Some Special Properties of
Graphs

Chapter Goals

Define and study Eulerian Define and study Hamiltonian
graphs. paths and cycles.

Examine several important oper- Take a look at the well-known
ations on graphs. traveling salesman problem.

Study bipartite graphs.

3.1 Introduction

We have seen a number of the basic concepts in graph theory. In this chapter we
look at some special properties of graphs. In §3.2 we define and study Eulerian
graphs. The techniques involved here were used to solve one of the first problems
in graph theory. Next we examine several important operations on graphs in §3.3.
An important class of graphs called bipartite graphs is introduced in §3.4. We
revisit Eulerian graphs and some of their properties in §3.5. In §3.6 and §3.7 we
look at Hamiltonian paths and cycles. Then in §3.8 we present one of the most
famous problems in graph theory, the traveling salesman problem.

66

Some Special Properties of Graphs

3.2 Eulerian Graphs

As mentioned in Chapter 1, graph theory was born in 1736 with Euler's famous
paper in which he solved the Konigsberg bridge problem (Problem 1.1). In the
same paper Euler posed and solved a more general problem: For what type
of graph G is it possible to find a closed walk running through every edge of
GG exactly once? Such a walk is now called an Eulerian circuit. A graph that
consists of an Eulerian circuit is called an Eulerian graph. More formally, we have
the following definition.

Definition 3.1
Let G be a graph. If some closed walk in G contains every edge in E(G), then
the walk is an Eulerian circuit and the graph G is an Eulerian graph.

By definition a walk is always connected. Since an Eulerian circuit (which
is a walk) contains all of the edges of a graph, an Eulerian graph is always
connected except for any isolated vertices. Because isolated vertices do not
contribute anything to the understanding of an Eulerian graph, we will assume
that Eulerian graphs do not have isolated vertices and are connected.

Now we state and prove an important theorem that will enable us to tell
immediately whether or not a given graph is an Eulerian graph.

Theorem 3.2
A connected graph G' is an Eulerian graph if and only if the degree of every vertex
in G is even.

PROOF: Suppose G is an Eulerian graph. Then it contains an Eulerian circuit
(which is a closed walk). In tracing this walk we observe that for each vertex
v, the walk contains a pair of edges incident with v—one we “entered” v with
and the other we “exited” v with. This is true of all intermediate vertices of the
walk. It is also true of the terminal vertex because we “exited” and “entered” the
terminal vertex at the beginning and end of the walk. Thus if G is an Eulerian
graph, the degree of every vertex is even.

To prove the sufficiency of the condition, assume that all of the vertices of
G are of even degree. Construct a walk h starting at an arbitrary vertex v and
going through the edges of G such that no edge is traced more than once. We
continue tracing from v as long as possible. Because every vertex is of even
degree, we can exit from every vertex we enter; the tracing cannot stop at any

3.2 Eulerian Graphs

67

B

Figure 3.1: Graph of Konigsberg bridge problem.

vertex but v. Since v is also of even degree, we shall eventually reach v when
the tracing comes to an end. If this closed walk A includes all the edges of G, it
follows that GG is an Eulerian graph. If not, we remove from G all of the edges
in h and obtain a subgraph G’ of GG formed by the remaining edges. Since the
degree of each vertex in G and h is even, the degree of each vertex in G’ is
also even. Moreover, G’ must touch h at least at one vertex u, because G is
connected. Starting from u, we can again construct a new walk in graph G'.
Since all of the vertices of G’ are of even degree, this walk in G’ must terminate
at vertex u. Notice that this walk in G’ can be combined with A to form a new
walk, which starts and ends at vertex v and has more edges than h. This process
can be repeated until we obtain a closed walk that traverses all of the edges of
G. Thus G is an Eulerian graph. O

Looking at the graph of the Konigsberg bridge problem shown in Figure 3.1,
we find that not all of its vertices are of even degree. Hence, it is not an Eulerian
graph. Thus it is not possible to walk over each of the seven bridges exactly once
and return to the starting point. Notice that in solving the Konigsberg bridge
problem Euler proved a much more general result than necessary. In graph theory
it often happens that proving something more general is easier than proving the
bare minimum.

Eulerian circuits often occur in various puzzles. The common theme of these
puzzles is to draw a given picture in one continuous line without retracing and
without lifting the pencil from the paper. Two such pictures are shown in Fig-
ure 3.2. The drawing in Figure 3.2(a) is called Mohammed'’s scimitars and is
believed to have come from the Arabs. The drawing in Figure 3.2(b) is the star
of David. It is a good exercise to trace these Eulerian graphs.

68 Some Special Properties of Graphs

=R

(a) (b)

Figure 3.2: Two Eulerian graphs.

In defining an Eulerian circuit some authors drop the requirement that the
walk be closed. For example, the walk (vy, vs, v4, V1, V2, V4, U5, V) in Figure 3.3,
includes each edge of the graph and does not retrace any edge, but is not closed.
The initial vertex is vy and the final vertex is vy. This type of walk is described
in the following definition.

Definition 3.3

For a graph G, a trail that includes (traces or covers) all edges of G without

retracing any edge is an Eulerian trail. A graph that has an Eulerian trail is called
a unicursal graph.

U1

V2

U3 vs

(2

Figure 3.3: Unicursal graph.

3.3 Operations on Graphs

69

Clearly, adding an edge between the initial and final vertices of an Eulerian
trail produces an Eulerian circuit. Thus a connected graph is unicursal if and
only if it has exactly two vertices of odd degree. This observation is generalized
in the following theorem.

Theorem 3.4
Let k be a natural number. If G is a connected graph with 2k vertices of odd
degree, then there exist k edge-disjoint subgraphs such that

1. together they contain all of the edges of G and

2. each subgraph is a unicursal graph.

PROOF: Let the odd vertices of G be vy,...,vg; wy,...,wg in arbitrary
order. We add the following k edges to G {vy,w;}, ..., {vg, wi} to form a new
graph G’. Since every vertex of G’ is of even degree, G’ consists of an Eulerian
circuit p. If we remove from p the k edges just added (no two of these edges
are incident on the same vertex), p is split into k& walks. Each of these walks is
an Eulerian trail. That is, the first edge removal leaves a single Eulerian trail;
the second edge removal splits that into two Eulerian trails; each successive edge
removal splits an Eulerian trail into two Eulerian trails until there are k£ of them.
Thus we have the theorem. O

We shall interrupt our study of Eulerian graphs to define some commonly used
graph-theoretic operations. One of these operations is required immediately in
the next section while others are used later.

3.3 Operations on Graphs

As with most mathematical entities, it is convenient to consider a large object as
a combination of smaller ones and to derive properties of the larger object from
those of the smaller ones. This holds true for graphs. Since graphs are defined in
terms of sets of vertices and edges, it is natural to employ the set-theoretical ter-
minology to define operations between graphs. The following definition captures
a number of important operations.

70

Some Special Properties of Graphs

Definition 3.5
Let Gy = (V4, Ey) and Gy = (Va, Ey) be simple graphs. The union of G; and
G, Is the graph

G1 UG2 = (ViU‘/Q,El UEQ)

If Vi NV, # 0, then the intersection of G and G5 is the graph
G1 ﬂGQ - (Viﬂ‘/Q,El ﬂEg)
The symmetric difference of Gy and G4 is the graph

G1 AGQZ (WU‘/Q,EI AEQ).

Note, the union, intersection, or symmetric difference of two simple graphs
results in a simple graph.

For general graphs the same ideas hold. However, we need to be more
careful in our definitions. Figure 3.4 demonstrates how the union, intersection,
and symmetric difference of two graphs are defined. As illustrated in the figure,
if an edge is in both G; and G5, then the edge’s endvertices in G; must be the
same as in (G5. Otherwise, these three operations cannot be sensibly defined. To
be precise, we make the following definition that generalizes Definition 3.5.

Definition 3.6
Let Gy = (Vi, E1, ¢1) and Gy = (Va, Es, ¢3) be subgraphs of a universal graph
G=(V,E,¢).

The union of Gy and G5 is the graph
G1 UGy = (ViUVy, By U Ey, ¢12),

where ¢ Is the restriction of ¢ to £, U Fy, C E.
If Vi NV, # 0, then the intersection of G and G is the graph

Gi NGy = (ViNVa, Ey N Ey, ¢p102),

where ¢ Is the restriction of ¢ to By N Ey, C E.

The symmetric difference of G| and G, is the graph
G A Gy = (Vi UVy, By A Ey, d1az),

where ¢1,o Is the restriction of ¢ to 1 A Fy, C E.

3.3 Operations on Graphs 71

U1
a b
V2 U3
c
d e
Uy f Us
G1 G2

U1
a
V2 U3
@
c
[
Us
G UGy G1 NGy
Ul h Vg
U2 U
)
d e
Uy f s
G1AG,

Figure 3.4: Union, intersection, and symmetric difference of two graphs.

72

Some Special Properties of Graphs

Figure 3.4 illustrates Definition 3.6. Note that if we view (G; and GG, as simple
graphs, the figure also can be used to illustrate Definition 3.5. In both the union
and symmetric difference there is only a single edge between v; and vs.

Note 3.7

Our assumption stating that both G| and Gy are subgraphs of a universal graph
G implies that both ¢, and ¢o agree on £\ N Ey. That is, for every e € E1 N FEy
we have

¢1(e) = da(e). (3.1)

If we had not made the assumption that GG, and GG were subgraphs of GG,
we would have had to insist that Equation (3.1) hold for all e € Ey N Ey. This
condition yields an equivalent definition.

It is obvious from their definitions that union, intersection, and symmetric
difference are commutative operations. That is, we have the following:

GiUGy, = GyUCG,
GiNnG, = GyNnNGy, and
G1 A G2 == Gz A Gl-

One can also show that these operations are associative. (We ask for the proof
that symmetric difference is associative in Exercise 8.) That is, we have the
following:

(Gl U Gg) U G3 = Gl) (GZ U G3)7
(G1 N G2) N G3 = G1 N (G2 N Gg), and
(G1 A GQ) A G3 = Gl A (GZ A G3)7

The definitions of union, intersection, and symmetric difference of graphs can be
extended in an obvious way to include any finite number of graphs. Because the
associativity property holds for each of these three operations, it makes sense to
drop the parentheses when we are considering an operation on more than two
graphs. For instance, G; A Gy A --- A G, is the graph on ViU ---UV,

3.3 Operations on Graphs

73

that contains all those edges included in an odd number of the graphs G;, for
1< <n.

Note that if G; and (G5 are vertex-disjoint, then G| N G5 is not a graph.
Recall graphs must have at least one vertex. If G; and G, are edge-disjoint,
then both Gy NGy and G; A Gy = Gy U G5 are null graphs having the same
number of vertices. For any graph G, we have

GUG = GNnG = G, and
GrG = N|V(G)\-

Recall that Ny (¢ is the null graph on |V(G)]| vertices.

Suppose G’ is a subgraph of G. Then by definition G A G is the subgraph of
G that remains after all of the edges in G’ have been removed from G. Therefore,
G A G is written as G — G' whenever G' C (. Because of this complementary
nature, G A G' = G — G’ is often called the complement of G' in G.

We have seen how to combine graphs in three different ways. The next
definition shows one way of dividing a graph into two pieces.

Definition 3.8
A graph G that is not a null graph is decomposed into two subgraphs G'; and
Gy if

G1UG2 = G, and
GiNGy = N,

where N is some null graph, and neither G| nor G5 is a null graph.

The definition says that every edge of G occurs in either Gy or (G5, but
not both. On the other hand, some of the vertices may occur in both (G; and
GG3. In decomposition isolated vertices are discarded. A graph containing m
edges {e1,...,¢e,} can be decomposed in 2™~! — 1 different ways into pairs of
subgraphs G| and G5. (Why?)

Graphs also can be decomposed into more than two subgraphs. We require
that the subgraphs be pairwise edge-disjoint and collectively include every edge
of the original graph.

In graph theory we often need to discuss a graph that has had a vertex or an
edge deleted from it. The following definition is useful for doing this.

Some Special Properties of Graphs

G G—v G—e

Figure 3.5: Vertex deletion and edge deletion.

Definition 3.9
Let G = (V, E,) be a graph. If v is a vertex in V', then

G —v =GV \{v}]

is the subgraph of G that is obtained by deleting v from V. When a vertex is
deleted, so are all edges incident to it.

