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Planar Graphs

Chapter Goals

Define planar graphs, and dis-
cuss graphs embeddable in var-
ious surfaces.

Present Euler's Formula for pla-

Present a characterization of pla-
nar graphs in the Kuratowski-
Wagner Theorem.

Define  homeomorphic graphs,

contraction, and minors of
graphs.

nar graphs and its consequences.

7.1 Introduction

Throughout this book we have represented vertices by dots and edges by lines or
curves. The dots help us distinguish vertices from the intersection of edges. The
graph in Figure 1.17 has four vertices. Its edges e and f intersect in the figure
at a point in the plane that does not represent a vertex. Some graphs may be
drawn in the plane so that any intersection of edges is a vertex. Other times, we
may try to draw a given graph in this manner without any success. Despite our
best efforts, it may be difficult to determine if this is possible. In this chapter
we address the following important question: “Is it possible to draw a graph G
in a plane without edge crossings?” By edge crossings we mean intersections of
edges that are not vertices.
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Figure 7.1: The plane surface P.

In §7.2 we provide basic definitions and a discussion about embeddings in
surfaces. We prove a graph is planar if and only if it can be embedded in a sphere.
In §7.3 we examine additional properties of planar embeddings. §7.4 describes
Euler’s formula for planar graphs and its various consequences. Homeomorphic
graphs, contraction, and minors are examined in §7.5. In §7.6 we present part of
the proof of the Kuratowski-Wagner Theorem that characterizes planar graphs.

7.2 Embeddings in Surfaces

The planarity question is of great significance in graph theory from a theoretical
and a historical point of view. In addition, planarity and other related concepts
are useful in many practical situations. For instance in the design of circuits,
electrical engineers want to minimize the number of layers. Another example is
the “Three Utilities Puzzle,” Problem 1.3. Solving this puzzle is equivalent to
determining if a particular graph can be drawn in a plane without edge crossings.
Before we attempt to “draw a graph in the plane,” though let us examine the
meaning of “drawing” a graph in the plane and various surfaces more closely. In
the following, we assume familiarity with the set of real numbers R, and the two
and three dimensional Cartesian products, R? and R®.

The next convention addresses the four types of surfaces we talk about in
this book.

0 Convention 7.1
Let g be a natural number. We have the plane surface P = R x R = R?, the
sphere surface S? = {(z,9,2) € R® : 22 + 3? + 22 = 1}, the torus surface

T denoting the usual torus and embedded in R?, and the g-torus surface T
embedded in R®.

U Remark 7.2
The usual torus T is really Ty in the general setting. The surface T, is a g-fold
torus with g holes in it.
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Figure 7.2: The sphere surface S2.

Figure 7.3: The torus 7.

Figures 7.1, 7.2, 7.3, and 7.4 depict these four surfaces. The next definition
makes precise the notion of drawing a graph in a particular type of surface.

Definition 7.3
Let G be a graph and S a surface.

> We say that GG is embeddable in S if G has a representation in S in the
following way:

1. The vertices in V(G) are represented by distinct points in S.

2. The edges in E(G) are represented by distinct continuous curves
[0;1] — S.

3. Curves representing the edges can only intersect each other at their
endpoints.

> We say that G is planar if it can be embedded in the plane P.

> A graph G is planar if it can be drawn in the plane with no edge crossings.
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Figure 7.5: The 2-torus can be viewed as a sphere with two handles attached to
it.

> A plane graph of G is a drawing of G such that there are no edge crossings.

[l Remark 7.4
1. Since our surface always sits in the real three dimensional space R*, a curve
v :[0;1) — S is continuous if and only if it is continuous when we view it
as a function mapping [0; 1] to R?.

2. If v :[0;1] — S is a curve that represents an edge, then the endpoints of
this curve, v(0) and (1), represent the endvertices of the corresponding
edge.

3. One can view the 2-torus as a sphere where we have added two “handles”
on it as shown in Figure 7.5. One can deform the g-torus into a sphere
with g handles in a continuous fashion (that is, without cutting the surface
nor closing any holes) and vice versa. Hence, a graph is embeddable in T,
if and only if it is embeddable in a sphere with g attached handles.

For the most part, we will be concerned with planar graphs and their embed-
dings in the plane P. For planar graphs we have the following theorem.
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' = 7(r)

Figure 7.6: The stereographic projection.

Theorem 7.5
A graph is planar if and only if it can be embedded in the sphere S2.

PROOF: Imagine that we have the sphere S? lying on the plane P as shown
in Figure 7.6. The sphere and the plane have exactly one point in common. This
point is called the “south pole,” and is denoted by S. The opposite point of the
sphere is called the “north pole,” and is denoted by N.

