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Introduction to Graph Theory

Chapter Goals

Motivate the subject of graph
theory.

Present numerous applications of
graph theory.

Give a variety of examples of

graphs.

Introduce a number of the funda-
mental definitions in graph the-
ory.

Provide an intuitive feel for graph
theory.

Describe basic mathematical
preliminaries.

Prove the Hand Shaking Theo-
rem and related results.

Present a complete example illus-
trating how graph theory can be
used to solve a specific problem.

1.1 Introduction

At the beginning of each chapter, we provide a road map of the chapter’s con-
tents. We do this with a description of the contents of the various sections of
the chapter.

In §1.2 we provide several examples to motivate the study of graph theory.
A number of important mathematical preliminiaries are covered in §1.3. We
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define graphs in §1.4. In §1.5 a number of important examples are presented.
Next we examine some properties of graphs. In §1.6 we look at the concept of
degree. We also study regular graphs in this section. Various portions of graphs
are explored in §1.7. This is followed in §1.8 with an explanation of how graph
theory can be used to model various problems. One of the key features of graphs
is that they easily model many different types of problems. Graph theory has a
long, interesting history. §1.9 provides a brief glimpse of this history. Finally, we
examine the contents of the remainder of the book in §1.10.

1.2 Why Study Graphs?

To motivate the study of graphs, first we look at several problems that can easily
be modeled using graph theory. Technical details and definitions for the intuitive
concepts described in this section are provided in §1.4. With its inherent simplic-
ity, graph theory has a wide range of applications in numerous areas including
biological science, computer science, economics, engineering, linguistics, math-
ematics, medicine, physical science, and social science. A graph can be used
to represent almost any physical situation involving relationships among discrete
objects. It can also be used to model many abstract situations involving rela-
tionships among objects. The following are representative problems chosen from
the hundreds of such applications of graph theory.

The Konigsberg bridge is perhaps the best-known example in graph theory.
It was a long-standing open problem until solved by Leonhard Euler in 1736 by
means of a graph. Euler wrote the very first paper about graphs and thus became
the originator of graph theory.

0 Problem 1.1
Konigsberg Bridge

The setting for the Konigsberg bridge problem is depicted in Figure 1.1. Two
islands, C'" and D, formed by the Pregel River in Kénigsberg' were connected
to each other and to the banks A and B with seven bridges. This is shown in
Figure 1.1. The problem was to start at any of the four land areas of the city,
A, B, C, or D, walk over each of the seven bridges exactly once, and return to
the starting point. (No swimming was allowed.)

1This former capital of East Prussia is now called Kaliningrad and lies in West Russia.
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Der
Kneiphof

Pregel River

Konigsberg ~ 1736

Figure 1.1: Konigsberg bridge problem.

Euler represented this situation with a graph as shown in Figure 1.2. The ver-
tices (black circles) represent the land areas and the edges (solid lines) represent
the bridges.

Note that the Konigsberg bridge problem is the same as the problem of
drawing the lines in the figure without lifting the pen from the paper and without
retracing a line. We all have been confronted with similar problems at one time
or another. As we shall soon see in Chapter 2, Euler proved that a solution for
this problem does not exist.

The next application deals with discovering communities on the World Wide
Web.

Problem 1.2
World Wide Web Communities

The World Wide Web can be modeled as a graph. In one such model, Web
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B

Figure 1.2: Graph of Konigsberg bridge problem.

pages can be represented by vertices and hyperlinks between them by edges in
the graph. By examining certain properties of this “Web graph,” we can discover
some interesting information. For example, the structure shown in Figure 1.3 is
termed a Web community. In graph theory this is known as a complete bipartite

graph.

On the lefthand side of the figure, five vertices are displayed with labels trav-
elagencyX.html, where 1 < X < 5. Each label travelagencyX.html represents
an HTML file for a given travel agency. On the righthand side of the figure,
three vertices are displayed with labels www.continental.com, www.delta.com,
and www.united.com. These represent the Web sites of several well-known air-
lines. Notice that each HTML file has an edge between it and every airline. No
two travel agencies have edges between them, and no two airlines have edges
between them. This graph structure is common on the Web between competi-
tors in the same industry. Companies or rivals usually do not have hyperlinks on
their Web pages to their competition. For example, Delta has no hyperlink to
United Airlines. Travel agents may have hyperlinks from their Web pages to all
of the airlines as shown in Figure 1.3. Notice none of the travel agents are linked
together.