Let ¢' be the restriction of ¢ to E'\ {e}. If e is an edge in E, then
G—-e=G(V,E\{e}, ¢

is the subgraph of G that is obtained by deleting e from E. Note that when an
edge is deleted, the edge’s endvertices are not deleted.

Figure 3.5(a) provides an example of deleting a vertex from a graph and
Figure 3.5(b) provides an example of deleting an edge from a graph.

Here are some useful generalizations of Definition 3.9.

0 Note 3.10
1. From Definition 3.9, deletion of an edge from a graph, we can write

G—-—e=GAe.

In G A e we view the edge e in G as a subgraph including the endvertices
of e.

2. We can delete more than one vertex from a graph. Thus Definition 3.9
can be generalized to define G — V' for any V! C V.

3.3 Operations on Graphs

75

3. Definition 3.9 can be generalized to define G — E' for any E' C E. That is,
we can delete any set of edges from a graph. Note that if G' is a subgraph
of G with edge set E' C E, then G — (', the complement of G' in G, is
really the graph G — E'.

Removing a vertex or edge from a graph G can increase the number of
components of G.

Definition 3.11
A vertex v is a cut-vertex if G — v has more components than GG. An edge e is
a cut-edge if G — e has more components than G.

Next we define the graph obtained by collapsing an edge in it.

Definition 3.12

Let G = (V, E, ¢) be a graph and e an edge of E having distinct endvertices
w and v. Let w be a new vertex such that w ¢ V. Let o be the mapping
a:V — (V\{u,v})U{w} defined by

(@) :{ v ife ¢ {uv)

w ifz € {u,v}

The contraction of GG by e is the graph

G-e=((V\{uv,v}) U{w}, E\{e},a’09),
where o/ ({z,y}) = {a(z),aly)} for any vertices x and y.

In Definition 3.12, the graph G - e is formed from GG by replacing the vertices
u and v by the single new vertex w. Except for the edge e, every edge that was
incident to u, v, or both is now incident to the new vertex w. Figure 3.6 provides
an example of a graph before and after an edge has been contracted.

Note 3.13

Observe that o' o ¢ is only applied to E \ {e} but not all of E. Although
(o' o ¢)(e) = {w} is well-defined, this loop is not contained in G - e. Hence,
we see that a contraction by an edge reduces the number of edges by one and
the number of vertices by one. Figure 3.6 illustrates that contraction is easy to
understand geometrically. Although formal definitions can be somewhat involved
in graph theory, you should always keep the geometrical pictures in mind.

Some Special Properties of Graphs

G G-e

Figure 3.6: Contraction by the edge e = {u, v}.

We see that if G is a simple graph and e is an edge in G then the contracted
graph G - e is not necessarily simple. We can define a related simple contraction
by an edge e that will produce a simple graph by simply discarding the multiple
edges in the contracted graph G - e.

Definition 3.14
Let G = (V, E) be a simple graph and e an edge in E having distinct endvertices

w and v. Let w be a new vertex such that w ¢ V. Let o be a mapping defined
as follows: o : V — (V\ {u,v}) U{w} is

o(a) :{ v ifzd {uv)

w ifz € {u,v}

The simple contraction of G by e is the graph
Gle=((V\{u,v}) U{w} o/ (E\{e})),
where o/ ({z,y}) = {{a(z), a(y)} : {z,y} € E\{e}}.

Figure 3.7 provides an example of the simple contraction of an edge.

In this section we have examined some of the elementary operations on
graphs. These operations provide us with mechanisms for generating additional
graphs from existing ones. More complex operations have been defined and are

used in graph theory research. For a survey of such operations see Harary and
Wilcox [16].

3.4 Bipartite Graphs &4

G GJe

Figure 3.7: Simple contraction by the edge e = {u, v}.

3.4 Bipartite Graphs
In this section we describe a type of graph that is used in a wide range of
applications. We begin with its definition.
Definition 3.15
A graph G is a bipartite graph if V(G) can be partitioned into two subsets X
and Y meeting the following conditions:

1. V(G)=XUY,

2. XNY =0, and

3. both G[X| and G[Y] are null graphs.

The word “bipartite” means two parts. If you keep this in mind, you will have
no trouble remembering Definition 3.15.

U Note 3.16
We have the following observations.

1. A bipartite graph with partition V(G) = X UY implies each edge of G
has one endvertex in X and the other in Y .

2. Every null graph is bipartite; any partition V(G) = X UY demonstrates
this fact.

78

Some Special Properties of Graphs

3. A bipartite general graph cannot have any loops.
4. A graph is bipartite if and only if each of its components is bipartite.

5. The complete bipartite graph K, ,, is a bipartite simple graph.

We can see that all cycles in a bipartite graph have even length. This simple
property is in fact a characterizing property for bipartite graphs stated in this
next theorem.

Theorem 3.17
A graph G is bipartite if and only if each cycle has even length. If G is connected,
then the partition V(G) = X UY is uniquely determined.

Before proving this theorem, we need the following observation.

Observation 3.18
If G contains a circuit having odd length, then it contains a cycle having odd
length.

PROOF: Assume that p = (ug, eq,uq, ..., ey, uy,) is circuit of shortest pos-
sible odd length n. We show that p is actually a cycle. If p is not a cy-
cle, then there are two index numbers 7 and k such that 0 < j < k& < n,
(4,k) # (0,n), and u; = wy. In this case we have two circuits p; =
(ug, €1, U, ...\ Uj, €y Upt1y - - -, Up) ANd py = (uj, €5, Uj41, ..., €k—1,U). The
lengths of p; and py are both positive and sum up to n. Hence, one of these
lengths must be odd. Thus we have a shorter odd circuit than p. This contradicts
our initial assumption. Therefore, p must be a cycle. O

Note 3.19
There are graphs containing circuits of even lengths that do not contain any
cycles of even lengths.

We will use Observation 3.18 to prove Theorem 3.17.

PROOF: (Theorem 3.17) Without loss of generality, we can assume that G
is connected. Assume first that V(G) = X UY is a partition of the vertices
such that both G[X] and G[Y] are null graphs. Let p = (ug, e1,u1,. .., ey, Uy)
be a circuit. Since each edge in GG has one endvertex in X and the other in
Y, we see that for each ¢ the vertices u; and wu;, 1 of the circuit p are always in

3.5 More on Eulerian Graphs

79

opposite parts. That is, one is in X and the other is in Y. Since p is a closed
trail ug = u,, must both be in X or both be in Y. Hence, n must be even.

For the second half of the theorem, assume that each cycle of GG has even
length. We show that G is bipartite. Choose a fixed vertex x € V' (G). Consider
an arbitrary vertex y € V(G). If p and ¢ are two paths from z to y of respective
length n and m, then pg~! is a circuit in G of length n + m. Combining our
assumption that each cycle of G has even length with the contrapositive of
Observation 3.18, we can conclude that n-+m is even. Hence, either both n and
m are even or they are both odd. Therefore, we can form a partition of V(G)
by letting

X = {y€V(G): the length of each path from x to y is even},
Y = {y € V(G): the length of each path from z to y is odd}.

Since G is connected, we have V(G) = X UY and X NY = (). Lastly, consider
an edge e of G with endvertices v and v. We need to show that they are not
contained in the same half of the partition. Suppose p is a path from z to u of
length n. If ¢ = (u,e,v), the path pq is a path from = to v of length n + 1
that has a different remainder than n divided by two. Hence, one of u and v is
contained in X and the other in Y. So, G[X| and G[Y] are both null graphs.

Since GG is connected, every two vertices are joined by a simple path. Hence,
the partition V(G) = X UY is uniquely determined. O

We can easily extend the definition of a bipartite graph. A graph G for which
V(G) can be partitioned into k greater than one sets

V(G)=X,UXoU---UXy,
where X;NX; = () for each i # j and each of the subgraphs G[X;] is a null graph

is called a multipartite graph. However, the nice characterization for bipartite
graphs given in Theorem 3.17 can not be extended for k greater than two.

3.5 More on Eulerian Graphs

You now have the background to learn more results on the important topic of
Eulerian graphs. We begin with a theorem that characterizes Eulerian graphs.

80

Some Special Properties of Graphs

d e

Figure 3.8: Arbitrarily traceable graph from c.

Theorem 3.20
A connected graph G is an Eulerian graph if and only if it can be decomposed
into cycles.

PROOF: Suppose graph G can be decomposed into cycles. That is, G is
a union of edge-disjoint cycles. Since the degree of every vertex in a cycle is
two, the degree of every vertex in G is even. Hence, G is an Eulerian graph by
Theorem 3.2.

Conversely, let G be an Eulerian graph. Consider a vertex v;. There are
at least two edges incident at v;. Let one of these edges be between v; and
vy. Since vertex v, is also of even degree, it must have at least another edge,
say between v, and v3. Proceeding in this fashion, we eventually arrive at a
vertex that has previously been traversed. In doing this we form a cycle. Call it
['. Now we remove I from G. All of the vertices in the remaining graph (not
necessarily connected) must also be of even degree. From the remaining graph
remove another cycle in exactly the same way as we removed I" from G. We can
continue this process until no edges are left. Hence, we have our theorem. O

Consider the graph depicted in Figure 3.8, which is an Eulerian graph. Sup-
pose that we start at vertex a and trace the path going through vertices a, b, and
c. Now at ¢ we have the choice of going to a, d, or e. If we take the first choice,
we would only trace the circuit going through vertices a, b, ¢, and a. This is not
an Eulerian circuit. Thus starting from a, we cannot trace the entire Eulerian
circuit simply by moving along any edge that has not already been traversed.
This raises the following interesting question:

Let G be an Eulerian graph. We wish to obtain an Eulerian trail
using the following rule. After arriving at a vertex v in any walk,

3.5 More on Eulerian Graphs

81

Figure 3.9: Eulerian graph that is not arbitrarily traceable.

one may select any edge that has not been previously traversed to
continue the walk. What property must the vertex v possess so that
an Eulerian graph is produced?

We provide an answer to this question but first we need the following defini-
tion.

Definition 3.21

A graph G is said to be arbitrarily traceable from v if one always obtains an
Eulerian trail by randomly traversing from v through all the edges of GG, going
exactly once along each edge.

For instance, the Eulerian graph draw in Figure 3.8 is an arbitrarily traceable
graph from vertex ¢, but not from any other vertex. The Eulerian graph shown
in Figure 3.9 is not arbitrarily traceable from any vertex. The graph given in
Figure 3.10 is arbitrarily traceable from every vertex. This interesting theorem
due to Ore [26] answers the question just raised.

Theorem 3.22
An Eulerian graph G is arbitrarily traceable from vertex v in G if and only if
every circuit in G contains v.

Figure 3.10: Arbitrarily traceable graph from all vertices.

82

Some Special Properties of Graphs

For a proof of the theorem, the reader is referred to Ore [26].

Let G be an Eulerian graph and v a vertex of GG. Although G is not necessarily
arbitrarily traceable from v, we can still trace through all of the edges of GG exactly
once and end up at v. Thus we can construct an Eulerian circuit of G. Note,
we use // to indicate a comment in an algorithm.

ALGORITHM EULERIAN CIRCUIT shows how to construct an Eulerian cir-
cuit of a simple graph G.

ALGORITHM EULERIAN CIRCUIT
Input: An Eulerian graph G = (V, E).
Output: An Eulerian circuit of G represented by a list L of vertices.

begin
currentVertex = v € V;
L =v; // vertices are appended to the list L
vertices = V;
edges = £

while edges # () do {

pick e = {currentVertex, w} € edges, where
e is not a cut-edge unless this is the only choice;

L = Lw;
currentVertex = w;
edges = edges — {e};
}

output L;

end.

The proof that ALGORITHM EULERIAN CIRCUIT actually produces an Eu-
lerian circuit is left to Exercise 17.

3.6 Hamiltonian Paths and Cycles

An Eulerian circuit of a connected graph was characterized by the property of
being a closed walk that traverses every edge of the graph exactly once. A
Hamiltonian cycle in a connected graph is defined as a cycle that traverses every
vertex of (G exactly once, except the starting vertex at which the walk also
terminates. For example, one gets a Hamiltonian cycle in Figure 3.11(a) by
starting at any vertex and transversing along the edges shown in thick lines.

3.6 Hamiltonian Paths and Cycles

83

(a) (b)

Figure 3.11: Hamiltonian cycles.

Notice the cycle passes through each vertex exactly once. A Hamiltonian cycle
for the graph shown in Figure 3.11(b) is also depicted by thick lines. More
formally, we have the following definition.