For each point = on the sphere, not including the north pole, the line segment
from N through x intersects the plane P in exactly one point z'. Consider the
stereographic projection m defined by

m:S*\{N} — P, where
w(z) = 2.
This map is bijective, and moreover, both 7 and its inverse 7! are continuous.
This implies that if £ is a continuous curve in S?, then 7(€) is a continuous curve
in P and vice versa.

If G is a graph that has an embedding G’ in S?, then clearly we can move
the embedding G’ in such a way that G’ is contained in S\ {N}. In this case
7(G") is an embedding of G in the plane P. Thus G is planar. Likewise, if G
has a planar embedding G” in the plane P, then 77'(G") is an embedding of G
in S2\ {NNV}. In particular, this is an embedding of G in S%. Hence, we have the
theorem. O

Theorem 7.5 shows that for our purposes the plane P and the sphere S? are
equivalent.
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Assume that a graph G is embeddable in a surface S. In this case we have
an embedding G’ of G in S. All of the graph-theoretic information of G can be
interpreted from the geometric embedding G'. Strictly speaking, G and G’ are
not the same thing since G is an abstract graph and G’ is a subset in R®.

Convention 7.6

For a graph G that is embeddable in a surface S, we call the actual embedding
G' of G in S the surface-S graph of G, or just a surface graph when the type is
not important. In particular, if S is the plane P then we call the embedding a
plane graph. In this case we talk about plane G instead of a graph G together
with a plane embedding G'.

7.3 More on Planar Embeddings

Let S be a surface. As one can imagine, a continuous curve 7 : [0; 1] — S can be
arbitrarily long. It can have many twists and turns, so the image of a continuous
curve in the plane P can be quite complex. Hence, it may have appeared that
the ability to draw a planar graph in a plane depended on the ability to draw
many crooked lines through devious routes. This is not the case. The following
important and somewhat surprising result of Fary [11] tells us that there is no
need to bend edges to avoid edge crossings in drawing a planar graph.

Theorem 7.7 (Fary Embedding)
Any simple planar graph GG can be embedded in the plane such that every edge
is drawn as a straight line segment.

We omit the proofs of the theorems in this section as they often require
technical facts from real analysis that we do not need elsewhere in this book.

Definition 7.8
An embedding of a simple planar graph in the plane such that every edge is
drawn as a straight line is called a Fary embedding.

Note 7.9 .
Recall that if & = (a1, ay) and b = (by,by) are two points in the plane, then the

line segment between a and b can be given by

y(t) = (1 = t)a+th = ((1 — t)ay + tby, (1 — t)ay + tby).
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Figure 7.7: The line segment from @ to b in the plane.

Here, v(0) = @ and v(1) = b as illustrated in Figure 7.7.

The next example depicts a Fary embedding of a graph.

Example 7.10

Consider the two plane graphs in Figure 7.8. They both are embeddings of the
same graph, but the one on the right has all of its edges represented by straight
line segments. This is a Fary embedding.

From a given plane graph GG we can get all of the graph-theoretic information
we need. However, we actually get much more since GG is a subset of the plane
P, which has many properties of its own. The following definition leads us in
this direction.

Definition 7.11

Let f be a natural number greater than zero. If G is a plane graph in P, then
there are regions Fi,...,F; in P such that P\ G = Fy U ---U F; and the
following conditions are satisfied:

1. The sets F1, ..., Fy are pairwise disjoint. That is, ;N F}; is empty for all
© not equal to j.

2. Foreachi € {1,...,f} and every two points z,y € F;, there is a contin-
uous curve from x to y that does not intersect GG.

3. Each continuous curve from x € F; toy € Fj, where i does not equal j,
intersects G at some point.

Each region F; is called a face of the plane graph G.
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Figure 7.8: The plane graph on the right is a Fary embedding of the graph on
the left.

Figure 7.9: The plane graph G has seven faces: Fi,..., F7.

0 Note 7.12
Definition 7.11 can made for any surface S in R3. That is, we can talk about
faces of sphere graphs, torus graphs, and general g-torus graphs in the same way
as we do for plane graphs.

The next example illustrates Definition 7.11.

0 Example 7.13
Consider the plane graph shown in Figure 7.9. It has 8 vertices, 13 edges, and 7
faces. Note that 8 —13+7 = 2 for this plane graph. We will see in Theorem 7.19
that this relation between the number of vertices, edges, and faces of a plane
graphs always holds. Any embedding of the underlying graph of a plane graph
always has the same number of faces. In our case there are seven.

