O
We call the equation implied by Theorem 10.27 the Matrix- Tree Formula.

This gives us a second method to compute the number of spanning trees
in any simple graph. Recall, the first was given in Theorem 5.4. Moreover,
the Matrix-Tree Formula is mechanical and well suited when graphs have been
implemented as adjacency or incidence matrices for computer computations.

The following example gives us an alternative way to prove Cayley's Theo-
rem 5.7.

Example 10.28
For n greater than two we have for the complete graph K, on n vertices that

(n—-1 -1 -1 —1 ]
-1 n—-1 -1 —1
D(K,) — A(K,) = -1 -1 n-1 .-+ —1
—1 —1 —1 n—1

By the Matrix-Tree Theorem 10.27, we have that 7(K,,) equals to any cofactor of
the preceding matrix. Considering the (1,1) cofactor C' ; and then subtracting
the first row from all the remaining rows, we get that 7(K,) is given by the
following (n — 1) x (n — 1) determinant:

n—1 —1 —1

-1 n-1 —1
7(K,) = det _

—1 —1 n—1

(-1 —1 -1
—nNn

= det ) | )

: n-lp—2

| —nN




306

Matrix Representations of Graphs

where 1,5 denotes the (n — 2) x (n — 2) identity matrix. Adding columns

2,...,n — 1 to the first column, we finally get
1 -1 - -1
0 2
T(K,) =det | . =n""".
. n- In—2
0

This completes the proof of Cayley's Theorem.

10.5 An Application in Electrical Circuits

In this section we discuss an application for a given electrical network system,
where we need to find the total resistance between two points in the network
system. We do not assume any prior knowledge in electrical physics although
some knowledge is helpful to really appreciate what this section has to offer. We
give a “crash”-overview of the underlying physical knowledge needed to continue.

We consider networks of the type that are displayed in Figure 10.3. Our elec-
trical circuits are provided with a power supply having a given potential between
two nodes u and v that we denote by V,,,,, or simply V' when there is no danger of
ambiguity. We assume the electrical devices are connected to a power supply in
an arbitrary fashion with combined resistance R. In this case the total electrical
current I flowing from one node to the other is given by the formula

Vu v

I = .
R

Hence, if we can compute the total resistance R, we can calculate the total flow
I of electrical current.

The problem we are concerned with is to compute the total combined re-
sistance of the network in question. The two basic rules to calculate the total
resistance between two nodes u and v in a given network are as follows. If we
have electrical devices that are connected in a series as shown in Figure 10.4,
then the total resistance R; is given by the sum of all the resistors

Ri=R,+Ry+---+R,. (10.3)
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Figure 10.3: An electrical circuit with a given potential and a system of resistors,
shown as one combined resistor.

u Ry Ry Ry v u v
[ 1]

Figure 10.4: The resistors are connected in series.

v U Rp v
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Figure 10.5: The resistors are connected in parallel.

If however the resistors are connected in parallel as shown in Figure 10.5,
then the total resistance R, satisfies the formula

e (10.4)

Any introductory book on physics explains why Equations 10.3 and 10.4 hold.
There are many other physical phenomena that behave in a similar fashion, but for
simplicity’s sake we shall restrict ourselves to networks involving only a potential,
electrical current, and resistance.

The salient point to notice is that the total resistance of many resistor network
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Figure 10.6: A graph and the corresponding electrical network.

systems can be calculated by repeated use of the above two formulas. However,
there are countless other systems where they fail to be of any use without some
geometrical insight or physical tricks. The proof of the following theorem can be
found in [29, Proposition 2.3]. It can be used to compute the total resistance
in a completely mechanical way between two nodes u and v in many more cases
without any prior knowledge in physics.

Theorem 10.29

Let G' be a simple graph. Let u and v be two neighboring vertices of G. Assume
that each edge in G' corresponds to the resistance of one ohm (12). In this case
the total resistance of the network between u and v is given by

Tuw (G)
Ry = ——~
(N
where 7,,(G) denotes the number of spanning trees that include the edge {u,v}.

U Note 10.30
As seen from the proof of Theorem 5.4, the number 7(G - €) is precisely the
number of spanning trees of G' that contain the edge e. Hence from Theorem 5.4,
we can write R, as

R 7(G - {u,v}) _ 7(G - {u,v})
¢ m(G) (G - {u,v}) + 7(G \ {u,v})’

0 Example 10.31
Consider the graph G shown on the left in Figure 10.6 and the corresponding
electrical network, where each edge represents a resistance of one ohm.

Here we can easily compute the total resistance between u and v using the
classical Formulas (10.3) and (10.4). By these formulas the total resistance R,

satisfies
1 N 1
R, 1+1 1
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u u
v v
H
G

Figure 10.7: A graph G and a corresponding electrical network.

and hence we get R, = 2/3 ().
Since the vertices u and v are neighbors in GG, we get by Theorem 10.29 that

Tu(G) 2

= (G 3

in complete agreement with the classical formulas.

Theorem 10.29 gives the resistance between two points provided that the
corresponding vertices in the graph are neighbors. If the vertices u and v are not
neighbors, then we need in addition to Theorem 10.29, the Formula (10.4) as
the following example shows.