Definition 3.23
A cycle in a connected graph G is said to be Hamiltonian if it includes every
vertex of G. If G has a Hamiltonian cycle, then we say that GG is a Hamiltonian
graph.

A path in G is called a Hamiltonian path if it traverses through every vertex
of G.

O Remark 3.24

A Hamiltonian cycle in a graph of n vertices consists of exactly n edges.

Since a Hamiltonian path is a subgraph of a Hamiltonian cycle (which in turn
is a subgraph of another graph), every graph that has a Hamiltonian cycle also has
a Hamiltonian path. There are, however, many graphs with Hamiltonian paths
that have no Hamiltonian cycles (see Exercise 19). The length of a Hamiltonian
path (if it exists) in a connected graph of n vertices is n — 1.

Obviously, not every connected graph has a Hamiltonian cycle. For example,
neither of the graphs shown in Figures 3.8 nor 3.9 has a Hamiltonian cycle. This

84

Some Special Properties of Graphs

e

() (b)

Figure 3.12: Dodecahedron and its graph shown with a Hamiltonian cycle.

raises the question: What is a necessary and sufficient condition for a connected
graph G to have a Hamiltonian cycle? This problem, first posed by the famous
Irish mathematician Sir William Rowan Hamilton in 1859, is still unsolved. As
mentioned in Chapter 1, Hamilton made a regular dodecahedron of wood (see
Figure 3.12(a)) each of whose 20 corners was marked with the name of a city.
The puzzle is to start from any city and find a route along the edge of the
dodecahedron that passes through every city exactly once and returns to the city
of origin. The graph of the dodecahedron is given in Figure 3.12(b), and one of
many such routes (a Hamiltonian cycle) is shown by thick lines.

The resemblance between the problem of computing an Eulerian circuit and
that of computing a Hamiltonian cycle is deceptive. The algorithmic complexity
of finding an Hamiltonian cycle in a graph is much greater than that of finding
an Eulerian circuit. We revisit this point again in Chapter 15.

Although one can find Hamiltonian cycles in many specific graphs, such as
those in Figures 3.11 and 3.12, there is no known criterion to determine the
existence of a Hamiltonian cycle in general. However, we will show there are
certain types of graphs that always contain Hamiltonian cycles.

In considering the existence of a Hamiltonian cycle (or path), we need only
consider simple graphs. This is because a Hamiltonian cycle (or path) traverses
every vertex exactly once. Hence, it cannot include a loop or a set of multiple
edges. So, before we look for a Hamiltonian cycle in a general graph, we may
make the graph simple by removing multiple edges and loops.

3.6 Hamiltonian Paths and Cycles

85

(a) (b)

Figure 3.13: Graphs without Hamiltonian cycles.

The following theorem shows us a condition that is necessary for a graph to
be Hamiltonian, but it is far from being sufficient. We will discuss some sufficient
conditions later.

Theorem 3.25
Let G be a Hamiltonian graph. For all nonempty subsets S C V(G), we have
that the number of components of the graph G — S does not exceed |S)|.

PrROOF: Assume that C' is a Hamiltonian cycle of G. Because C' is a
subgraph of GG that includes all the vertices of (G, the number of components of
GG — S is not more than the number of components of C'—S. Since C'is a cycle,
the number of components of C'— S is not more than |S|. Hence, we have the
theorem. 0O

Theorem 3.25 can be used to prove that neither of the two graphs shown
in Figure 3.13 has a Hamiltonian cycle nor Hamiltonian path. This is left to
Exercise 20.

Before discussing some sufficient conditions for graphs to have Hamiltonian
cycles, we consider an important class of Hamiltonian graphs, the complete
graphs. Complete graphs of two, three, four, and five vertices are shown in
Figure 3.14.

86

Some Special Properties of Graphs

LA A Y

Figure 3.14: Complete graphs of two, three, four, and five vertices.

As in §2.6, a complete subgraph of a given graph is sometimes referred to as
a clique in the graph. Since every vertex is adjacent to every other vertex, the
degree of every vertex is n — 1 in a complete graph G of n vertices. Also, the
total number of edges in a clique having n vertices is n(n—1)/2 (see Exercise 12
from Chapter 2).

It is easy to construct a Hamiltonian cycle in a complete graph of n vertices.
Let the vertices be numbered vy, ..., v,. Since an edge exists between any two
vertices, we can start from v; and traverse to vy, then to v3, and so on to v,
and finally from v,, to v;. This is a Hamiltonian cycle.

3.7 More on Hamiltonian Paths and Cycles

The first issue we want to consider in this section is the number of Hamiltonian
cycles in a graph. A graph may contain more than one Hamiltonian cycle. It
is interesting to consider all of the edge-disjoint Hamiltonian cycles in a graph.
For example, this gives another method for decomposing a graph. Determining
the exact number of edge-disjoint Hamiltonian cycles (or paths) in a graph is
a difficult problem. Short of an exhaustive search, which would be extremely
time consuming, no good algorithms are known for solving this problem. But
for complete graphs, the number of edge-disjoint Hamiltonian cycles is given by
Theorem 3.26.

Theorem 3.26
For a number n greater than two, the complete graph K, on n vertices has

=

3.7 More on Hamiltonian Paths and Cycles

87

4 n—3

Figure 3.15: Hamiltonian cycle where the number of vertices n is odd.

edge-disjoint Hamiltonian cycles.

PRrOOF: For simplicity we only prove the theorem in the case when n is an
odd integer greater than or equal to three. This case best illustrates the key idea
in the proof. The proof for the even case follows similarly.

Assume n is odd. A complete graph G on n vertices has n(n — 1)/2 edges,
and a Hamiltonian cycle in G consists of n edges. Therefore, the number of
edge-disjoint Hamiltonian cycles in G' cannot exceed (n — 1)/2. The following
shows that there are in fact (n — 1)/2 edge-disjoint Hamiltonian cycles when n
is odd.

The subgraph of a complete graph on n vertices shown in Figure 3.15 is a
Hamiltonian cycle. Keeping the vertices fixed on the circle that is centered at
one, rotate the polygonal pattern of vertex numbers clockwise by 360/(n — 1),
2-360/(n—1),3-360/(n—1), ..., and ((n —3)/2)-360/(n — 1) degrees.

Observe that each rotation produces a Hamiltonian cycle that has no edge in
common with any of the previous ones. Thus we have (n—3)/2 new Hamiltonian
cycles. Note, all of these are edge-disjoint from the one in Figure 3.15 and also
edge-disjoint between themselves. Hence, we have the theorem. O

This theorem enables us to solve the problem of the seating arrangement
at a round table that was introduced in Chapter 1 on page 8. Here is how we
achieve the solution. To construct GG, represent a member = by a vertex and
the possibility of z sitting next to y by an edge between x and y. Since every
member is allowed to sit next to any other member, GG is a complete graph on

88

Some Special Properties of Graphs

nine vertices—nine being the number of people to be seated around the table.
Every seating arrangement around the table is clearly a Hamiltonian cycle.

On the first day of their meeting the members can sit in any order, and it will
be a Hamiltonian cycle H;. On the second day, if they are to sit such that every
member must have different neighbors, we have to find another Hamiltonian
cycle Hy in G with an entirely different set of edges from those in H;. That is,
H, and H; need to be edge-disjoint Hamiltonian cycles. From Theorem 3.26 the
number of edge-disjoint Hamiltonian cycles in G is four. Therefore, only four
such arrangements exist among nine people. The actual seating arrangements
can be determined from the proof of Theorem 3.26.

Next we discuss sufficient conditions to ensure that a graph is Hamiltonian.

Suppose G is a simple graph, and u and v are two vertices in G that are not
connected by an edge. We denote by G U {u, v} the simple graph that we get
from G by adding an edge between u and v. That is,

G U{u, v} = (V(G), E(G) U {{u,v}}).
With this convention in mind, we have the following lemma.

Lemma 3.27 (Bondy, Chvatal 1976)
Let G be a simple graph on n vertices satisfying the following properties:

1. u,v € V(Q),
2. {u,v} ¢ E(G), and

3. dg(u) + dg(v) > n.

G is Hamiltonian if and only if G U {u,v} is Hamiltonian.

Proor: Clearly, if G is Hamiltonian, then so is G U {u, v}.

For the other implication, assume that G U {u,v} is Hamiltonian with a
Hamiltonian cycle C. If C does not include the edge {u, v}, then C is a Hamil-
tonian cycle in G and we are done. So, assume further that C' includes the edge
{u,v}. Let us write C' as C' = (v, v1,...,0,), where vy = v, = u and v; = v.
Define the sets U and V' by

3.7 More on Hamiltonian Paths and Cycles 89

Up = Upg = U V1 =0

Un-1

Uj+2

Uj+1 Uj

Figure 3.16: C' is a Hamiltonian cycle in G.

U = {i:{u,v;} € E(G),2<i<n-—2}and
V = {i:{v,uin} € E(G),2<i<n-—2}.

Since {u,v} € E(G), we see that |U| = dg(u) — 1 and |V| = dg(v) — 1.
Therefore, we have

n=2<|Ul+|V|=lUUV|+|UNV|<(n=3)+|UNV].

Hence, we have that |[UNV| is greater than or equal to one. Thus U NV is not
equal to the emptyset. (For what follows, it is useful to refer to Figure 3.16.) If
7 €UnNV, then we can form a Hamiltonian cycle

[
C' = (vo,vj,vj_l,...,vl,vj+1,vj+2,...,vn_l,vn)

that does not include the edge {u,v}. This is a Hamiltonian cycle of G. This
proves the lemma. O

From Lemma 3.27, we can derive a well-known theorem by Ore [26] as an
easy corollary.

90

Some Special Properties of Graphs

Corollary 3.28
Let G be a simple graph on n greater than or equal to three vertices. If

de(u) +dg(v) >n
for every pair of nonadjacent vertices u. and v in GG, then G is Hamiltonian.

Proor: Let Gy equal G. If the vertices u and v are not adjacent in Gy,
then we let G; = Gy U {u,v}. By Lemma 3.27, we have that G is Hamiltonian
if and only if G| is Hamiltonian.

If Gy is a clique, then it is clearly Hamiltonian. Therefore, GGy which equals
G is also Hamiltonian and we are done. Otherwise, we continue to add edges in
this fashion and form a sequence

G=GyCG C---CGy=K,.

We eventually reach the complete graph K,,. Here each graph G; is a subgraph
of G;11 which has one more edge than G;. So, G; is Hamiltonian if and only if
G;.1 is Hamiltonian. Since K, is Hamiltonian, then so is GGy which equals G.
(|

This simpler version is a direct consequence of Corollary 3.28 due to
Dirac [10].

Corollary 3.29
If G is a simple graph on n greater than or equal to three vertices such that

dG (u) 2

o3

for every vertex u € V(G), then G is Hamiltonian.

Note 3.30

Both Corollaries 3.28 and 3.29 provide a mechanical way to determine a sufficient
condition for a graph to be Hamiltonian. More importantly though, the way we
proved Lemma 3.27 gives us the following algorithm to find a Hamiltonian cycle in
a graph G, if G satisfies the conditions of either Corollary 3.28 or Corollary 3.29.

ALGORITHM RESTRICTED HAMILTONIAN CYCLE constructs a Hamilto-
nian cycle in a simple graph G provided that G satisfies the conditions of either
Corollary 3.28 or Corollary 3.29.

3.8 Traveling Salesman Problem

91

ALGORITHM RESTRICTED HAMILTONIAN CYCLE
Input: A simple graph G = (V, E) satisfying the conditions of either
Corollary 3.28 or Corollary 3.29.
Output: A Hamiltonian cycle of G.
begin
Go =G,
k=((n—1)n/2) - |E
for:=1to k do
/] €1,...,er are new edges not in E
Gi = G, 1 UG[{e}]; // in particular, G, = K,
let C'x denote an arbitrary Hamiltonian cycle of Gy;
for i = k downto 0 do {
if E(Cl) N {61,. . .,e,»} = @
then output C;;
else let j € {1,...,i} be the largest index such
that ¢; is contained in the Hamiltonian cycle Cj;
assume C; = (vg, v1,...,v,), where e; = {vg, v1 };
find [€ {2,...,n — 2} such that
{vo, v}, {vr, v} € BE(Giy);
form the Hamiltonian cycle C; | of GG;_; by letting
Ci1 = (V0, Uty U1y -+« U1, Uttt Upgas -+ s U);

}

end.