U Note 7.14
In the plane graph in Example 7.13 there is exactly one face, namely Fy, that
is unbounded. By this we mean that it can contain the interior region of a
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rectangular square of an arbitrary size. This face is called the infinite face of the
plane graph. The other faces are all bounded and can each be contained within
a square of a certain size.

Consider a plane graph G in the plane P with f faces Fi,..., F}, where
Fy is the infinite face. Let 7+ € {1,..., f} and let us put the sphere S? on P
such that the south pole of S? touches a point inside the face F;. Now apply the
inverse stereographic projection and obtain an embedding of G on the sphere S2.
Next roll the sphere S?, with the embedding of G on it, in such a way that the
former south pole becomes the north pole. At this point apply the stereographic
projection and get a plane graph G’, which is isomorphic to our original plane
graph G. In this new plane graph G’ the face F; has become the infinite face
and the earlier infinite face F; has become a bounded face. From this we obtain
the following.

Theorem 7.15
Every planar graph G can be embedded in the plane in such a way that any
specified face can be made the infinite face.

U Note 7.16
For all surfaces S, other than the plane, the faces of a surface-S graph are all
bounded in the sense that they can each be contained in a box of a certain size.
In particular, every face of a graph embedded in a torus is bounded.

The next theorem will be useful later in the chapter.

Theorem 7.17
For a plane graph GG we have the following:

1. A tree has only one face.

2. Jordan Curve Theorem (restricted version): If G is a plane embedding of
a cycle graph, then G has precisely two faces. One face is formed by the
region “inside” the cycle and one face is formed by the region “outside”
the cycle.

Next is the general version of the Jordan Curve Theorem, which is hard to
prove in a precise manner.
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Theorem 7.18 (Jordan Curve)

If v : [0;1] — P is a continuous and closed curve (That is, v(0) = (1) such
that v restricted to [0; 1[=[0; 1]\ {1} is an injective map.) then P\ v([0;1]) is
a disjoint union of two connected regions Sy and Sy (see [24] for further details).

7.4 Euler’'s Formula and Consequences

One of the most important properties of planar graphs is given in Theorem 7.19.
This result is due to Leonhard Euler.

Theorem 7.19 (Euler’s Formula)
For a connected plane graph with n vertices, e edges, and [ faces we have

n—e+f=2.

PrROOF: We use induction on f, the number of faces of (G, to prove the
result.

If f equals one then GG cannot contain any cycles. Since GG is connected, it
must be a tree by definition. By Theorem 4.7 ¢ equals n — 1 and we have

n—e+f=n—(n-1)+1=2.

If f is greater than one then by Theorem 7.17(1) G cannot be a tree, and
hence has a cycle. Let ¢ be an edge on the cycle. By Theorem 7.17(2) ¢ is on
the boundary of two distinct faces S and S’. By removing the edge ¢, the two
faces S and S’ merge and form a new face S”. Since G\ ¢ now has n vertices,
¢/ = e—1 edges, and f' = f —1 faces, the induction hypothesis applies to G\ c.
We have

2=n—-¢e+f=n—e+f

completing the proof of the theorem. O

Euler's Formula generates some interesting corollaries.

Corollary 7.20
Let G be a simple planar graph on n vertices having e edges. The following
properties hold

1. The number of edges e is less than or equal to 3n — 6.
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2. If G has no 3-cycles, then e is less than or equal to 2n — 4.

PROOF: Let Fi,..., Fy be the faces of a plane embedding of G. If f equals
one then G is a forest and hence e is less than or equal to n — 1. This implies
the corollary. Otherwise, let ¢; be the number of edges that bound the face F;
for each i € {1,..., f}. Since each edge of G bounds either one or two faces,
when we sum all of the e; edges, we count each edge in GG either once or twice.

Hence, we have
f

Zei < 2e. (7.1)

i=1
Each bounded face F; is bounded by at least three edges since GG is simple.
Therefore, we have that e; is greater than two for each . So, we get

f

Zei > 3f. (7.2)

i=1
From Inequalities (7.1) and (7.2), we have
3f < 2e. (7.3)
By Inequality (7.3) and using Theorem 7.19, we obtain
e=3e—2e<3(e—f)=3n—2)=3n—6,
proving the first inequality of the theorem.

If G has no 3-cycles, then each face F; is bounded by at least four edges.
Therefore, we have ¢; is greater than three for each i. Hence, Inequality (7.2)

becomes
f
i=1

From this and Inequality (7.1), we get 4f < 2e so 2f < e. This coupled with
Theorem 7.19 yields

e=2—e<2e—f)=2(n—-2)=2n—4,

proving the second inequality and thereby completing the proof. O

The next example illustrates how Corollary 7.20 can be used to prove that
certain graphs are not planar.
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0 Example 7.21

Consider the complete graph K5. Since it has n equals five vertices and e =
5(5—1)/2 =10 edges, we have that

e=10>9=3n—6.