0 Example 10.32
Consider the graph G' shown on the left in Figure 10.7. The vertices u and v are
not neighbors. A direct application of the classical formulas will not be sufficient.

Adding the edge e = {u, v}, we obtain the graph G' and the corresponding
electrical network displayed on the right in Figure 10.7. Let G" be the graph
we obtain from G by collapsing u and v into one vertex. Now, if R, is the
total resistance of the network corresponding to G and R} is the total resistance
corresponding to G', we have by Formula (10.4) that

1 1 1

R-RCT
Since R, = 7,,(G")/T(G") by Theorem 10.29, we have by Theorem 5.4 that
Tun (G") Tw(G')  T(G")

=G (@) T @\ fwol) (G
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Figure 10.8: An a ohm resistor corresponds to a subdivided edge.

We observe that Theorem 10.29 reduces the tricky problem of determining the
total resistance between two given points of a large class of electrical networks
to that of computing the number of spanning trees of corresponding graphs.
The Matrix-Tree Theorem 10.27 reduces the problem of computing the number
of spanning trees of graphs to the problem of evaluating a determinants. Since
there are many efficient ways of evaluating determinants of square matrices, we
have a mechanical and efficient way of computing the total resistance of general
electrical networks, where each edge of the corresponding graphs represents one
ohm.

Now, what about general networks where the edges represent different re-
sistance? In this case there is a partial algorithmic solution. Suppose we have
an electrical network of resistors where each resistor can represent any a ohms,
where @ is a positive integer. Here looking at the corresponding graph for the
network, we replace each edge representing a ohms with a simple path of length
n (see Figure 10.8). By this subdivision we have that all edges represent a
resistance of one ohm.

Suppose now that we have an electrical network of resistors where each re-
sistor can represent any 1/b €, where b is a positive integer. Here looking at the
corresponding graph for the network, we replace each edge representing 1/b Q
with n copies of parallel edges (see Figure 10.9).

The same graph would be obtained by adding b — 1 parallel edges to the
one edge representing the 1/b ) resistor. By this procedure of generating a
multigraph from our original graph, we have that all edges in this multigraph
represent a resistance of one ohm.

We now combine these two methods. In a network of resistors, where each
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Figure 10.9: An 1/b 2 resistor corresponds to n parallel edges.
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Figure 10.10: An a/b ) resistor corresponds to a b parallel a paths.

resistor can represent any rational resistance a/b 2, replacing the corresponding
edge by b parallel a-paths (see Figure 10.10), using the previous procedure yields
a graph where each edge corresponds to one ohm. We conclude by the following
observation.

Observation 10.33
The total resistance of an electrical network of rational resistors can be computed
by applying the Matrix-Tree Theorem to the “altered” corresponding graph.

Note 10.34

The procedure described for computing the total resistance of a given electrical
network of resistors does not provide us with an exact solution if some resistors
have irrational resistance © ohms, where x € R\ Q. However, from a practical
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point of view, our method does provide a computational method for any real-
world network since every resistor is given by a floating number of finitely many
decimal (or binary) digits that does indeed represent a rational number.

10.6 Cycle Matrix

So far, we have discussed two matrices associated with a graph (, the adjacency
matrix A(G) and the incidence matrix B(G). In this section we consider yet
another matrix associated with a given graph, namely the cycle matrix of G.

Definition 10.35

Let G be a graph with m edges and q cycles, where the edges and cycles are
labeled as E(G) = {ey,...,en} and C(G) = {m,-..,7,} respectively. For
eachi € {l,...,m} and j € {1,...,q} define ¢;; by

cij = |E(7i) N {e;}.

That is, c;; equals one if cycle y; includes edge e; and is zero otherwise. The
cycle matrix of G with respect to the labelings of E(G) and C(G) is the ¢ x m
binary matrix

C(G) = [Cij]ie{l,...,q},je{l,...,m}-
The next example illustrates this definition.

Example 10.36
Consider the graph G' shown in Figure 10.2. It has four cycles

7 = {en, e},

Y2 = {es e er},

v3 = {es,eq, €7}, and
va = {es,eq, eq,€5}.

Therefore, the cycle matrix C(G) is given by

117000000
00101010
(@) = 00010110
00111100
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U Remark 10.37
> A column of zeros in a cycle matrix C(G) of a graph G corresponds to an
edge that does not belong to any cycle.

> Each row of C(G) is a vector representing a cycle.
> A row corresponding to a loop has a single one in it.

> The number of ones in a row is equal to the number of edges in the
corresponding cycle.

As with the incidence matrix B(G), the cycle matrix C(G) depends on the
labelings of the edges and the cycles. A permutation of rows or columns in a
cycle matrix simply corresponds to relabeling the cycles and edges. However,
unlike incidence matrices, two cycle matrices that differ by permutations of the
rows and columns, do not necessarily represent the same graph. They represent
graphs that are 2-isomorphic, a la Theorem 6.47. We summarize in the following
observation that is analogous to Observation 10.14.

Observation 10.38
Two graphs G and G' on m edges having q cycles are 2-isomorphic if and only
if there are ¢ x q and m x m permutation matrices P and Q, respectively such
that

C(G") = P'C(3)Q.