3.8 Traveling Salesman Problem

A problem closely related to the question of Hamiltonian cycles is the traveling
salesman problem. Here is an intuitive description of the problem. A salesman is
required to visit a number of cities during a trip. Suppose we have the distances
between all of the cities. In what order should the salesman travel go so as to
visit every city precisely once and return to the starting point while traveling the
minimum mileage possible?

Representing the cities by vertices and the trips between them by edges, we
obtain a saleman’s graph. For every edge e; in this graph, we associate a real
number w(e;) (the distance in miles, say) denoting the cost of the trip between
the two cities corresponding to the endvertices of e;. This graph is called a

92

Some Special Properties of Graphs

weighted graph; w(e;) being the weight of edge e;.

In the traveling salesman problem, since each city has a trip distance to
every other city, we have a complete weighted graph. This graph has numerous
Hamiltonian cycles. We are to find one with the smallest sum of the weights.

The total number of different (not edge-disjoint) Hamiltonian cycles in a
complete graph of n vertices is (n — 1)!/2. This follows from the fact that
starting from any vertex we have n — 1 edges to choose from the first vertex,
n — 2 from the second, n — 3 from the third, and so on. Since these choices are
independent, there are (n — 1)! total. This number is divided by two because
each Hamiltonian cycle has been counted twice.

Theoretically, the problem of the traveling salesman can always be solved by
enumerating all (n — 1)!/2 Hamiltonian cycles, calculating the distance traveled
in each, and then picking the shortest one. However, even for a modest value
of n, the number of computations involved is too great even for any group of
computers to solve. Try solving it for the 50 state capitals in the United States,
where n equals 50. To date, the largest instances of the traveling salesman
problem that have been solved are on the order of 350 cities. This was only
accomplished by employing thousands of computers.

Designing an efficient algorithm to find the shortest route is extremely dif-
ficult. Despite many attempts, no such algorithm has been found. Since this
problem has applications in operations research, some specific large-scale exam-
ples have been worked out. Several heuristic methods are also available that
approximate the shortest trip (to within a factor of two) but do not guarantee
the shortest. In Chapter 15 we have more to say about the algorithmic complexity
of the traveling salesman problem.

3.9 Exercises

1. Determine whether the graphs shown in Figure 3.17 are Eulerian. That is,
can they be traversed from one vertex through all the edges exactly once
ending up at the same vertex? Can you traverse through them if we do
not insist upon ending at the same vertex as we started from?

2. Can you draw the graphs shown in Figure 3.18 without lifting your pen or
pencil from the paper and without redrawing a line already drawn? Can

3.9 Exercises

93

1

Figure 3.17: Eulerian graphs?

you do it starting and ending at the same point?

3. Prove that if a connected graph is decomposed into two subgraphs GG; and

G5, then there must be at least one vertex in common between G and
G.

4. Implement the algorithm implied by the proof of Theorem 3.2 using your
favorite programming language. You should be able to enter a graph,
suitably coded, as input to your algorithm. Test your program on the
graphs shown in Figure 3.17.

5. Draw a graph in which an Eulerian trail is also a Hamiltonian cycle. What
can you say about such graphs in general?

Figure 3.18: Draw these figures using just one line.

94

Some Special Properties of Graphs

10.

11.

12.

13.

14.

15.

Is it possible to start from any of the 64 squares of a chess board and
move a knight so that it visits every square once and returns to the initial
position? If so, give one such tour. [Hint: Is the graph of Exercise 7,
Chapter 1 on page 32 unicursal?]

Let a, b, and ¢ be three distinct vertices in a graph. Assume that there
is a path between a and b, and also a path between b and ¢. Show that
there must be a path between a and c.

Show that (G A G3) A G3 = Gy A (G2 A G3). [Hint: Start by showing
that (X1 A Xg) A X3 = X1 A (X2 A Xg) for arbitrary sets Xl, XQ, and
X]

In a graph G let p; and py be two different paths between two given
vertices. Prove that the symmetric difference of the paths p; A py is a
circuit or a set of circuits in G.

If the intersection of two paths is a disconnected graph, show that the
union of the paths has at least one circuit.

Draw K 4 in the usual manner and label the edges 1, . . ., 8 going from top-
to-bottom. Draw the graphs resulting from the contraction of the edges
one at a time in increasing numerical order. Repeat the process by deleting
edges in the order 2, 4, 6, 8, 1, 3, 5, and 7. Are any of the resulting graphs
the same? Explain your answer.

For what values of n are the following graphs bipartite: N,,, P,, C,,, and
K,?

For what values of n are the following graphs 3-partite: N,,, P,, C,, and
K,?

Let n be a fixed natural number greater than two. A round-robin tourna-
ment (where every player plays against every other) among n players can
be represented by K,. Discuss how you would schedule the tournament to
finish it in the shortest possible time.

Using your favorite programming language implement an algorithm that
determines whether or not a graph is bipartite. You should be able to enter
a graph, suitably coded, as input to your algorithm. Test your program on
Ps, C5, K4, and K3 3.

3.9 Exercises

95

16.

17.

18.

19.

20.

21.

22.

You are given a 10-piece domino set whose tiles have the following pairs
of dots: (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), and
(4,5). Discuss the possibility of arranging the tiles in a connected series
such that one number on a tile always touches the same number on its
neighbor. [Hint: Use K5 and see if it is an Eulerian graph.]

Prove that ALGORITHM EULERIAN CIRCUIT on page 82 outputs an
Eulerian circuit when provided with an Eulerian graph as input.

Implement ALGORITHM EULERIAN CIRCUIT using your favorite pro-
gramming language. You should be able to enter a graph, suitably coded,
as input to your algorithm. Test your program on the graphs C5, K5, and
Ky 4.

Draw a graph containing at least five vertices. Construct the graph so it
has a Hamiltonian path but not a Hamiltonian cycle.

Show that neither of the graphs illustrated in Figure 3.13 is Hamiltonian.
[Hint: Use Theorem 3.25]

The graph of a rhombic dodecahedron (with eight vertices of degree three
and six vertices of degree four) is the simple graph G with vertices and
edges defined as follows:

V(G) = {ug,...,ug} U{vg,..., 6},
E(G) = {{uo, w1}, {uo, us}, {uo, us}}
{Hur,ua}y oo {us, uet, {ug, ur }
{{vo, v2}, {wo, va}, {wo, v6}}
{{v1, v}, ..., {vs,v6}, {ve, v1}
U {{ur, v}, {ug, v}, ..., {us vs}}.

Show that G is not Hamiltonian. That is, show it has no Hamiltonian
cycle. Does GG have a Hamiltonian path? [Hint: For the second question,
note that GG is a bipartite graph. If G has a Hamiltonian path, add an
appropriate edge to get a Hamiltonian cycle.]

c C C

Using the result of Corollary 3.29 show that in a ring of n dancing children,
it is always possible to arrange the children so that everyone has a friend at
each side if every child enjoys friendship with at least half of the children.

96

Some Special Properties of Graphs

23.

24.

25.

26.

27.

28.

Let m and n be positive integers. Let [m] = {1,...,m} and [n] =
{1,...,n}. Consider the grid graph [m| x [n] with vertex set {(i,j) : i €
[m] and j € [n]} and where we connect every two ordered tuples (7, j) and
(i',7") if and only if |i — | + |j — j'| = 1. Find necessary and sufficient
conditions that m and n must satisfy in order for the graph [m] x [n] to
be Hamiltonian.

Adopting the terminology from Exercise 23, we can make the following

generalization: If k is a positive integer and n,...,n; are also positive
integers, the k-box graph [ni] x --- x [ng] is the graph with vertex set
{(i1,...,ik) : iy € [ny] for each [€ [k]} and where we connect every two

ordered k-tuples (iy,...,i) and (i}, ...,4}) if and only if |i; — |+ -- -+
lir —1},| = 1. For each fixed k, find necessary and sufficient conditions that
the numbers ny,...,n; must satisfy in order for the corresponding k-box
graph to be Hamiltonian.

Prove that a graph GG with n vertices always has a Hamiltonian path if
every two vertices u and v satisfy

de(u) +dg(v) > n— 1.

[Hint: First show that G is connected. Then use induction on the path
length of G']

Consider an instance of the traveling salesman problem that uses driving
distances between cities as the transportation costs between them. What
would be a solution for the traveling salesman problem involving the follow-
ing cities: Boston, Chicago, Los Angeles, Orlando, Providence, Savannah,
and Seattle? Use AAA mileage estimates and report the values you used.

Consider an instance of the traveling salesman problem that uses Delta Air-
lines' flying cost between cities as the transportation costs between them.
What would be a solution for the traveling salesman problem involving
the following cities: Boston, Chicago, Los Angeles, Orlando, Providence,
Savannah, and Seattle? Report the dollar values you used for the routes
between cities. (If a direct flight between the cities is not available, use
the cost of the cheapest alternative route.)

A newspaper reporter from the New York Times has contacted you to write
a one-page article for the Times that makes the ideas behind the traveling

3.9 Exercises

97

29.

salesman problem understandable to the masses. Develop such an article
being sure to include lots of intuition about the problem.

Evaluate the formula (n — 1)!/2 for the following values: 5, 10, 50, 100,
200, 300, 500, and 1000. Assuming it takes a computer .001 seconds to
evaluate a single Hamiltonian cycle in an instance of the traveling salesman
problem, how long would it take to run instances of the problem of these
sizes? For which values of n would you say this is feasible?

98

Some Special Properties of Graphs

Trees and Forests

R—

Chapter Goals

Present the concepts of trees and
forests.

Demonstrate why trees are one
of the most important types of
graphs.

Discuss the fundamental proper-
ties of trees and forests.

Describe some characterizations
of trees.

Present inductive proofs on

trees.

Examine some important appli-
cations of trees.

Prove the Erdos-Szekeres

Theorem.

Define the notions of distance
and centers for graphs in general
and specifically for trees.

Present the concept of rooted
trees.

Define binary and regular binary
trees.

Study path lengths of trees with
respect to algorithmic efficiency.

4.1

Introduction

The concepts of trees and forests are probably two of the most important in
graph theory—especially for those interested in the applications of graphs. In this

100

Trees and Forests

chapter we define the notions of a tree and a forest, and study their properties.
We point out some of their applications to searching and sorting, and constructing
efficient codes and structures. This chapter provides the proofs of a number of
interesting results involving trees including some new proof techniques. We bring
some other graph-theoretic terms related to trees into our discussion. Trees are
a visual subject. Throughout the chapter, note the use of a wide range of figures
for trees.

In §4.2 we introduce some of the basic properties of trees. A number of
important characterizations of trees are given in §4.3. In §4.4 we illustrate how
to use inductive proofs on trees. The classic Erdos-Szekeres Theorem on subse-
quences is proved in §4.5. The concepts of distance and centers with respect to
trees are covered in §4.6. In §4.7 we examine how trees can be oriented by in-
troducing rooted trees. Binary trees are presented in §4.8. This important class
of trees is used in many algorithms. Path length is important in the analysis of
algorithms and is presented in §4.9.

4.2 Trees and Some of Their Basic Properties

We begin with the definitions of a tree and a forest.

Definition 4.1
A tree is a connected graph that has no cycle as a subgraph. A forest is a simple
graph in which every component is a tree.

Figure 4.1 shows three graphs: (a) is a tree on 17 vertices; (b) is a forest on
26 vertices; (c) is a simple graph on 15 vertices. The last one is neither a tree
nor a forest since the bow is a cycle of length three.

By Definition 1.9 on page 13, any graph, including a tree, must have at least
one vertex. In this book all trees and forests have finitely many vertices and
edges. A tree has neither loops nor multiple edges since every loop is a cycle of
length one, and a double edge between a pair of vertices forms a cycle of length
two.

For a graph to be a tree is a strong condition. Consider the set of all possible
graphs on n vertices. Relatively few of those will be trees. In Figure 4.2 we show
all possible trees on six vertices. On the far left of the figure is a path (also
commonly referred to as a chain) and on the far right of the figure is a star. In

4.2 Trees and Some of Their Basic Properties

101

i

(a) (b) (c)

Figure 4.1: (a) A tree. (b) A forest. (c) A graph that is neither a tree nor a
forest.

Chapter 5 we examine several counting problems relating to trees. In Chapter 14
we discuss in greater detail how many trees there are on n vertices.

Trees occur in many natural applications including those listed below. The
reader is asked to jot down some other applications of trees in the exercises.