By Corollary 7.20, K5 is not be planar.

In the same manner consider the complete bipartite graph K3 5. Since it has
n equals six vertices and e = 3 -3 = 9 edges, we have

e=9>8=2n—4.

Since K33 has no 3-cycles, it is not planar either.
This solves Problem 1.3.

As we shall see later, the graphs K5 and K35 are in some sense the funda-
mental nonplanar graphs. For emphasis we make the following observation as
proved in Example 7.21.

Observation 7.22
The complete graph K and the complete bipartite graph K3 3 are both nonpla-
nar.

0 Remark 7.23

Clearly, every subgraph of a planar graph is also planar. By Observation 7.22 we
have that for n greater than four the complete graph K, is also nonplanar. This
is because it contains the nonplanar graph K5 as a subgraph. Also, for m and
n greater than two, the complete bipartite graph K, is also nonplanar. This
Is since it contains K33 as a subgraph. However, the graphs K, and K, are
planar as shown in Figure 7.10.

If a planar graph GG on n vertices has exactly 3n — 6 edges, then equality must
hold in Inequalities (7.1) and (7.2). This means that each face of G is bounded
by a triangle (see Exercise 7). A triangle is another word for 3-cycle. Clearly,
the other direction holds as well. In this case we say that G is a maximal planar
graph or a triangulation.

The following corollary illustrates another interesting property of simple, con-
nected planar graphs.



7.4 Euler’s Formula and Consequences

205

K4 K2n

’

Figure 7.10: K, is planar. K5, is planar for all n greater than zero.

Corollary 7.24
Every simple, connected planar graph contains a vertex of degree five or less.

PROOF: Let GG be a simple, connected planar graph on n vertices and with
e edges. Let ¢ be the least degree of all of the vertices of G. Then, by the Hand
Shaking Theorem 1.24 and Corollary 7.20, we have

nd < Z da(u) = 2e < 2(3n — 6) < 6n.
ueV(G)

Hence, ¢ is a natural number less than six. This proves the corollary. O

We will use Corollary 7.24 in many inductive proofs regarding vertex colorings
of planar graphs.

Here is an important question: Is there an automatic method or procedure
one can apply to determine whether a graph is planar or not? Clearly if a graph on
n vertices has more than 3n —6 edges, then by Corollary 7.20 it cannot be planar.
But needless to say, there are many nonplanar graphs on n vertices with 3n — 6
or fewer edges. We address this important question further in the sections to
come. We conclude this section with a theorem showing that when determining
the planarity of a graph, it suffices to consider graphs with no cut-edges and no
cut-vertices. That is, we can assume the graph is 2-connected.

Theorem 7.25
A connected graph G is planar if and only if each block of G is planar.

PROOF: We prove this by induction on the number of blocks of G. If G is
2-connected, then G has only one block consisting of G itself. So, the theorem
is a tautology.
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Figure 7.11: The graph G is planar if and only if both the block B and the
subgraph H are planar.

Assume that GG has more than one block. Let B be a block that corresponds
to a leaf in the block-cutpoint graph BC(G) of G. Let H be the union of the
other blocks. We now have

BUH = (G and
BNH = {u},

where u is a cutpoint that is in B. Now, G is planar if and only if both B and
H are planar (see Figure 7.11).

Since H has one fewer blocks than G, the induction hypothesis applies. We
conclude that H is planar if and only if all the blocks of H are planar. Because
the set of blocks of G consists of B together with the set of blocks of H, we
have the theorem. 0O

7.5 Characterization of Planar Graphs

In the following sections we describe a way to detect exactly when a given graph
is planar. These results, due to Kuratowski and Wagner, are considered one of
the corner stones of graph theory. Before presenting them, some new definitions
are needed. Although intuitively clear, these ideas are somewhat lengthy when
defined in mathematical language.

Initially, there are a couple of reductions one can do when we are given a
graph, bearing in mind Theorem 7.25 from the previous section. We number the
reductions as follows:
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1. A graph is planar if and only if each of its components is planar. Hence, it
suffices to consider connected graphs.

2. A connected graph is planar if and only if each of its block is planar. Hence,
it suffices to consider 2-connected graphs.

3. A 2-connected graph G is planar if and only if the derived graph G’ is
planar, where G’ is the simple graph formed from G by removing all the
loops from GG and by replacing all multiple edges in G by a single edge.