The next example illustrates Observation 10.38.

J Example 10.39
The two graphs GG and G" shown in Figure 6.13 have identical cycle matrices
since they are 2-isomorphic. However, the graph are not isomorphic.

Consider a separable (or disconnected) graph G with two blocks (or compo-
nents) G; and G,. Since each cycle of G must be either entirely in G or G,
we can label the edges and the cycles in such a way that the cycle matrix C(G)
can be written in block diagonal form

=5 @ |

where C((G) is the incidence matrix for the subgraph G of G and C(G3) is the
incidence matrix for G5. This can of course be generalized to more than two
blocks (or components).

(10.5)
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An important theorem relating the incidence matrix and the cycle matrix of
a graph is the following.

Theorem 10.40

Let G be a graph. For a given labeling of the vertices, edges, and cycles of G,
every row of C(G) is orthogonal to every row of B(G) over the Galois field of
Zso. That is to say, computing in Zs, we have that

B(G)C(G)! = C(G)B(G)" = 0.

PRrROOF: We first note that for a given vertex u; and a given cycle v; of G,
either u; is in y; or not.

If u; is not in 7;, then no edge incident to u; is contained in 7;. In this case
the dot product of row i of B(G) and row j of C(G) is zero in Z, and hence
also in Zs,.

If u; is in 7;, then there are exactly two edges in ; incident to u;. In this
case the dot product of row i of B(G) and row j of C(G) is exactly two in Z,
and hence zero in Zy. O

The next example illustrates Theorem 10.40.

Example 10.41
Consider the graph shown in Figure 10.2. Using the labelings of V(G), E(G),

and C(G) that were given in Examples 10.12 and 10.36, we get by computing in
the Galois field Z.» that

100 0
0001010071 |1000
00001111 010 1

. 00000001 0011

BECE = 11 1101000 010 1
00110010 0011
(1 1000000] |01 10

(0000
(000 0]
0000
_|looo0o
~ o000
0000
000 0
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10.7 Fundamental Cycle Matrix

As we saw in Chapters 4 and 5, any set of fundamental cycles with respect to any
spanning tree in a connected graph forms an independent set of cycles in a graph.
All other cycles can be formed by symmetric difference of the fundamental cycles.
In other words, each cycle vector is a linear combination of the cycle vectors of
the fundamental cycles over the Galois field Z,. Also, no fundamental cycle
vector is a linear combination of other fundamental cycle vectors. So, any set of
fundamental cycles form a set of basic cycles for the graph. Hence, in a cycle
matrix, if we retain only those rows that correspond to a set of basic cycles
and remove all other rows, we would not lose any information. The remaining
rows can be reconstituted from the rows corresponding to the set of fundamental
cycles.

Example 10.42

Consider again the graph G shown in Figure 10.2. As we saw in Example 10.36,
its cycle matrix C(G) has four rows each corresponding to one of its cycles. We
note however that the fourth row is the sum of the second and third row of
C(G). The reason is because v, = Y2 A 73.

Recall from Lemma 8.14 that all collections of basic cycles in a graph on n
vertices and m edges has precisely m —n+1 cycles. This motivates the following
definition.

Definition 10.43
Let G be a graph on n vertices and m. edges. Let C(G) be the cycle matrix of
G with respect to some labeling of the edges and cycles.

Any (m—n+1) xm submatrix of C(G), where the m—n+1 rows correspond
to a set of fundamental cycles with respect to a spanning tree of G is called a
fundamental cycle matrix of G' and is denoted by C(G).

The next example illustrates this definition.

Example 10.44

Consider the graph G shown in Figure 10.11 where a spanning tree is indicated
by thick edges. In this case, the fundamental cycle matrix of G with respect to
the spanning tree and the labeling

E(G) = {627 €3, €6, €1, €4, €5, 67}7



316 Matrix Representations of Graphs

€4
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€7
€5
€1
€6

Figure 10.11: A graph with the edges labeled and a spanning tree shown in thick
edges.

indicated in the figure, is given by

_ o O
— = =
— 1

1 0 0
=01

oo~
[ -

Note, in the matrix e5 corresponds to column one, e3 to column two, and so
on.

As for the other matrices associated with a graph G, any permutation of rows
and columns, corresponds to a relabeling of the cycles and edges, respectively.

For a graph GG on n vertices and m edges with a fixed spanning tree 7', we
can label the m edges e; and fundamental cycles ; in the following way:

1. The first m — n + 1 edges are the chords of GG with respect to 7.

2. For each i € {1,...,m —n + 1}, the chord ¢; is contained in the funda-

mental cycle ;.

This is indeed the case in Figure 10.11. In this way we see that the funda-
mental cycle matrix has the form

Cr(@) =l | G(@)]; (10.6)

where 1 = m —n+ 1 and Cy(G) is the m x (n — 1) matrix corresponding to
the remaining branches of the spanning tree 7. From Equation (10.6) it is clear
that the rank of C;(G) over Zy is g =m —n + 1.
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Since C;(G) is a submatrix of the cycle matrix C;(G), with same number of
columns but fewer rows, we have that the rank of C(G) is at least p = m—n+1.
Since every other row of C(G) is a linear combination of the rows of C;(G) over
Zs, we have the following fact.