The following can be represented by a tree:

> The genealogy of a family. (In fact, the term tree comes from family tree.)
>> A river with its tributaries and sub-tributaries.

> The hierarchy in a business.

> The hyperlinks between a set of Web pages.

> The sorting of mail according to zip code and the sorting of integers. (This

is called a decision tree or sorting tree.)

In the following example, we describe the mail sorting application in more
detail.

Example 4.2

The tree shown in Figure 4.3 can be used to represent the flow of snail mail.
A batch of physical mail arrives at some local post office. This post office is
represented by vertex N in the figure. The leftmost digit in the zip code is read

102 Trees and Forests

TYYI™

Figure 4.2: All possible trees on six vertices.

N

Figure 4.3: A decision tree for mail sorting.

at N. The mail is then divided into ten piles Ny, Ny, ..., Ny depending on the
value of this digit. These piles are further subdivided into ten additional piles in
a similar manner and so on until the mail is subdivided into 10° possible piles.
The vertices at the bottom of the figure, of which only one is shown, represent
an unique five-digit zip code. The vertex shown represents zip code 23199. Once
the mail is sorted, it is ready for distribution.

4.2 Trees and Some of Their Basic Properties

103

Many sorting problems are simpler than the mail sorting problem described in
Example 4.2. In fact, there are often only two alternatives at each intermediate
vertex instead of ten as in the mail sorting example. These two choices usually
represent a dichotomy such as large or small, good or bad, or 0 or 1. Such
a decision tree with two choices at each vertex occurs frequently in computer
science and mathematics. We shall study such trees and their applications in
64.8. But first let us obtain a few simple but important theorems on the general
properties of trees, starting with an important definition.

Definition 4.3
A vertex u of a simple graph G is called a leaf if dg(u) equals one. That is, u
has degree one. A vertex, which is not a leaf, is called an internal vertex.

Many fundamental properties about trees can be derived from the following
theorem.

Theorem 4.4
Every tree with at least two vertices has at least two leaves.

PrOOF: Consider a tree T" having two or more vertices. Let p be the longest
path in 7. Let v and v be the initial and endvertex of p, respectively. We show
that uw and v are leaves. That is, d(u) and d(v) both equal one. It suffices to
consider just one of the vertices, say u, since the argument would be similar for
the other vertex v.

Suppose d(u) is greater than or equal to two. Then there is an edge e, not
in the path p, having endvertices u and w in T, where w € V(T'). We now have
two cases to consider.

CASE ONE: If the vertex w is not a vertex in the path p, then the composite
path p' = (w,e,u)p is a path in G of length one more than that of p. This
contradicts the fact that p was a path of longest length in 7.

CASE TWO: Suppose the vertex w is a vertex in the path p. If p” is the path
from u to w along the path p, we get a cycle ¢ = (w, e, u)p” of length three or
more in 1. This contradicts the fact that 7" is a tree.

Hence, d(u) equals one thereby completing the argument. O
Note 4.5

Theorem 4.4 provides a useful tool in proving many properties for trees. In many
cases, the fact that every tree on two or more vertices has at least one leaf is all

104

Trees and Forests

u

Figure 4.4: Every tree has at least one leaf.

we need to demonstrate a certain property of a tree. Suppose T is a tree having
at least one leaf u as shown in Figure 4.4. Notice that the subgraphT' =T —u
has no cycles since T" has none. Also, T" is connected. Hence, T" is a tree and it
has one fewer vertices than T'. So many proofs about T can be done inductively
by assuming the argument is true for T".

Here is another useful fact about trees in Lemma 4.6.

Lemma 4.6
A simple graph G on n vertices with k components has n — k or more edges.

PROOF: We use induction on the number of edges of G, m. The statement
is clearly true for m equals zero since GG is then the nullgraph on n vertices.

Suppose m is greater than one and assume that the assertion is true for all
natural numbers less than m. If e is an edge in GG, then the simple graph G — e
has n vertices, m — 1 edges, and k + § components, where § is either zero or
one. By the induction hypothesis, we have that n — (k + 0) < m — 1. Hence,
n—k<m—(1—0) <m completing the inductive argument. This proves the
lemma. 0O

It is instructive to compare Lemma 4.6 with Theorem 2.14 on page 46. The
theorem provides the upper bound on the number of edges in a simple graph
on n vertices and k components. Lemma 4.6 provides the lower bound showing
that trees are minimally connected in the sense that removing any edge results
in two or more components. We will see this even more clearly in Theorem 4.7.

4.3 Characterizations of Trees

105

4.3 Characterizations of Trees

Theorem 4.7 contains some of the most frequently used characterizations of
trees and we will prove some of these statements using the technique described
in Note 4.5.

Theorem 4.7
If T is a simple graph on n vertices, then the following statements are equivalent:

1

2
3
4
5
6

T is a tree.

T has n — 1 edges and no cycles of length one or more.

T has n — 1 edges and is connected.

T is connected and each edge is a cut-edge.

Between every pair of distinct vertices in T’ there is one and only one path.

T has no cycles, but if we add one edge to T, then exactly one simple
cycle of length one or more is formed.

PROOF: We prove the theorem by showing the following “cycle” of implica-

tions:

1=2=3=4=5=6=1.

> 1= 2:

We arge by induction on the number of vertices n. We need to show that
T has n — 1 edges. The statement is clearly true if n equals one. Let T
be a tree on n greater than or equal to two vertices. By Theorem 4.4, T
has a leaf w. Hence, 7" =T — u is a tree on n — 1 vertices. Therefore, by
the induction hypothesis 7" has n — 2 edges. Since u is a leaf, 7" has one
fewer edges than 7. So, 7" has n — 1 edges.

2= 3

We need to show that 7" is connected. By definition we have that 7" is a
forest. Let k greater than or equal to one be the number of components
in T'. Every component is a tree and therefore has one fewer edges than
vertices as we just saw in proving that condition 1 implies condition 2.
Hence, the number of edges in T is n — k. Thus n — k equals n — 1 and
we have that £ equals one. So, T is connected.

106

Trees and Forests

> 3 =4

We must show that each edge is a cut-edge. By Lemma 4.6 every con-
nected graph must have at least n — 1 edges. Therefore, the removal of
any edge from T will disconnect it. So, each edge is a cut-edge.

4 = 5

We need to show that there is an unique path between each pair of vertices
in T". Since T is connected there is a simple path between every pair of
vertices in 1'. Assume that there are two vertices u and v such that there
are two distinct simple paths 7; and 5 from u to v. We can assume that
v1 is the simple path of shortest length. Because 7, is of shortest length,
the edges of v, cannot be a rearrangement of those in 7, since otherwise
one could further shorten ;. Hence, there must be an edge ¢ in 7, that
is not in ;. Now e cannot be a cut-edge since there is a walk in G — e
connecting the endvertices of e. This walk is formed by edges from v, and
the rest of v,. This is a contradiction.

5= 6:

We must show that adding any edge to 1" adds exactly one simple cycle of
length one or more. If T" has a simple cycle of length one or more, then for
every two vertices on the cycle there are at least two simple paths between
them. Now, let v and v be two vertices and v a simple path from u to v
in T. If we add an edge e between u and v, then ¢ = (v, e, u) is a simple
cycle of length one or more in T'. If there is another such cycle ¢/, then
¢ would have to contain e and by removing e from ¢’ one would get yet
another simple path from u to v.

6= 1:

We must show that 7" is indeed connected. Let u and v be vertices in 7.
By adding an edge ¢ between u and v, we obtain a single cycle of length
one or more. This cycle must contain the edge e. The removal of e yields
a simple path from u to v. Hence, T is connected and therefore a tree.

O

Depending on the situation, one of the characterizations given in Theorem 4.7
may be preferable to the others.

4.4 Inductive Proofs on Trees

107

T

Figure 4.5: The removal of any edge of a tree 1" yields two trees 77 and 75.

4.4 Inductive Proofs on Trees

We say that a graph is minimally connected if the removal of any edge disconnects
the graph. In view of this, trees on a given set of vertices are precisely the graphs
that minimally connect the vertices as we saw in characterization number 4 of
Theorem 4.7. Inductive proofs on trees arise in a natural way because every edge
is a cut-edge. In an n-vertex tree T is with edge e, the removal of e gives us
exactly two trees T} and Ty with [V(T1)| + |V (Ty)| = |[V(T)] as illustrated in
Figure 4.5. Regardless of which edge e is chosen, note that both |V (7})| and
V|(T3)| are strictly less than [V(T")|. Thus any induction hypothesis will apply.
We illustrate this inductive proof technique in the following example.

Example 4.8
In this example we prove an upper bound on the number of vertices of degree
three in a given class of trees.

Suppose n is a natural number greater than one. Consider all trees on n
or fewer vertices, where all of the vertices have degree three or less. A very
important class of trees called regular binary trees are among these. We discuss
binary and regular binary trees further in §4.8. Let B, denote the maximum
number of vertices of degree three that such a tree can have. We have the
following interesting fact:

B, < bJ ~ 1. (4.1)

108

Trees and Forests

To prove this, we can use induction on n to show that B, is less than or
equal ton/2 — 1. Then Inequality 4.1 follows directly. The statement B, is less
than or equal ton/2 — 1 is clearly true for n equals two or three, where there is
no vertex of degree three.

Assume now that n is greater than three and that the statement I3,, is less
than or equal to n/2 — 1 is true for all trees on fewer than n vertices. Let T
be a tree on n vertices and let S(T) be the set of vertices of T having degree
three. We can assume that T has the maximum number of vertices of degree
three. That is, |S(T)| equals B,. We pick v € S(T') and let its neighbors be
w1, ug, and ug. Since every edge is a cut-edge, if the edges {u,u,}, {u,us},
and {u,us} are removed from T, we form three new trees. Fori € {1,2,3} we
add the edge {u,u;} to the tree containing u;. The tree containing u; is called
T; and n; represents the number of vertices in T;. The subtrees Ty, Ts, and T3
are blocks of T'. (Blocks are discussed in additional detail in §6.5.) Figure 4.6
illustrates the situation. We note that

Ny +ng +ng =n-+2, (4.2)

since each of the trees Ty, T5, and T3 contains a copy of the vertex u. Since each
T; contains at least two vertices, u; and the copy of u, we note more importantly
that by Equation 4.2, n; is less than or equal to n — 2 for each 1.

By the induction hypothesis, each of the trees T; hasn;/2—1 or fewer vertices
of degree three. Since the set of vertices of degree three in T is a disjoint union
of the set of vertices of degree three in each of the trees T;, together with the
vertex u itself, we have

B, = [S(T)|
= [S(T)| +[S(T2)| + [S(T3)] + 1
< (G e(Zon (o

< ——1
-2

Hence, we have by induction that B, is less than or equal to n/2 — 1 for
any natural number n greater than one. Since B,, is a natural number, we have

4.4 Inductive Proofs on Trees

109

T

Figure 4.6: From the tree T" we obtain three smaller trees T}, T5, and T5.

that B, is less than or equal to |[n/2 — 1|. Because we have in general that
|z + m] = |x] + m for any real number x and any integer m (Can you see
why?), it follows that Inequality 4.1 holds for all natural numbers greater than
one. It is instructive to compare this result with Observation 4.33 for a regular
binary tree on n vertices.

Interestingly, the upper bound of B, in Example 4.8 can be reached for
an infinite number of natural numbers n. We can form a sequence of trees
Ty, T,,...,T, ... by initially letting T} be a single vertex graph. Next we let
T, be the graph obtained from 7} by connecting three leaves to the vertex of
T:. In general, for k greater than or equal to two, we obtain T}, from T} by
connecting two new leaves to each leaf of T}, as show in Figure 4.7.

By viewing each Tj_; as a subgraph of T}, we notice that every vertex of
Ty_1 has degree three in T. If we let t; be the number of vertices of the tree T},
we see that T}, has t;_; vertices of degree three plus t; — t;_; leaves for a total
of ¢, vertices. By construction, we add two leaves to each leaf of T}, to obtain
Tyt1. Thatis, tgy1 =ty + 2(t, — tg—1). Hence, the sequence (tj);>; satisfies

110

Trees and Forests

o
T 1 13 1

Figure 4.7: The first four trees in the sequence 11, 75,..., Tk, ...

the following recurrence relation:

tl = 1,
t2 = 4,
tk—l—l = 3tk — 2tk_1 for k Z 2.

One can now prove by induction that
ty=3-2"1—2forall k> 1.