4. The graph G is planar if and only if the derived graph G” is planar. The
graph G" is formed from the simple graph GG’, defined in the previous step,
by eliminating all vertices of degree two and merging their incident edges.
That is, replace all paths (u, w, v) of length two, where d¢(w) equals two,
by a single edge {u,v}. If G" is not a simple graph, repeat steps 3 and 4
until it becomes simple.

Usually, the application of the procedure just described reduces our graph
quite substantially. This is because we can assume the graph is simple, has at
least five vertices, is 2-connected, and contains only vertices of degree three or
more. But even with these assumptions, it is not obvious when a graph is planar.

Look at step number four of our procedure. This reduction in reverse gives
rise to the following.

Definition 7.26

Let G be a graph and e = {u,v} an edge of G. Let G' be the graph formed from
G by replacing the edge e by a simple path (ug,uy,...,u;), where uy equals u
and uy, equals v. We say that G’ is a subdivision of .

Two graphs G' and G" are homeomorphic or topologically equivalent if both
G' and G" are subdivisions of the same graph G.

Figure 7.12 illustrates the concept of subdivision.

Note 7.27
If G is a planar graph, then so is any subdivision G'. We can obtain the graph
G back from G' by a sequence of simple contractions, where we contract every
subdivided edge back to a single edge. Since any simple contraction of a planar
graph is planar, we see that if G' is planar so is G. We summarize in the following
observation.
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Figure 7.12: The graph G’ is a subdivision of the graph G.

U

Figure 7.13: Homeomorphic graphs.

Observation 7.28
A graph G is planar if and only if every graph homeomorphic to G is planar.

The next example illustrates these ideas.

[0 Example 7.29
The two graphs shown in Figure 7.13 are homeomorphic since they are both
subdivisions of K.

0 Note 7.30
If G and G' are two homeomorphic graphs, then there is a graph G" that is both
a subdivision of G and also of G'. This property is equivalent to the definition
of homeomorphism (see Exercise 14).

The next example illustrates non-homeomorphic graphs.
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Gy Go G3
Figure 7.14: Three non-homeomorphic graphs.

0 Example 7.31
In contrast to the graphs shown in Figure 7.13 none of the three graphs G, G5,
nor GG3 shown in Figure 7.14 are homeomorphic.

Subdivision does not change the number of vertices with degree not equal to
two. Hence, if two graphs are homeomorphic, they must have the same number
of vertices of degree i for each i € N\ {2}. Thus none of the graphs G, Gs,
and (3 are homeomorphic: The graph G has all of its ten vertices of degree
four, the Petersen graph GG, has no vertices of degree four, and the complete
graph G5 has five vertices of degree four.

As we saw earlier in Observation 7.22, neither K5 nor K33 3 are planar graphs.
Also, any graph containing K5 or K33 as subgraphs cannot be planar since ev-
ery subgraph of a planar graph is also planar. By Observation 7.28, any graph
homeomorphic to either K5 or K33 is not planar. Therefore, any graph contain-
ing a subgraph that is homeomorphic to either K5 or K33 is not planar either.
Remarkably, this is precisely the characterization of planar graphs as the follow-
ing theorem by Kuratowski from 1930 states. Kuratowski's proof [22] is fairly
elementary but long. It is based on an exhaustive case analysis. Many different
proofs have appeared since and a readable proof can be found in [31].

Theorem 7.32 (Kuratowski’s)
A graph G is planar if and only if it has no subgraphs homeomorphic to either
K5 or K3,3.

We have that the operation of subdivision preserves planarity of graphs. Also,
a simple contraction of an edge in a planar graph yields a planar graph.
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Definition 7.33

For a simple and connected graph GG, we say that the simple graph G' is a con-
traction of G if G' can be obtained from GG by a sequence of simple contractions.
That is, if there is a finite sequence Gy, G4, ..., G} such that

1. G=Gyand G' =Gy,
2. G111 = G,;/e; for some edge e; in G;, where i € {0,1,...,k—1}.

If G' is a contraction of a subgraph of GG, then we say that G' is a minor of
G.

The following example provides a useful way of viewing minors.

Example 7.34

Given a simple and connected graph G, we can think of any contraction G' of
G as follows. The vertices V(G') = {u},...,ul,} correspond to a partition of
V(Q) into disjoint subsets X, ..., X,, such that

1. Each X; induces a connected subgraph G|X;] of G, and

2. The vertices u; and u’; are connected by an edge in G' if and only if there
is some edge in G' with one endvertex in X; and the other in X;.