Theorem 10.45
If a graph G has n vertices and m edges then

rank(C(G)) =m —n+ 1.

In fact, Theorem 10.45 is also a consequence of Corollary 9.55.

Note that in discussing spanning trees of a graph G it is necessary to assume
that G is connected. In the case of a disconnected graph, we would have to
consider a spanning forest and fundamental cycles with respect to this forest. By
considering each component, we have the following corollary.

Corollary 10.46
If G is a disconnected graph having k components, n vertices, and m edges,
then the rank of C;(G) ism —n+k.

We now consider an example to apply our cycle matrices to a problem in an
electrical switching network system. We assume the bare minimum knowledge
in electrical physics.

Example 10.47

Suppose you are given a black box that contains a switching network consisting
of eight switches A, B, C, D, E, F, G, and H. The switches can be turned on
or off from outside. You are asked to determine how the switches are connected
inside without opening the black box.

One way to find the answer is to connect a lamp at the available terminals
in series with a battery and an additional switch K, as shown in Figure 10.12,
and then find out which of the various combinations light up the lamp. Note we
need to have switch K on in every combination that turns on the lamp. In this
experiment, suppose the combinations that turn on the lamp are the following
eight:

{A,B,F,H,K}, {A,B,G K} {AEFGK} {AEHK}
{(B,C,E,H,K}, {C,F.H K}, {C,G,K}, and {D,K}.
(10.7)
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To find out how the switches are connected we proceed as follows: Consider
the switching network as a graph G whose edges represent switches. We can
assume that the graph is connected, and has no loops. Since a lit lamp implies
the formation of a cycle, we can regard the preceding list as a partial list of cycles
in the corresponding graph. We start by listing edges and the eight cycles from
List (10.7) by

E(G) = {A,B,C,D,E,F,G, H K} and
C(G) = {n,--- 5}

where the order of the cycles is given in List (10.7).

O O OO = ==
SO O OO K =
O = == O oo o
_ o O O O o oo
O OO = M=M= OO
SO R OO O
SO OO O == O
oo R PR R, OO
e e e e

Next, to simplify the matrix, we remove the obviously redundant cycles. Observe
that the following symmetric differences of cycles give rise to other cycles.

{A,B,G,K} A{C,F,H, K} A {C,G,K} = {A B,FHK?},
{A,B,G,K} A {AE,H K} A {C,G,K} = {B,C,E,H,K}, and
{A,E,H, K} A {C,F,H, K} A {C,G,K} = {AE FG K}

This corresponds to the fact that the first, third, and fifth rows from the matrix
C(G) are linear combinations of other rows in Zy. Hence, we can remove them
from C(G) without any loss of information. Remaining is a 5 x 9 matrix C,(G)
with its rows linearly independent over Zs. It is given by

110000101
100010011
CG(@={0010010T1°1
0010007101
0007100001
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Our next goal is to bring C,(G) to the form in Equation (10.6). In general, this
can be done by the Gauss-Jordan Method in linear algebra over Z, transforming
the matrix into reduced row-echelon form. Here we can first permute the columns

to get Co(G) given by

C2(G) =

SO o O
o O o= O
o O = OO
o= O O
_ o O O O

[>lesilell

O = = O O

S O = = O

—_ = =

Adding the fourth row in Co(G) to the first, we get C3(G) given by

C3(G) =

oo o O
o O o= O
o O = OO
o= O OO
_o O O O
[=elall o

1
0
1
1
0

0

1
1
0
0

— = e = O

= “5 | F]-

We note that there are no redundant cycles in matrix C3(G), and C3(G) is a
fundamental cycle matrix of the required graph. Assume GG has n vertices and
m edges. Since the rank of C3(G) is five and the network was assumed to be
connected, we have the following information about the graph:

m = 9,

m—n-+1 = 5, and

n—1 = 4.

Constructing a graph from its incidence matrix is simple, but constructing a graph
from its fundamental cycle matrix is difficult. We shall, therefore, construct an

incidence matrix from C3(G).

By Theorem 10.40 the rows of the incidence matrix B(G) are orthogonal to
the rows in the cycle matrix C(G). By Definition 10.15 and Theorem 10.16 the
rank of B(G) is here four. Hence, we must first look for a 9 x 4 matrix M,
whose rows are linearly independent and are orthogonal to those of C3(G).

Since C3(G) = [I5 | F|, a matrix orthogonal to C5(G) over Zy is given by

M = [—F" [ 1,] = [F* | 1].
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Figure 10.12: A black box with a switching network.
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H

Figure 10.13: The graph G obtained from the incidence matrix B(G).

Thus
110001000
M — 101100100
1011000010
01 1 1 10°O0°O0°1

The rank of M is clearly four and one can check that indeed C3(G)M = 0.
Recall that adding one row to another row will not change the orthogonality of
M to C3(G).