(In general, to see how one can find explicit formulas for sequences given recur-
sively, we refer the reader to Chapter 5 of [27].) So, we have for each natural

number £ that
t
1S(Ty)| =ty = b’“J —1.

This shows that the upper bound of Inequality 4.1 can be reached for infinitely
many n, namely n equals ¢, for k£ a natural number.

In Example 4.8 we do not have complete freedom to choose which edge
we can remove to use our induction hypothesis to prove the lower bound given
in Inequality 4.1. Since we are not guaranteed the existence of a leaf with a
neighbor having degree three, we cannot remove a leaf and directly use the
induction hypothesis on the resulting tree.

4.5 Erdos-Szekeres Theorem on Sequences 111

For a natural number A greater than or equal to two, one could consider
all trees on n or fewer vertices where each vertex has degree A or less. That
is, where the maximum degree is A. The same argument applies in this more
general case as in the case A equals three in Example 4.8. (See Exercises 6
and 7.)

4.5 Erdos-Szekeres Theorem on Sequences

We begin this section with an application of data trees. The problem we look
at is a good exercise in computer programming and is one that occurs often in
practice. This leads us into new territory about posets and then to the proof of
the classical Erdos-Szekeres Theorem.

U Problem 4.9
Increasing Subsequence

A monotonically increasing subsequence is one in which succeeding numbers
are always larger than preceding ones. How can we find the longest monotonically
increasing subsequence in a given sequence of integers where no two integers
are the same? Suppose the given sequence is (4,1,13,7,0,2,8,11,3). This
sequence can be represented by a tree in which the vertices (except the start
vertex) represent individual numbers in the sequence, and the path from the start
vertex to a particular vertex v describes the monotonically increasing sequence
terminating at v. A tree that represents information is referred to as a data tree
by computer scientists.

As shown in Figure 4.8, our sample sequence contains four longest monoton-
ically increasing subsequences of length four. They are (4,7,8,11), (1,7,8,11),
(1,2,8,11), and (0,2,8,11). In our sequence all nodes were distinct, however,
this may not always be the case. We can still apply the technique described here
to an input where the values are not distinct. Duplicate values will never occur
on the same path based on the way our data tree is constructed. Given any
sequence it should be clear how to construct its data tree and how to determine
the sequence’s longest monotonically increasing subsequence.

As a little digression from our discussion of trees, we will discuss a beautiful
result that is directly related to Problem 4.9.

112

Trees and Forests

Start

@) L @ @ O, @ ©® O G
BDOBOLBVOOOOVRIG®VLOO®LWE ®WE A
O OOWEOR® WEWYWEW

D W D

Figure 4.8: The data tree for determining the longest monotonically increasing
sequence in (4,1,13,7,0,2,8,11, 3).

Note that in Problem 4.9 the original sequence had length ten and each of
the subsequences had length four. In fact, every sequence of distinct numbers
of length ten can be shown to have a subsequence of length four that is either
strictly increasing or strictly decreasing. Here we use the word “strictly” to
denote that the numbers in the subsequence are distinct. The following classic
theorem, due to Erdos and Szekeres, generalizes this fact.

Theorem 4.10 (Erdds-Szekeres Theorem)
Every sequence of n?> 41 distinct integers contains a subsequence of length n+1
that is either strictly increasing or strictly decreasing.

We present two proofs of this theorem. In our first proof we rely on finite
posets which were presented in Definition 1.32. The second proof relies on the
Generalized Pigeon Hole Principle. We begin by defining some new concepts and
proving some easy lemmas.

Definition 4.11
Let (S, <) be a finite poset.

1. Two elements s and s' are said to be comparable if either s < s' ors’' <'s
holds. Otherwise, they are called incomparable.

4.5 Erdos-Szekeres Theorem on Sequences

113

2. An element s € S is called a minimal (maximal) element if there is no
element s' with s' < s (respectively, s < s').

3. The set of all minimal (maximal) elements of S is denoted by min(S)
(respectively, max(S5)).

4. A collection s; = --- < s, of distinct elements of S is called a chain of
length p.
5. A collection sy,. .., s, of distinct elements of S is called an antichain of

size q if the elements are pairwise incomparable. That is, s; < s; does not
hold for any natural numbers 1 < i # 5 < q.

As an easy observation, we have the following result.

Observation 4.12
Let (S, <) be a finite poset. The following properties hold:

1. The subsets min(S) and max(S) both form antichains in S.

2. For every s € S, there is an s' € min(S) and s" € max(S) such that
s'<s<$".

PROOF:

PROPERTY 1: If there were elements s and s’ in min(S) such that s < ¢/,
then s' would not be minimal. This contradicts that s’ € min(S). Similarly,
max(S) has no comparable elements. So, both min(S) and max(S) form an-
tichains in S.

PROPERTY 2: We only show the existence of s’ since the existence of s” is
achieved in a similar way (see Exercise 13).

If s € min(S) then s < s and we are done. Otherwise, let s equal sy and find
an element s; distinct from sy with s; < sg. If 1 € min(S) then we are done.
Otherwise, there is an element s9 distinct from both s; and sy with s, < s; < 5.
One can continue in this fashion. However, since S is finite, this process has to
stop for some k for the chain s, < --- < s1 =< s, where there is no element
s" € S distinct from each s; with s” < s;. This means that s, € min(S). O

The following “folklore lemma” is key to proving Theorem 4.14.

114

Trees and Forests

Lemma 4.13 (Folklore Poset Lemma)
A poset (S, <) in which the longest chain has length p and the largest antichain
has size q has at most |S| < pq elements.

PrROOF: We prove this by induction on p—the length of the longest chain.

If p equals one, then all of the elements in S are pairwise incomparable since
s < s’ is a chain of length two. Therefore, ¢ equals |S| proving the lemma in
this case.

Let p be greater than or equal to two and assume that the lemma is true for
any poset with longest chain of length p —1 or less. Let (S, <) be a poset where
the longest chain has length p and the largest antichain has size q. Suppose
sp <X -+ = s, is a chain in S" = S \ min(S). Then by Observation 4.12,
there is an element s € min(S) with s’ < s; yielding a chain in S of length
p+ 1in S. This contradicts our assumption about (S, <). Hence, the length
of the longest chain in S’ has length p — 1 or less. Since S’ C S, the largest
antichain in S’ also has size at most ¢. So, by the induction hypothesis we have
that |S’| < (p — 1)g. By Observation 4.12, min(S) forms an antichain in S
and hence by our assumption, we have that | min(S)]| is less than or equal to g.
Therefore,

S| = |5'] + |min(S)| < g+ (p — L)g = pa.

This completes the proof of the lemma. O
We can now prove Theorem 4.14.

PROOF: Let m = n?+1 and let G,, = (ai, ..., a,,) be a sequence of distinct
integers. We form the set A,, = {(i,a;) :i € {1,...,m}}.

Any set S consisting of ordered pairs (s,t) of integers can be made into a
poset (S, <) by letting

(s,t) X (s',¢') ifand only if s < s" and t < t.

Hence, we can view A,, as the poset (4,,, <).

Note that ((i1,a;,), (¢2,Giy), - ., (ip, a;,)) forms a chain in A,,. This means
that a;, < a;, < --- < a;, Is a strictly increasing subsequence in a,,. Like-
wise, ((71,@i,), (i2,Giy), - - -, (iq,a;,)) forms an antichain in A,, which implies
that a;, > a;, > -+ > q;, is a strictly decreasing subsequence of A,,.

Assume that a,, has neither a strictly increasing nor a strictly decreasing
subsequence of length n + 1. In this case the length of the longest chain in A,,

4.6 Distance and Centers in a Tree

115

has length p less than or equal to n and the largest antichain has size ¢ less than
or equal to n. Hence, by Lemma 4.13 we have that

n*+1=m=|A,| <pg<n’

This is a contradiction. So, a,, must have a strictly increasing subsequence of
length n + 1 or a strictly decreasing subsequence of length n + 1. O

We now state a slight variant of the Erdos-Szekeres Theorem and give Sei-
denberg's proof of the result [28].

Theorem 4.14 (Erd6s-Szekeres Theorem)
If ©1,29,...,Tm,y1 are distinct real numbers then there is either an increasing
subsequence of n + 1 terms or a decreasing subsequence of m + 1 terms.

PROOF: Suppose there is no increasing subsequence of length n+1. For each
i€ {l,2,...,mn+1}, let [; be the length of the longest increasing subsequence
that begins at x;. Clearly, each [; falls between 1 and n inclusive. Therefore, by
the Generalized Pigeon Hole Principle there exist z; , z;,,...,%;,,, with

i1<i2<"‘<im+1

such that l;, = l;, = --- = [;,,., = [. By the definition of /, the sequence
Tiy, Tigy - > Tipy, Of m 41 terms must be decreasing. O

For similar results on finite posets and related advanced material, we refer
the reader to [30].

4.6 Distance and Centers in a Tree

In this section we examine a number of interesting structural properties of trees.
The tree shown in Figure 4.9 has four vertices. Intuitively, it seems that vertex
b is located more centrally than the other three vertices. We shall explore this
idea further and see if there exists a center (or centers) in a tree. Such a cen-
ter could play an important role in developing recursive algorithms for problems
on trees. For example, repeatedly removing centers would lead to smaller and
smaller subtrees. Additionally, such a center could serve an important role in net-
working applications, where nodes might communicate with each other through
the center.

116 Trees and Forests

Figure 4.9: A tree with four vertices.

Inherent in the concept of a center is the idea of distance. So we must define
distance before we can talk formally about a center. In order to speak about
distances in a precise manner, we need to define a metric! on a given set.

Definition 4.15
Let S be a set. A function D : S xS — R is called a metric on S if it satisfies
the following conditions:

1. D(s,s) =0 foralls€S.

N

(
D(s,t) > 0 for all s,t € S with s # t.
3. D(s,t) = D(t,s) for all s,t € S.
(

s,u) < D(s,t) + D(t,u) forall s, t, and u € S.

The ordered tuple (S, D) is called a metric space.

The function D in Definition 4.15 is really a measure of distance. By viewing
it as such, all of the conditions make intuitive sense as we now explain.

1. The distance from any point to itself has a length of zero.
2. The distance between any point and any other point is always positive.

3. The distance from one point to a second is the same as the distance from
the second point to the first. Hence, we can talk about the distance
between points as we do in every day conversation.

A la the metric unit system developed in France during the French Revolution to unify all
units!

4.6 Distance and Centers in a Tree

117

4. The distance from one point to a second point is always less than or equal
to the distance between the first point and a third point plus the distance
between the third point and the second one regardless of where the third
point lies. In other words, one can never take a short-cut from one point
to a second point by going through a third point. This inequality is called
the triangle inequality and must be valid for all metrics D if we want to
use D as a measure of distance.

Let us examine how Definition 4.15 applies to graph theory and in particular
to trees.

Definition 4.16
Let G be a connected graph. For u,v € V(G) the distance between u and v,
denoted D¢ (u,v), is the length of the shortest path between u and v in G.

We make a couple of observations about this definition.

Note 4.17
If G is a subgraph of G, then for any vertices v and v in V(G') we have that

Dg(u,v) < Degr(u,v).
We can also consider disconnected graphs and let
Dg(u,v) =n
whenever the vertices u and v are in different components of G.

Note that the maximum distance between two vertices in a connected graph
is n — 1. So, any distance value larger than n — 1 is sufficient to indicate two
vertices are not connected. Some authors set D¢ (u, v) equal to oo when u and
v are not connected.

Note 4.17 shows how the definition of distance can be extended so that the
distance between any two vertices is defined for any graph. When there is no
ambiguity, sometimes we omit the subscript in D¢ and just use D.

In a graph that is not a tree, there are generally several paths between a
pair of vertices. We have to enumerate all these paths and find the length of
the shortest one to determine the distance between two vertices. There may be
several shortest paths between two vertices in a graph. Example 4.18 should
clarify these concepts.

118 Trees and Forests

Figure 4.10: The distance between v; and vy in GG is two.

0 Example 4.18
In Figure 4.10 we depict a graph G' on six vertices. Here are some of the paths
between vertices v, and vy in G:

V1, G, U3, €, Vs),
v, a, vs, C, Uy, f7 U?)r

>
>
> (v1,b,v4, ¢, 03, €,09),

> (vi,b,v4, f,v2),

> (v1,b,v4, 9,05, h,ve), and
>

U1, ba V4,9, Vs, 1, Vs, ka UQ)-

There are two shortest paths: (vi,a,vs,e,vy) and (vy,b,vy, f,v2). These
paths each have length two. So, D¢ (v, vs) equals two.