On the left hand side of Figure 7.15 is a graph G together with a partition
of its vertices. The righthand side of the figure shows a minor of G. Notice the
correspondence between the G[X;|'s and the u!’s.

At this point we have two operations, subdivision and contraction, that pre-
serve planarity. The following observation, whose proof is an easy exercise, sum-
marizes.

Observation 7.35
Let G be a simple connected planar graph.

1. Each graph G' homeomorphic to a subgraph of G is planar.

2. Each graph G" that is a minor of G is planar.

We also have the following observation, whose proof is required in Exercise 15.
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Figure 7.15: The graph G’ is a contraction of G.

Observation 7.36
Consider the collection of all finite simple connected graphs G. We have the
following:

1. Homeomorphism defines an equivalence relation ~ on G. That is, G ~ G’
if and only if G and G’ are homeomorphic.

2. Contraction defines a partial order < on G. That is, G' < G if and only if
G’ is a contraction of (.

We consider the subdivision and contraction operations further. Let GG be a
simple connected graph that is homeomorphic to G’, where G’ has no vertex of
degree two. In this case G’ is not a subdivision of any graph, so G must itself
be a subdivision of G'. In particular, G' must be a contraction of G. As we saw
from Observation 7.28, GG is planar if and only if G’ is planar. However, this does
not hold for contraction since a planar graph can be a contraction of a nonplanar
graph. That is, K, is planar and a contraction of the nonplanar K.

The reversal of a subdivision is a sequence of contraction edges each with one
endvertex of degree exactly two. Hence, contraction can be viewed as a more
general operation.

Note 7.37

If a graph G has a subgraph that is homeomorphic to a given graph H, then H
is a contraction of that very subgraph. If, on the other hand, H is a minor of G5,
then it is not necessarily the case that G has a subgraph homeomorphic to H.
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Figure 7.16: K5 is a contraction of the Petersen graph.

The next example illustrates this.

0 Example 7.38

Consider the Petersen graph. As we see in Figure 7.16, the Petersen graph has
Ky as a minor.

However, the Petersen graph has no subgraph that is homeomorphic to K
since all of the vertices of the Petersen graph have degree three. A graph that
iIs homeomorphic to K5 must have at least five vertices of degree four.

The fact that the Petersen graph has a subgraph homeomorphic to K3 is
not so clear from a first glance at the standard geometric representation of it.
This can however be seen in the following way. The upper left part of Figure 7.17
shows the special geometric representation of the Petersen graph from Figure 2.7
in Chapter 2. By removing one vertex from the Petersen graph, we get a subgraph
H that is homeomorphic to Ks3. The fact that K33 is homeomorphic to a
subgraph of the Petersen graph implies by Kuratowski’s Theorem 7.32 that the
Petersen graph is not planar.

As we see from Example 7.38, contraction is “easier’ to deal with than
seeking a subgraph that is homeomorphic to some graph. It is precisely this
generalization of Kuratowski's Theorem that was proved by Wagner in 1937. We
present the theorem in the next section.

7.6 Kuratowski and Wagner’s Theorem

The next theorem provides another classification of planar graphs.
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Figure 7.17: The Petersen graph has a subgraph H homeomorphic to K3 3.

Theorem 7.39 (Kuratowski and Wagner's Theorem)
The following statements are equivalent for a graph G':

1. The graph G is planar.

2. Neither K5 nor K33 are homeomorphic to any subgraph of Gi.
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3. Neither K5 nor K33 are minors of .

PrROOF: We sketch the proof of Wagner's part that the third condition is
equivalent to the second condition.

If a subgraph H of GG is homeomorphic to a given graph K with no vertices
of degree two, then H must be a subdivision of K. Hence, K is a contraction
of H. Since neither K5 nor K33 have any vertices of degree two, we have that
condition three implies condition two.

To prove the other direction, we need to show that if either K5 or K33 is a
minor of (G, then G must contain a subgraph that is homeomorphic to either K
or K33. We consider each case separately.

CASE ONE: K33 is a contraction of a subgraph H of GG. In this case there
are six disjoint subsets H;, Ho, H3, K, K5, and K3 of V(&) such that

> Each induces a connected simple subgraph in GG, and

> For each i,j € {1,2,3} there is at least one edge in G with one endvertex
u;; € H; and the other v; ; € K.

Consider one of these sets, say H;. This set contains the vertices u; 1, u; 2,
and u; 3 that are not necessarily distinct. Since the induced subgraph G[H;]
connects all of these three vertices together, there is a subtree 7T; of G with
exactly three leaves v, ;, v, and vz; connecting all the vertices w;, u;2, u;3,
U1, V2,4, and v3; together. Here the only vertices in 7; that are not in H; are
the v;;, where [ € {1,2,3}. It is easy to see that a tree with exactly three leaves
is homeomorphic to K3 as displayed in Figure 7.18, where a “zigzag-like” line
indicates a simple path.