Before M can be regarded as a reduced incidence matrix, it must have at
most two ones in each column. This can be achieved by the operation of adding
one row to another. Note that when we have added row i to another row then
we cannot add row i to any other row since the identity matrix |, appears as a
submatrix of M. We can in this case add the third row to the fourth in M and
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Figure 10.14: The switching network system inside the black box from Exam-
ple 10.47 that corresponds to the graph G in Figure 10.13.

obtain

OO ==
O = O =
O = = O
—_— O = O
_ o O O
o O O =
o O = O
—_ == O
_ o O O

in which no column contains more than two ones. This matrix M’ is the reduced
incidence matrix. The actual incidence matrix B(G) of our graph G can be
obtained by adding a fifth row to M’ that is simply the sum of all the rows in
M’. In this way there are exactly two ones in every column, which makes it an
incidence matrix. We let

110001000
101100110
BG)=[0110000T10
000110001
000011101

From B(G) we have all of the information to construct our graph G and it
is shown in Figure 10.13. The corresponding switching network is shown in
Figure 10.14. From the raw information of what combination of switches turned
on the lamp, we were able to in a systematic way to determine the switching
network in the black box.
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10.8 Edge Cut Matrix

As we discussed in Chapter 6, cycles in a graph are closely related to edge cuts.

Definition 10.48

Let G be a graph with m edges and ¢ edge cuts where the edges and the edge
cuts are labeled as E(G) = {e1,...,en} and S(G) = {51, ..., S.}, respectively.
Foreachi e {1,...,m} and j € {1,...,c} define the s;; by

sij = |Si N {ej}

That is, s;; equals one if the edge cut S; includes the edge e; and is zero
otherwise. The edge cut matrix of GG with respect to the labelings of E(G) and
S(G) is the ¢ x m binary matrix

S(G) = I:Sij]ie{]‘?"',C},je{]‘,"',m}.

The next example illustrates Definition 10.48.

0 Example 10.49
Consider the graph G shown in Figure 10.15. It has eight edges and eight cutsets

E(G) = {61,...,68} and
S(G) = {Si,...,5).

Here each S; is given by the dotted lines in Figure 10.15. The edge cut matrix

is given by )
00 0O0O0OO0O 01
11000000
00101000
000O0T1T1T1O0
¢(G) = 00100110
00010100
00110010
10001101 0]

0J Remark 10.50
> A column corresponding to a loop has only zeros in it.
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Figure 10.15: A graph G and its edge cut matrix.

> Each row in S(G) is a vector corresponding to an edge cut.
> Parallel edges produce identical columns in the edge cut matrix .

> As with the incidence matrix and cycle matrix, the edge cut matrix S(QG)
depends on the labelings of the edges and the cycles. A permutation of
rows or columns in an edge cut matrix simply corresponds to relabeling the
cycles and edges.

> As for the cycle matrix, the edge cut matrix does not determine the graph.
We discuss this further later in this section.

By Theorem 6.6 every cycle has an even number of edges in common with
each edge cut. Hence, every row in the cycle matrix C(G) is orthogonal to each
row in the edge cut matrix S(G). Analogous to Theorem 10.40, we have the
following observation.

Observation 10.51
Let G be a graph. For a given labeling of the edges, cycles, and edge cuts of G,
computing in the Galois field Z, we have that

By Corollary 9.55 we get the following result.



324

Matrix Representations of Graphs

€1

€

2

U3

€3

U1 €4 Us

Figure 10.16: A spanning tree is shown by thick edges.

Theorem 10.52
For a graph G' on n vertices, the edge cut matrix and the incidence matrix have
the same rank:

rank(S(G)) = rank(B(G)) =n — 1.

By Theorem 10.52 we can remove all but n — 1 rows from the edge cut
matrix S(G) without losing information. Therefore, it is convenient to define a
fundamental edge cut matrix Sy(G) as follows.

Definition 10.53
Let G be a graph on n vertices and m edges. Let T' be a fixed spanning tree of
G.

A fundamental edge cut matrix S;(G) with respect to the tree T is the
the (n — 1) x m submatrix of S(G), where the rows correspond to the set of
fundamental edge cuts with respect to the tree T

Let I,,_; be the (n — 1) x (n — 1) identity matrix. By labeling the vertices
in such a way that the first m — n + 1 vertices are the chords of the spanning
tree T, the last n — 1 vertices are the branches {b,...,b,_1} of T, and the
fundamental edge cuts with respect to 7" are {Si,...,S,_1}, where each S; is
given by the branch b;, we can write the fundamental edge cut matrix in the form

SH(G) = [Se(G) | 1. (10.8)

The next example illustrates Definition 10.53.
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Example 10.54

Consider the graph G' shown in Figure 10.16 together with one of its spanning
trees 1" that is shown by thick edges. Here the labeling in Figure 10.16 satisfies
the conditions that yields the form of Equation (10.8). Hence, the fundamental
edge cut matrix S¢(G) is given by

10

5;(G) = = [Se(G) | 15].

O == OO
SO o O
o O o= O
o O = OO
o= O O O
_ o O O O

o O OO

1
0
1
0

Again note that in discussing edge cut matrices we have confined ourselves
to connected graphs only. This treatment can be generalized to include discon-
nected graphs by considering one component at a time.