Several efficient algorithms exist to find a shortest path between two vertices
in a graph. The algorithm most commonly implemented, called DIJKSTRA’S
ALGORITHM, is discussed in §15.6. By Theorem 4.7, there is only one path
between any two vertices in a tree. Thus the determination of distance is much
easier. We simply need to find the path between two vertices and determine its
length. In the tree shown in Figure 4.9, we have D(a,b) equals one, D(a,c)
equals two, D(c, b) equals one, and so on.

Clearly, the distance D¢ (u,v) between u and v in a graph G satisfies con-
ditions 1, 2, and 3 of Definition 4.15. Since Dg(u,v) is the length of the

4.6 Distance and Centers in a Tree

119

c

Figure 4.11: Eccentricities of the vertices of a tree: F/(a) equals two, F(b) equals
one, E(c) equals two, and E(d) equals two.

shortest path between vertices v and v, this path cannot be longer than an-
other path between u and v that goes through a specified vertex w. Hence,
D¢ (u,v) < Dg(u,w) + Dg(w,v). This yields the following observation.

Observation 4.19

Let G be a graph. Define Dg(u,v) equal to n if u and v are in different
components. The distance function D¢ : V(G) x V(G) — N C R between
vertices of a graph is a metric.

Referring back to our original topic of the relative location of different vertices
in a tree, let us define the term eccentricity of a vertex in a graph. This too is
a useful concept in graph algorithms.

Definition 4.20
Let G be a graph and u € V(G).

> The eccentricity E(u) of u in G is the distance from u to the vertex farthest
from u in G. That is,

E(u) = max({Dg(u,v) | v € V(G)})
> A vertex with minimum eccentricity in a graph is called a center.

We consider an example to clarify this definition.

Example 4.21

The eccentricities of the four vertices shown in Figure 4.11 are F(a) equals two,
E(b) equals one, E(c) equals two, and E(d) equals two. Hence, vertex b is the
center of this tree.

120

Trees and Forests

3 3

Figure 4.12: A tree with two centers.

On the other hand, consider the tree shown in Figure 4.12. Each of its
six vertices is labeled with their eccentricities. This tree has two vertices with
minimum eccentricity. Therefore, this tree has two centers.

The reader can easily verify that in general a graph has many centers. For
example, in the cycle graph (), every vertex is a center. Konig proved the
following interesting theorem for trees.

Theorem 4.22
Every tree has either one or two centers.

PROOF: Let T be a tree with two or more vertices. The maximum distance
from a given vertex u to any other vertex v occurs only when v is a leaf. By
Theorem 4.4, T must have two or more leaves. If we delete all of the leaves from
T, it follows by Note 4.5 that the resulting graph 7" is still a tree. What can we
observe about the eccentricities of the vertices in 7'? A little deliberation reveals
that the removal of all of the leaves from T uniformly reduces the eccentricities
of the remaining vertices (meaning the vertices in 7”) by one. Therefore, all
of the vertices that 7" had as centers remain centers in 7”. From 1" we can
again remove all of the leaves and get another tree 7"”. We can continue this
process until there is either one vertex, which is the center of T', or two vertices
connected by an edge, which are the two centers of 7. [

This process is illustrated in Figure 4.13. In this case there were three itera-
tions required and the resulting graph had only a single vertex. Thus the original
tree T'" has just one center.

The next corollary follows directly from the proof of Theorem 4.22.

Corollary 4.23
If a tree T has two centers, they must be adjacent.

4.6 Distance and Centers in a Tree

121

6 6
6 6 4
6 I
C C
o—0 o —0 ® o —O0 0
6 5 [4 3 4 5g% 4 3 2 3 4
5 T T
(a) (b)
C C
o0 o o
2 1 2 0
TII

() (d)

Figure 4.13: Finding a center of a tree.

Next we consider an application of these concepts to sociology. There are
many other applications of this material as well, particularly in decomposing trees
into subtrees in computer science problems.

Example 4.24

Suppose that communication among 14 persons in a society is represented by
the graph T" shown in Figure 4.14, where the vertices represent the individuals.
Two vertices are joined by an edge if those two people communicate. Since the
graph is connected, we know that each member can be reached by any other
member, either directly or through other members. It is important to note that
the graph is a tree and so minimally connected. The group cannot afford to lose
any member. If it does, some individual(’s) will become isolated.

The eccentricity of each vertex u represents how close u is to the farthest
member of the group. In Figure 4.14 the person corresponding to vertex c
should be the leader of the group if closeness of communication is the criterion
for leadership. Note that any other leader would have more communication hops
to some individual. This might be an undesirable situation for a therapy group.

122

Trees and Forests

T

Figure 4.14: Finding the leader of a group.

In a tree the eccentricity of a center is sometimes called the radius. For
instance the radius of the tree 7" shown in Figure 4.14 is three. On the other
hand, the diameter of a tree is defined as the length of its longest path. It is
left as an exercise for the reader to show that a radius in a tree is not necessarily
half of its diameter (see Exercise 21).

4.7 Rooted Trees

In this section we discuss trees having one distinguished vertex called the root.
There are many applications of rooted trees in computer science, engineering,
mathematics, and other fields. We begin by defining rooted trees.

Definition 4.25
Let T be a tree and r € V(T'). A rooted tree is the ordered tuple (T,r). The
vertex r is called the root of T

For instance, in Figure 4.3 the vertex N is distinguished from the rest of
the vertices because this is where the mail sorting begins. We say the mail tree
is rooted because of the existence of this root N. Similarly, in Figure 4.8 the
“Start” vertex can be considered as the root of this tree.

Example 4.26
Figure 4.15 shows all rooted trees on having four vertices.

Generally, the term tree means tree without having any root specified. How-
ever, in the context of rooted trees, the trees without a distinguished root are
sometimes called free trees to differentiate them from rooted trees.

4.7 Rooted Trees

123

NN

o0 0 0~

Figure 4.15: All rooted trees with four vertices.

At this point, it will be helpful to introduce some additional terminology to
facilitate our discussion on trees.

Definition 4.27
Let (T, r) be a rooted tree with at least two vertices, u € V (T') be a vertex that
is not the root r, and p, the unique path between r and u in T

1. The parent of u is the neighbor of u on p, and is denoted by parent(u,).

2. Any neighbor of u other than parent(u) is called a child of u. The set of
children of u is denoted by children(u).

3. Two vertices are called siblings if they have the same parent.

4. Any vertex on p, other than u is called an ancestor of u. The set of
ancestors of u is denoted by ancestors(u,).

5. A vertex v that has u as an ancestor, that is v € ancestors(u), is called
a descendant of u. The set of all of the descendants of a vertex u are
denoted by descendants(u).

The terminology in Definition 4.27 is directly related to family trees, where
the root represents the oldest person and an edge is always present between a
parent and a child. We usually draw the figures of rooted trees from the top
downwards as we see in the next example.

0 Example 4.28
Figure 4.16 depicts a rooted tree (T, r). For the vertex u € V(T'), we have the

124

Trees and Forests

(T7)

Figure 4.16: A rooted tree and relationships between its vertices.

following:

parent(u) = a
children(u) = {b,c,d}
ancestors(u) = {a,r}
descendants(u) = {b,c,d,e, f,g,h}
The vertices e and f are siblings. The vertices ¢ and f are not siblings. Note

that every vertex in T is a descendant of r. That is, every vertex of T' has r as
an ancestor. There are no descendants of the leaves of T.

In rooted trees, a vertex's position in the representation of the tree is im-
portant when reading from left to right, particularly in binary trees. This is
highlighted in the following definition.

Definition 4.29
A rooted tree (T,) in which the order of every set of siblings is specified is called
an ordered rooted tree.

Example 4.30 will clarify this definition.

4.8 Binary and Regular Binary Trees 125

Figure 4.17: Two distinct ordered rooted trees that are identical when viewed as
rooted trees.

0 Example 4.30
Figure 4.17 shows two ordered rooted trees. They are the same when considered
Just as trees or even as rooted trees. They are not the same ordered rooted tree
because the order of the siblings {a,b,c} differs. In the first tree the order is
(a,b,c) but in the second tree the order is (a, c,b).

In the next section we focus on special classes of ordered rooted trees.

4.8 Binary and Regular Binary Trees

Binary trees are an interesting class of ordered rooted trees because they are used
extensively in the study of computer search methods, in modeling problems, and
in coding problems.

Definition 4.31

A binary tree is an ordered rooted tree in which each vertex has at most two
children. Each child of a vertex is called either the left child or the right child. A
subtree rooted at the left (right) child of a vertex u is known as u’s left subtree
(respectively, right subtree).

Figure 4.18 depicts a sample binary tree. In a binary tree drawing, the position
of a vertex in the picture determines whether it is a left or right child. For
example, in Figure 4.18 vertex a is a left child of r and vertex b is a right child
of r.

126 Trees and Forests

Figure 4.18: A sample binary tree.

In many applications of “binary-like” trees the ordering of the children is not
important but it is required that each non-leaf vertex have exactly two children.
For example, various algorithms in computer science require such a tree as input.
Usually, we refer to this particular class of trees as the regular binary trees. \We
define them in what follows.

Definition 4.32
A regular binary tree is a tree meeting the following conditions:

1. It has three or more vertices.

2. There is exactly one vertex r of degree two.

3. All vertices other than r have degree one or three.

Figure 4.19 is a regular binary tree. According to Definition 4.31, the vertex
of degree two is distinct from all other vertices in a regular binary tree, so this

vertex can serve naturally as the root of the tree. Adopting this viewpoint, every
regular binary tree can be thought of as a restricted, rooted tree.

Two properties of regular binary trees follow directly from the definition.

Observation 4.33
Let T' be a regular binary tree on n vertices. We have the following:

1. The number of vertices of 1" is odd.

2. The number of leaves in T is (n +1)/2.

4.8 Binary and Regular Binary Trees

127

Figure 4.19: A regular binary tree rooted at vertex r of degree two.

PROOF:

PROPERTY 1: Note, there is exactly one vertex of even degree in a regular
binary tree. By Corollary 1.25 the total number of all other vertices is even.
Therefore, the number of vertices in 1" is odd.

PROPERTY 2: Let [be the number of leaves in T'. There are exactly n—[(—1
vertices of degree three. Since T is a tree, we have by Theorem 4.7 that T" has
n — 1 edges. Therefore, by the Hand Shaking Theorem (Theorem 1.24), the
total number of edges is

n—lz% Z d(u) =

ueV(T)

(l+2+3n—-1-1)).

DN | =

This yields that [equals (n+1)/2. O

It follows from Observation 4.33 that the number of internal vertices in a
regular binary tree is one less than the number of leaves. The next concept
allows us to talk about the position of a vertex in a rooted tree.

Definition 4.34

Let (T,r) be a rooted tree. For a vertex u € V(T), the distance Dr(u,r) is
called the level of the vertex u in the rooted tree. The level of u is denoted [(u).
The maximum level in (T, r) is called the height of (T,r) and is denoted .
A rooted tree of height h is called an (h + 1)-level tree.

For all rooted trees, the root is at level zero. Let us examine the level concept
with an example.

128

Trees and Forests

B | — Level0
4 /\.\ — Level 1
/()\ — Level 2

/(\../ \/.\ — Level 3
./ \. ./ \. — Level 4

Figure 4.20: A 13-vertex, 5-level regular binary tree.

[0 Example 4.35

In Figure 4.20 we show a 13-vertex, 5-level regular binary tree. The height of
this tree is four.

One of the most straightforward applications of regular binary trees is in
search procedures. Each vertex of the tree represents a test with two possible
outcomes. We start at the root. The outcome of the test at the root sends us
to one of the two vertices at the next level, where further tests are made and
so on. Reaching a specified leaf (the goal of the search) terminates the search.
Often in a search procedure, it is important to construct a regular binary tree
on n vertices that minimizes the distance between the root and the leaves. This
makes for efficient searching. Clearly, only the root is at level zero, level one
contains at most two vertices, level two contains at most four vertices, and so
on. Therefore, the maximum number of vertices in a (k + 1)-level regular binary
tree is

90 4 9l 1 92 4 ... 9k _oktl _

Since k is less than or equal to /.., we have in particular that
2lmax+1 _ 1 2 n.
Since [, 1S @ natural number, we can deduce that

Imax > [logy(n+1) —17].