This also holds for all of the other sets K; and the corresponding trees 7.
Hence, G has a subgraph G’ that is homeomorphic to K35 and consists of the
union of these six trees

G=TUT,UT; UT{ UTyUT;.

CASE TWO: Kj is a contraction of a subgraph H of G. In this case there
are five disjoint subsets H;, H,, H3, H,, and H5 of V(G) such that each H;
induces a connected simple subgraph in GG. Also, for each i not equal to j there
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Figure 7.18: Each of these cases for 7} is homeomorphic to K 3.

H, H,y Hj

K K, K

Figure 7.19: The subgraph G’ of G is homeomorphic to K3 ;.

is an edge e;; with endvertices u;; j1 € H; and wj,(;;3 € Hj. As in the first
case, each H; contains four vertices ;. (; o}, Ui{i,8}, Uis{in}, and u;(; 5y, where
{a,8,7,0} = {1,2,3,4,5} \ {i}. Also, G has a subtree T; with exactly four
leaves Ua.fia}s UBifi,8)s Uiy} aNd Us,qi 5y that connects all of the vertices w1y
and w; g5y together, where [ € {a, 3,v,0}. The only vertices not in H; are the
ug,giy- Figure 7.20 illustrates the situation.
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Figure 7.20: The subtree 7; of G’ connects the eight vertices shown.

Figure 7.21: Each tree with exactly four leaves is homeomorphic to one of these
trees.

The following lemma, which we need in this proof, is left to the reader
in Exercise 12, and is illustrated in Figure 7.21.

Lemma 7.40
A tree with exactly four leaves is either homeomorphic to K, 4 or the graph
composed of an edge with two leaves connected to each endvertex of that edge.

Hence, T; is homeomorphic to one of the two trees in Lemma 7.40. We need
to consider two subcases.

SUBCASE ONE: If all of the trees T; where i € {1,2,3,4,5} are homeomor-
phic to K 3, then G has a subgraph

G,:T1UT2UT3UT4UT5

that is homeomorphic to K5. This is illustrated in Figure 7.22.

SUBCASE TWO: There is at least one 7; that is homeomorphic to the second
tree mentioned in Lemma 7.40. This tree consists of an edge with two leaves
connected to each endvertex of the edge. Assume 7 equals one for the simplicity
of indexing. Restricting our attention to 7} and the edges ¢;; together with their
endvertices, where i € {2,3} and j € {4,5}, we have the situation as displayed
in Figure 7.23.
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H,

H5 H2

H4 H3

Figure 7.22: The graph G’ is homeomorphic to K5 since each T; is homeomorphic
to K1,3-

, s

Figure 7.23: The tree T} together with the four sets of vertices H), Hj, Hj, and
H..
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(%) Vs

V1,1 U1,2

Figure 7.24: The subgraph G’ of G is homeomorphic to this graph which is in
turn isomorphic to K 3.

Here we are considering H! C H;, where i € {2,3,4,5}, each containing
three vertices as listed.
Hé = {UQ;{I,Z}; U2;{2,4}, U2;{2,5}},
H;i, = {Ua;{1,3}, U3;{3,4}, U3;{3,5}},
H!; = {U4;{1,4},U4;{2,4},U4;{3,4}}, and
Hg’, = {U5;{1,5}, Us:{2,5}, U5;{3,5}}-

As in the first case, every tree with exactly three leaves is homeomorphic to K 3.
Hence, GG has a subgraph G’ homeomorphic to the graph shown in Figure 7.24.
This is isomorphic to K33 since it has bipartition

{v2, v3,v12} U {v4, 05,011 }.

So, in this case G has a subgraph that is homeomorphic to K3 ;.

This completes the argument that the condition of Wagner implies that of
Kuratowski, and we have the theorem. O

From this proof we extract the following corollary.

Corollary 7.41
Let G be a graph.

1. If K53 is a minor of GG, then GG contains a subgraph homeomorphic to K3 3.
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2. If K5 is a minor of GG, then GG contains a subgraph homeomorphic to either
K5 or K3,3.

Note 7.42
Suppose n is greater than three. The graph K, used in the proof of Theo-
rem 7.39 is a tree also called a star on n vertices, or an n-star.