10.9 Relationships Among Fundamental Matri-
ces

In this section we explore the relationships among the reduced incidence matrix
Bf(G), the fundamental cycle matrix C;(G), and the fundamental edge cut
matrix S;(G) of a connected graph with respect to a fixed spanning tree T of G.
We assume that GG has n vertices and m edges. Further, assume the labeling of
the edges is such that the chords appear among the first 4 = m — n + 1 edges
and the branches of 17" appear among the last n — 1 ones.

Partition B;(G) into two submatrices as follows:
Bs(G) = [B.(G) | Bo(G)], (10.9)

where By (G) consists of the n — 1 columns corresponding to the branches of T
and B,.(G) is the remaining submatrix corresponding to the i chords. Computing
in Zs, we have by Theorem 10.40 the following:

L1 t
Cy(G)! ] = B.(G) + B,(G)Cy(G)".

Thus we have By(G)Cy(G)" = B.(G). By Theorem 10.21 the matrix By(G) is
nonsingular and hence its inverse exists. Therefore, we have

Co(G)' = By(G) 'B.(G). (10.10)

0 =B(G)C4(G)" = [B.(G) | By(G)] {
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Similarly, by Observation 10.51 we have

0= S/(GICGY = [5.6) unt] | ¢ty | =516+ GG
and so by the same token, we have
S.(G) = Cy(G)" = By(G) 'B.(G). (10.11)

The next example makes these ideas concrete.

Example 10.55

Consider the graph that we used in Figures 10.2, 10.15, and 10.16. Assume that
the labelings of the vertices, edges, cycles, and edge cuts are as before in the
corresponding Examples 10.12, 10.49, and 10.54 with respect to the given span-
ning tree T'. Here we have that the reduced incidence matrix, the fundamental
cycle matrix, and the fundamental edge cut matrix are given by the following:

001[/00100
00001111

B/(G)=1{0 000000 1 |=[BAG)]|ByG),
11011000
(001100010 |
100|100 0 0]

C(@E=]010|01010]|=][]C()] and
0 0 00110 ]|
10010000
01001000

SHG) =100 110010 0|=[S(G)]ls.
011/000 10
00000001

Clearly, we have that

It is easy to verify that
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These observations lead to three conclusions:

1. Given B;(G) = [B.(G) | By(G)] with respect to a spanning tree 1" of G,
we can directly compute both C¢(G) and S;(G).

2. Given either C;(G) or Sy(G), we can compute the other. Thus, since
C;(G) determines a graph within 2-isomorphism, then so does S¢(G).

3. Given either C;(G) or S(G), the incidence matrix B;(G) cannot in general
be completely determined. This is since a 2-isomorphism between graphs
does not imply they are isomorphic.

10.10 Path Matrix

In the final section we discuss another binary matrix that in general does not
store as much information about the graph as does the incidence matrix, the
cycle matrix, and the edge cut matrix. Nonetheless, it is often used in certain
communication and transportation networks.

Definition 10.56
Let G be a graph and u,v € V(G) be two vertices. Assume the vertices and the
paths between u and v in G are labeled as E(G) = {ei,...,en} and P(u,v) =
{P,..., P}, respectively. For eachi € {1,...,m} and j € {1,..., a} define
pij by

pij = [P {ej}].

That is, p;j equals one if the path P; includes edge e; and is zero otherwise. The
path matrix of G with respect to the above labelings of E(G) and P(u,v) is the
a X m binary matrix

The next example illustrates Definition 10.56.
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0 Example 10.57
Consider the graph G' shown in Figure 10.2. There are three paths between v3
and vy. Label them as

P = {68765}7
P, = {es,er,e3}, and

PS — {68766764763}-

Here P(vs,vy) is @ 3 x 8 binary matrix given by

00001001
P(us,0)= | 0 0 1 0 0 0 1 1
001107101

[0 Remark 10.58
> A column containing only zeros corresponds to an edge that does not lie
on path between u and v.

> A column containing only ones corresponds to a cut-edge that lies on every
path between u and v.

> No rows contains only zeros.

> Note that the sum of two rows of P(u,v) corresponds to the symmetric
difference of two paths between u and v in G. Such a set of edges either
is a cycle or a disjoint union of cycles.

The proof of the following theorem, describing a relation between the inci-
dence matrix and the path matrix, is left as Exercise 40.

Theorem 10.59

If G is a connected graph with a labeling of its n vertices, m edges, and a paths
between two given vertices u,v € V(G), then the n x a matrix B(G)P(u, v)" has
ones in the two rows corresponding to the vertices u and v, and zeros everywhere
else.

The next example illustrates Theorem 10.59.
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Example 10.60
Consider the incidence matrix for the graph G shown in Figure 10.2. Let P(uv3,vy)
be the path matrix with respect to vertices vy and v,. In this case we have

00 0
000101007 |000
0000T1T1T11 01 1

. 00000O0GO0 1 001

B(G)P(us,va)” = 11 1 1 9100 0 100
001100710 001
(11000000 [0 10

111
[0 0 0]
00 0
11
111
00 0
(00 0

Other properties of the path matrix, such as the rank, are left for the reader to
investigate.