On the other hand, we can maximize the distance between the root and a
leaf of a regular binary tree on n vertices by having exactly two vertices at each

4.8 Binary and Regular Binary Trees 129

Figure 4.21: (a) The shortest and (b) the tallest 11-vertex regular binary trees.

level except level zero. Therefore,

n—1
lmax: 5

With these observations in mind, we have the following lemma.

Lemma 4.36
For any regular binary tree (T,r) on n vertices, the height .., satisfies the

following:
-1
Mogy(n + 1) — 1] < lyax < —

The next example illustrates trees meeting the bounds of Lemma 4.36.

[0 Example 4.37
For n equals 11, regular binary trees realizing the extremes of Lemma 4.36 are
shown in Figure 4.21. The first one has height three equal to [log,(11 + 1) — 1].
The second one has height five equals to (11 — 1)/2.

It should be clear that search trees of a low height are more efficient than
deeper search trees when the items stored at the leaves are equally likely to
be selected. Computer scientists have developed many different types of tree-
like data structures for efficient storage and retrieval of information. Some of
these structures are B-trees, heaps, red-black trees, splay trees, and 2-3 trees.
These concepts can be pursued through any of the algorithms books cited in the
references.

130

Trees and Forests

4.9 Path Length in a Tree

In the analysis of algorithms, we are sometimes interested in computing the sum
of the levels of all of the leaves in a tree 1. This quantity is known as the
path length of T. For example, the path length of the regular binary tree in
Figure 4.19 is

1+4+4+3+3+4+4=23.

The path lengths of the trees in Figure 4.21 are 16 and 20, respectively. The
path length of a tree is important. This quantity is often directly related to the
execution time of an algorithm performed on the tree. Thus it is desirable to
construct trees with small path lengths. Our next observation ties in with this
issue.

Observation 4.38

Among all regular binary trees on n vertices, the ones with the minimum path
length are precisely the regular binary trees with the minimum possible height of
Imax = [logy(n + 1) — 1] and where all of the leaves are either on level . — 1
or lmax.

PROOF: Let n be given and let k£ equal [,.x. Note that there is at least
one leaf on level k. Since the tree is a regular binary tree, the leaf has a sibling.
Hence, there are at least two leaves at level k.

Assume now that 7" is a regular binary tree with a leaf on level i less than
or equal to k — 2. If the path length of 7" is L, then by removing two leaves at
level £ from 1" and connecting them to the leaf on level 7, we get another binary
tree 7" having three different leaves. Namely, the two removed leaves, whose
level changed from k£ to i+ 1, and the parent of these leaves that becomes a leaf
in T" at level k — 1. Note, the leaf at level i in T" where we connected the two
removed leaves is not a leaf in T”. Hence, the path length L’ of 1" is reduced
from T"'s path length by 2k — 2(i + 1) and increased by (k — 1) — i. Therefore,
we have that

L'=L—-02k—=20+1)+(k—1)—i) <L-1.

This path length is strictly less than that of 7. Note that as a result of this
procedure, we now have one less leaf on level i € {1,...,k — 2}. We can
continue in this manner until there are no leaves at any level other than the two

4.9 Path Length in a Tree 131

T T’

Figure 4.22: The path length of 1" is greater than that of 1".

deepest levels of the newly formed tree. At this point, we have achieved the
minimum path length. O

The next example illustrates one step of the procedure outlined in Observa-
tion 4.38 for reducing the path length of a regular binary tree.

[0 Example 4.39
In Figure 4.22 the path length of T is

L=3+3+3+3+1=13.

We form a new tree 1" by carrying out one step of the procedure described in
Observation 4.38. The path length of T is

LI'=3+34+2+24+2=12<13=L.

Notice that T"’s path length cannot be reduced any further. Thus the procedure
terminates.

More generally, one can consider the concept of weighted path length. In
some applications, every leaf u; of a regular binary tree has associated with it a
positive real number w;. Given weights wy, ..., w,, the problem is to construct
a regular binary tree having m leaves that minimizes the following quantity:

m

S=> w; - I(u) (4.3)

=1

132

Trees and Forests

Let us illustrate the significance of this problem with a simple example. An
example that every thirsty person, who is stranded in the middle of Orlando on
a hot summer day, can relate to.

Example 4.40

An old-fashioned Coke machine is to identify by a sequence of tests the coin that
is put into it. Only pennies, nickels, dimes, and quarters can go through the
machine’s coin slot. Let us assume that the probabilities of a coin being a penny,
a nickel, a dime, and a quarter are 0.05, 0.15, 0.5, and 0.30, respectively. Each
test has the effect of partitioning the four types of coins into two complementary
sets and asserting the unknown coin to be in one of the two sets. Thus with four
coins we have 23 — 1 such tests. If the time taken for each test is the same, what
sequence of tests will minimize the expected time taken by the Coke machine to
identify the coin? (And thus allow you to buy your soda more quickly.)

The solution requires the construction of a regular binary tree. The tree
has four leaves (and therefore three internal vertices) uy, us, uz, and uy with
corresponding weights w; = 0.05, wy = 0.15, wy = 0.5, and wy = 0.3 such
that the quantity S of Equation 4.3 is minimized. Let t be the time taken for
each test. The solution is given in Figure 4.23(a) for which the expected time
is S equals 1.7t. Contrast this with the second regular binary tree for which
the expected time is S equals 2t. A general algorithm for constructing a regular
binary tree with a minimum weighted path length was given by Huffman [19].
The resulting regular binary tree is called a Huffman tree.

In this problem of a Coke machine, many interesting variations are possible.
For example, not all possible tests may be available, or they may not all consume
the same amount of time. The interested reader can explore these variations
through the references.

Regular binary trees with minimum weighted path length have also been used
in constructing variable-length binary codes, where the letters of the alphabet
(A,B,...,7Z) are represented by binary numbers. Since various letters have
different frequencies of occurrence (frequencies are interpreted as weights wy, ws,
..., Wag), a regular binary tree with minimum weighted path length corresponds
to a binary code of minimum cost. Such a code is called a Huffman coding.
For example, the letter “e” occurs much more frequently in the English language

[T 1] w1

than does the letter “x.” Therefore, it makes sense to give the letter “e¢” a

[Tl

smaller code word than the letter “x” when building a good coding. A Huffman

4.10 Exercises

133

Dime Not dime

Nickel or

0.5 Quarter Not quarter Dime or
' quarter

Not penny

Penny Dime Nickel Quarter

0.05 0.15 0.05 05 015 03
(a) S=1.7 (b) S=2

Figure 4.23: Two regular binary trees with weighted leaves.

code represents the best possible coding in the sense of providing the shortest
code words on average.

For more information on minimum-path regular binary trees and their appli-
cations, the reader is referred to Knuth [21].

4.10 Exercises

1. Write down three applications of trees to every day issues that were not
mentioned already in the text. Describe each application in a couple of
paragraphs.

2. Draw all trees of n unlabeled vertices for n equals 1, 2, 3, 4, and 5.

3. Sketch a tree for sorting people based on nine digit social security numbers.
How many vertices does such a tree have? How many leaves?

4. Imagine a tree for sorting cars based on license plate numbers. Suppose
each license plate has exactly eight symbols and each symbol can be any
capital letter or a digit. How many vertices does such a tree have? How
many leaves?

5. It can be shown that there are exactly 11 unlabeled trees on seven vertices.
(Figure 4.2 does this for n equals six.) Draw these eleven trees making
sure that no two are isomorphic.

134

Trees and Forests

6.

10.

11.

12.

13.

14.

Let A be greater than two. Consider all trees on n vertices where each
vertex has degree A or less. Let B,,(A) denote the maximum number of
vertices of degree A that such a tree can have. Prove by induction that

B, (A) < M:QIJ (4.4)

[Hint: This is a generalization of Example 4.8.]

Show that the bound in Exercise 6 is tight for infinitely many positive natu-
ral numbers n. Do this explicitly or recursively by constructing a sequence
(t;(A));>1 such that for each n = t;(A) equality holds in Inequality 4.4.

State necessary and sufficient conditions on an ordered n-tuple of positive
integers (dy,...,d,) such that there is a tree on vertices uy, ..., u, with
dp(u;) = d; for each i € {1,...,n}.

Let A be greater than two. Consider all trees where each vertex has degree
A or less, and where the longest path is of length [or less. Show that
the maximum number leaves., of leaves among such trees satisfies the

following:
leavesya < A(A — I)WQ_H.

Use a tree to determine all of the strictly decreasing subsequences of the
sequence (8,9,10,11,5,6,7,1,2,3,4).

Use a tree to determine all of the strictly decreasing subsequences of the
sequence (5,7,3,8,6,7,5,3,0,9,5).

Let A =1{1,2,3,4,5,6,7,8}. Consider the finite poset (A, <). If possible,
give two elements that are comparable and two that are incomparable.
Specify a minimal and a maximal element. Specify min(A) and max(A).
Give a chain of longest length and an antichain of largest size. Show how
Lemma 4.13 applies to this poset.

Let (S, <) be a finite poset. Show that for any s € S there is an s’ €
max(S) with s < s".

Given a sequence of 100 distinct integers, what is the length of the longest
strictly increasing or strictly decreasing subsequence you can rest assured
it contains? How about for a sequence of 1,037 distinct integers?

4.10 Exercises 135

Figure 4.24: Compute the distance between each pair of vertices as requested in
Exercise 17.

15.

16.

17.

18.

19.

Figure 4.25: Compute the eccentricity as requested in Exercise 18.

Is usual addition (+) a metric on N? Which properties hold?
Define a function on N that is a metric. Prove your function is a metric.

For the graph shown in Figure 4.24 label the vertices and specify the
distances between all pairs of vertices.

What is the eccentricity of the graph shown in Figure 4.257

For all natural numbers n, what is the eccentricity of K,? How many
centers does K, have?

136

Trees and Forests

20.

21.

22.

23.

24.

25.

26.

27.

28.

Suppose you delete a center from a tree thereby separating the tree into
several components. Can you prove any general statements about the
maximum size of these components in terms of the original size of the
tree?

Give an example of a tree where the diameter is not twice the radius. Under
what condition are the diameter and radius the same?

As was done for trees at the end of §4.6, we can define the diameter of a
graph G by
diameter(G) = D =d.
iameter(G) errel‘z})((G) a(u,v)
Let A greater than two be the maximum degree of a vertex in G. If G is
simple and connected show that

A(A—1)¢ -2
) e

Can a tree ever have more parents than children? Explain your answer.

Consider the rooted trees where all of the internal vertices have degree A
greater than one. Such a tree is called a full A-ary tree. Given that the
height of a full A-ary tree is h, find a formula for the number of leaves
of such a tree and a formula for the number of internal vertices. What
happens when A is fixed and h grows large?

Draw all unlabeled rooted trees on n vertices for n equals 1, 2, 3, 4, and
5.

Is it possible to have a tree with more than five vertices such that every
vertex except the root and leaves has exactly the same number of ancestors
and descendants? Explain.

Draw the regular binary trees on nine vertices.
Write a definition for regular binary trees that is equivalent to the one

given in Definition 4.32 but that is expressed using the concept of internal
vertices.

4.10 Exercises

137

29.

30.

31.
32.

33.

Draw all unlabeled regular binary trees with six leaves. Find the path length
of each. [Hint: Distribute the 11 vertices (because 5 + 6 = 11) among
different levels. Observe that level zero has exactly one vertex, level one
has exactly two vertices, level two can have either two or four vertices, and
so on. There are six such trees and two of them are shown in Figure 4.21.]

Suppose you are given eight coins and are told that seven of them are of
equal weight, and that one is either heavier or lighter than the rest. You
are provided with an equal-arm balance for comparing coins. You can only
make three weighings. Sketch a strategy in the form of a decision tree for
identifying the non-conforming coin as well as for finding out whether it is
heavier or lighter than the rest. (Can you solve this problem for nine coins
instead of eight?)

Draw trees having path lengths of 7, 12, and 24.

For what natural numbers n can you draw trees having path length n?
How about binary trees? How about regular binary trees?

Suppose you want to code words over the alphabet {a,b, ¢, d, e, f, g} into
the binary alphabet {0, 1}, where the frequencies that these letters occur
inare .15, .1, .1, .1, .3, .1, and .15, respectively. Devise a Huffman code
for this problem, draw its corresponding Huffman tree, and code the phrase
“feed bad dead cage.”

138 Trees and Forests