Recall that if a graph G is planar, then so is every minor of GG. A type of
property closed under taking minors is sometimes called a hereditary property.
Thus planarity is a hereditary property of graphs. By Theorem 7.39 planarity
can be characterized as those graphs not having any of the graphs in the set
{K5, K33} as a minor. These are called the forbidden minors for planarity.

A deep theorem called the Minor Theorem by Robertson and Seymour, pub-
lished as a series of many papers during the years from 1986 to 1997, implies
that for any hereditary property P of graphs, there exists a finite collection C'(P)
of graphs such that a graph G has property P if and only if G does not have
any graphs in C'(P) as a minor. In particular, if P is the hereditary property
of a graph being embeddable in a surface S other than the plane, we have the
following corollary.

Corollary 7.43
For every surface S there exists a finite collection {Hy, ..., Hy} of graphs such
that a graph G is embeddable in S if and only if no H; is a minor of 5.

If the surface S is not the plane, then even to this day, the collections of
forbidden minors corresponding to the surface S remains unknown. The only
known set is the one corresponding to the plane given by Theorem 7.39. We
discuss embeddings on other surfaces S in §8.6.

Although Theorem 7.39 gives an elegant and simple looking criterion for
testing the planarity of a graph, the theorem is difficult to apply in the actual
computational testing of a large graph. In particular, it is hard to apply on a
large, simple, 2-connected graph, where each vertex has degree three or more.
There are several alternative characterizations of a planar graph. We explore
these in Chapter 8.
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7.7 Exercises

1. Prove Euler’s Formula in Theorem 7.19 inductively by using contraction of
an edge in the graph.

2. Let G be a graph on n vertices, e edges, f faces, and with k£ components.
Show that
n—e+ f=k+1.

3. Let G be a planar graph with no 3-cycles. Show that G has a vertex of
degree less than four.

4. Show that every simple toroidal graph having seven or more vertices has a
vertex of degree less than seven.

5. Assume that every face of a simple planar graph on n vertices and e edges,
is bounded by at least k& edges, show that

e<7k(n_2).
- k=2

6. Use the following observation to show that K3 is not planar.

Observation 7.44

Let Cy be the four cycle embedded in the plane. If we connect each pair of
opposite vertices with a continuous curve, drawing both in the same face
of Cy, then these two curves must intersect.

7. Show that every face in a simple planar graph to which no edge can be
added without destroying its planarity is a triangle.

8. Let GG be a planar graph on n greater than three vertices. Show that GG
has at least four vertices of degree less than six.

9. A planar graph G is said to be completely regular if the degrees of all
vertices of (G are equal and every region is bounded by the same number
of edges. Show that there are only five possible simple completely regular
planar graphs, excluding the trivial graphs with vertices of degree less than
three. These graph are sometimes called the graphs of the Platonic solids.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Prove that an infinite pattern formed of a regular polygon repeating itself,
such as those found in mosaics and tiled floors, can consist of only three
type of polygons—square, triangular, and hexagonal.

Redraw the graph shown in Figure 7.9 such that region two becomes the
infinite region.

Let i € {1,2,3}. Consider a simple graph G on six vertices w1, u1a, Us1,
Uoo, U371, and uso, where each pair of vertices is connected except for the
three pairs {u;1, u;}. Is G a planar graph?

By sketching all simple, nonseparable graphs with n less than five and e
less than seven, prove that every planar graph not having a vertex of degree
two is

(a) a single edge together with both of its endvertices,
(b) a complete graph on four vertices, or

(c) a 2-connected graph on five or more vertices and seven or more edges.

Show that two graphs G’ and G" are homeomorphic if and only if there is
a graph G" that is a common subdivision of both of G' and G".

Prove Observation 7.36.

Show that for two homeomorphic graphs GG and G’, we have

V(@) = EG)] = V(&) = |E(E)].

Find an example of a planar graph G such that neither K5 nor K3 is
a contraction of G. Find an example of a planar graph G that is nei-
ther homeomorphic to K5 nor K33. Why does this not contradict Theo-
rem 7.397

Let G be a graph such that for every two vertices u and v, there are at
most two vertex-disjoint paths of length greater than one from u to v.
Show that G is planar.

Show that if K is a contraction of a graph G, then GG has a subgraph that
is homeomorphic to K. Does the same hold for K57



222 Planar Graphs

20. A graph G is called outerplanar if G has an embedding in the plane in

such a way that each vertex bounds the infinite face. Prove the following
Kuratowski-Wagner-like theorem.

Theorem 7.45

The following are equivalent for a graph G.

(a) The graph G is outerplanar.

(b) Neither K, nor Ky 3 are homeomorphic to any subgraph of G.

(c) Neither K4 nor K, 5 are minors of G.