We have seen there are several matrices that can be associated with graphs.
Two of these, the incidence matrix and the adjacency matrix, describe a simple
graph completely up to isomorphism. Two others, the cycle matrix and the edge
cut matrix, display some important features of the graph and describe the graph
only within 2-isomorphism. The path matrix contains the least information of
these matrices. To look further into the structure of graphs, we investigated these
matrices, pulled out submatrices, and examined the reduced incidence matrix, the
fundamental cycle matrix, and the fundamental edge cut matrix with respect to
some spanning tree of a graph. The properties brought out in this chapter do
not, by any means, exhaust the list of possibilities. Many interesting and useful
results are contained in the exercises of this chapter.

10.11 Exercises

1. For two given permutations o and p on {1,...,n} show that the corre-
sponding permutation matrices satisfy P,P, = P,,. In particular, show



330

Matrix Representations of Graphs

© o N o

10.

that P,P,-1 = 1,,, the n x n identity matrix.
Use Exercise 1 to prove Observation 10.5.

Assume the graph G has two components G; and GG5. Show there is a
labeling of the vertices of GG such that the adjacency matrix of GG has the

form @)
A(G, 0
wo1= [ 45 ey |
where 0 denotes rectangular matrices with zero in every entry. Generalize
this result for G having an arbitrary number of components.

Let G be a simple graph. Show that the diagonal entry az(-z-z) in the square

A(G)? of the adjacency matrix of G with respect to the labeling
V(G) ={uy,...u,}

is given by ,
al?) = dg(u;).

1%

Does this hold for general graphs? What can we say when every two
distinct pairs of vertices have precisely k edges between them?

Show that each diagonal entry in X equals twice the number of triangles
passing through the corresponding vertex.

Complete the proof of Theorem 10.8.
Prove Corollary 10.9.
Prove Corollary 10.10.

Given the adjacency matrix A(G) of a graph G, how can you determine
the diameter of the corresponding graph? [Hint: Consider a sum of the
powers of A(G).]

Show that GG has two components GG; and G5 if and only if there is a
labeling of V' (G) and E(G) such that the incidence matrix of G has the

- 56 = | °0 5y )

Generalize this result for G with k£ components and discuss the sizes of the
blocks in B(G).
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Suppose P and Q are n x n and m x m permutation matrices, respectively.
Without using Observation 10.14 prove directly that X' = P'XQ defines
an equivalence relation among all n X m matrices.

Show that if P and () are permutation matrices, then the rank of X and
P!XQ is the same over any field.

Show that a disconnected graph on n vertices with k£ components has rank
of n — k.

Use the Matrix-Tree Formula to compute 7(K5,,) for any n greater than
zero. Can you find a combinatorial argument for your answer?

Use the Matrix-Tree Formula to compute 7(K3,,) for any n greater than
zero.

Use the Matrix-Tree Formula to compute 7(K,, ) for any m and n greater
than zero. The result should of course be symmetric in m and n.

Use the Matrix-Tree Formula to compute 7(K,, —¢) for any n greater than
one, where K,, — ¢ is a graph obtained from K,, by removing one edge.

Compute 7(W),,), where W, is the wheel on n+1 vertices. The wheel W,
is C', modified by adding one additional vertex that is adjacent to all of
the vertices in C,,. When inserted in the middle of C,,, a wheel “forms.”
[Hint: If you use the Matrix-Tree Theorem, choose your cofactor carefully.|

Prove that the number of spanning trees in a connected graph equals the
value of det(B;(G)By), where this determinant is evaluated in the ring of
integers Z and not in the Galois field Z,.

Compute the total resistance of the electrical network of resistors shown
in Figure 10.17, where all the resistors are one ohm except the vertical
resistor that is two ohm.

Compute the total resistance between u and v in the electrical network of
resistors corresponding to the graph of the cube ()3 shown in Figure 10.18,
where each edge represent one ohm. (On numerous occasions this problem
has been used as a brain teaser in college freshman physics classes. Without
the machinery we have developed, one must rely on insight in electrical
physics.)
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Figure 10.17: The four diagonal resistors are two ohms and the vertical resistor
is one ohm.

u

Figure 10.18: Each edge of the cube ()3 represents one ohm.

Figure 10.19: Horizontal resistors are one ohm; one diagonal resistor is two ohms;
the other is three ohms.

22. Compute the total resistance in the electrical network of resistors shown
in Figure 10.19, where all the resistors are one ohm except one diagonal
resistor is two ohms while the other diagonal resistor is three ohms.
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23.

24.

25.

26.

27.

28.

29.

Let GG be a graph with a labeling of its edges and cycles in such a way that
C(G) has a block diagonal form as in Equation (10.5). Is G necessarily
disconnected?

Recall that the null space of an n X n matrix A is the set of all vectors =
such that A(Z) = 0, the zero vector. The nullity of A is the dimension of
the null space and is denoted by null(A); it satisfies null(A) +rank(A) = n
(see [17]).

Use this to prove the following theorem due to Sylvester.

Theorem 10.61
If A isak xn matrix and B is an n X m matrix then

null(AB) < null(A) + null(B).

[Hint: Form a basis for the null space of B and extend that basis to a basis
for the null space of AB. Observe that the basis vectors you added are
linearly independent and are mapped to the zero vector by A.]

Use Theorem 10.61 together with Theorem 10.40 to prove directly that for
a graph G on n vertices and m edges we have rank(C(G)) < m —n + 1.

Let n be a positive integer. What are the adjacency matrix and the inci-
dence matrix for the null graph on n vertices? What about the complete
graph on n vertices?

Consider the graph shown in Figure 10.20. With respect to the spanning
tree {b,c,e, h, k}, write matrices B;(G), C;(G), and S;(G) in the forms
displayed in Example 10.55. Verify by actual computation Equations 10.10
and 10.11.

Show for a simple disconnected graph G' with & components, n vertices,
and m edges that the ranks of the matrices B¢(G), C;(G), and S¢(G) are
n—k, m—n+k, and n — k, respectively.

Label the edges of the graph G shown in Figure 6.10, then write down
its cycle matrix S(G). Write the cycle matrix in a block form as in Equa-
tion (10.5).
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30.

31.

32.

33.

34.

Figure 10.20: A graph with a spanning tree shown in bold.

Draw two nonisomorphic, connected, simple, and nonseparable graphs GGy
and G5 with as small a number of edges as you can such that the cycle
matrices S(G1) and S(G2) are equal. [Hint: G and G, are 2-isomorphic,
and must be 2-connected.]

A black box containing a switching network of seven switches labeled 1, 2,
3,4, 5, 6, and 7 was subjected to the experiment shown in Example 10.47.
The lamp was lit when each of the following combinations of switches was
turned on, in addition to the external switch K: {1,4,5,}, {1,4,6,7},
{2,5,7}, {2,6}, {3,5}, and {3,6,7}. Find the switching network config-
uration.

In Example 10.47 a graph was obtained corresponding to a given funda-
mental cycle matrix. Similarly, sketch a procedure for obtaining a graph if
its fundamental edge cut matrix S;(G) is given. Can you get two different
(nonisomorphic) graphs for the same S;(G)? If yes, how are these different
graphs related?

For a graph G let S(u, v) be the submatrix of S(G) containing only those
rows of S(G) that represent edge cuts with respect to vertices u and v.
Show that S(u, v) contains a fundamental edge cut matrix S;(G) of G.

Show that you can determine a graph within 2-isomorphism if you were
given the set of all its spanning trees. [Hint: Theorem 6.5 relates spanning
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35.

36.

37.

38.

39.

40.

41.

42.

43.

44

trees and edge cuts. The set of all edge cuts determines a graph within
2-isomorphism.]

If the following is the list of all spanning trees of a graph GG, determine G.

{a7 C7 d7 6}7 {al, C7 d7 f}7 {b7 C7 d7 6}7 {b7 C7 d7 f}7
{a7 C7 67 f}7 {b7 C’ 67 f}’ {a7 d’ 67 f}’ {b7 d’ 67 f}’
{a,b,d,e}, {a,b,d,f}, and {a,b,e, f}.

Express the relationship of dualism between two planar, simple graphs in
terms of appropriate matrices.

Characterize simple, self-dual graphs in terms of their cycle and edge cut
matrices.

Prove the following equalities:

Ci(G) = [l | Be(G)'(By(G)™")"] and
S;(G) = By(G)™'B(G).

Write down the path matrix P (v, vg) for the graph shown in Figure 6.3.
Verify the remarks given right after Example 10.57 and Theorem 10.59.

Prove Theorem 10.59.

Find the adjacency matrix, reduced incidence matrix, fundamental cycle
matrix, and edge cut matrix for the complete bipartite graph K,,,, with
respect to a suitable spanning tree.

Label the edges of the graph GG shown in Figure 6.10 and write its adjacency
matrix A(G). How does the fact that the graph is separable reflect in A(G)?
Characterize the adjacency matrix of a separable graph GG in general.

Similar to the cycle or edge cut matrix, define a spanning-tree matrix for
a connected graph and one of its spanning trees. Observe some of the
properties of this matrix.

Let w and v be a pair of vertices in a simple nonseparable graph G, and
let P(u, v) be the corresponding path matrix of G'. Prove that every cycle
in G is obtained as a sum of two rows of P(u,v) over the Galois field Zs.
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45.

From this result, prove that a path matrix in a simple nonseparable graph
determines the graph within 2-isomorphism. [Hint: Every cycle v in G falls
in one of three categories: (1) v passes through both u and v; (2) v passes
through neither u nor v; or (3) « passes through either u or v. Consider
all three cases, and use Theorem 6.36.]

Prove that for a connected graph G without loops, the subspaces W (Cg)
and W (S;) are orthogonal complements of W (G) over the Galois field Z
if and only if the number of spanning trees in G is odd. [Hint: If G has m
edges, define a new m x m matrix

o= |

Compute det(M(G)M(G)") by using the identity
S/ (G)CH(G)! = C/(@)S;(G) =0
and the Binet-Cauchy Theorem. Show that
det(M(G)M(G)') = 1

in the Galois field Z, if and only if G has an odd number of spanning trees.]