This example illustrates how graph theory can assist us in discovering Web
communities. We can uncover such communities by finding complete bipartite
subgraphs in the Web graph. Web community information could be used for
marketing purposes or for examining the relationships among companies in a
given industry. Other facets of the World Wide Web can also be modeled using
graph theory.
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travelagencyl.html

www.continental.com

travelagency2.html

travelagency3.html www.delta.com

travelagency4.html

www.united.com

travelagency5.html

Figure 1.3: World Wide Web community.

The next application we present deals with connecting electrical utilities.

Problem 1.3
Electrical Utilities Connection

There are three houses depicted in Figure 1.4. They are denoted H,, Ho,
and Hs. Each house is to be connected to each of three utilities: water (W),
gas (G), and electricity (E') by means of conduits.

Is it possible to make such connections without any edge-crossings of the
conduits?

Figure 1.5 shows how this problem can be represented by a graph—the con-
duits are shown as edges while the houses and utility supply centers are vertices.
As we shall see in Chapter 7, the graph in Figure 1.5 cannot be drawn in the
plane without edges crossing each other. Thus the answer to the problem is no.
More complex real life problems are modeled by generalizing this example.

This next application deals with job assignments.

Problem 1.4
Job Assignments
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Figure 1.4: Three-utilities problem.

Figure 1.5: Graph of three-utilities problem.

A company wants to hire people for five different jobs. We denote the jobs
by J; for 1 < i < 5. There are seven applicants denoted by A; for1 < j < 7.
In the bipartite graph in Figure 1.6, the vertices in the upper group, labeled
Ji,...,Js, represent the different jobs, and the vertices in the lower group,
labeled Ay, ..., A7, represent the seven different applicants. An edge between
J; and A; means that applicant A; is qualified to perform job J;.

Is the company able to hire five qualified applicants from these seven, and
thereby fill their open positions as desired?

In Chapter 11 we will derive necessary and sufficient conditions for such
Job-assignment-problems to have a positive solution. Clearly, solving practical
problems in hiring is important. This discussion illustrates that graph theory is
a good approach to solving such problems.

Next we use a graph to determine the minimum nuber of warehouses needed
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Jl J2 Jg J4 J5
o

o/ ®

Ay Ay As Ay As Ag A,

Figure 1.6: Bipartite graph describing job qualification.

to store volatile chemicals.

0 Problem 1.5
Storing Volatile Chemicals

A chemical factory produces chemicals Cy,C,,...,C5. For security reasons
some of the chemicals should not be stored in the same warehouse. The graph
in Figure 1.7 represents each chemical as a vertex. An edge between the chemi-
cals C; and C; indicates a grave danger of storing these chemicals in the same
warehouse.

What is the minimum number of warehouses the factory needs in order to
safely store its chemical products?

By thinking of each warehouse as a color assigned to each vertex, we can
reformulate the problem. The problem boils down to using the least number
of colors to color the vertices of the graph such that no two adjacent vertices
receive the same color. The least number of colors needed to color a graph in
this manner is called the chromatic number of the graph.

The graph shown in Figure 1.7 can be colored using four colors by coloring
vertex C; with color 1, C'y with color 2, C5 with color 3, Cy with color 1, Cf
with color 2, Cg with color 3, and C; with color 4. Note that the graph cannot
be colored using three colors.

Colorings are discussed in Chapter 11. There we develop a systematic way
of finding the chromatic number for any given graph, and study graph colorings
in various other settings. In this application the chromatic number tells us the
minimum number of warehouses required, and an actual coloring tells us which
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Ch

03 C16

Cy Cs

Figure 1.7: Connected chemicals should not be stored together.

chemicals to store in each warehouse. Since warehouses are expensive to build, it
is clear that finding the fewest warehouses to construct is extremely important.
It is straightforward to generalize this example to more complex problems.

The next application uses a graph to model seating arrangements.
0 Problem 1.6
Seating Arrangements

Nine members of a new club meet each day for lunch at a round table. They
sit so that every member has different neighbors at each lunch. How many days
can such arrangements be found?

This situation can be represented by a graph with nine vertices. Each vertex
represents a member, and an edge joining two vertices represents the relationship
of sitting next to each other. Figure 1.8 shows two possible seating arrangements:

> 1234567891 (solid lines)

> 1352749681 (dashed lines)

It can be shown by graph-theoretic considerations that there are only two more
arrangements possible. They are
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Figure 1.8: Arrangements at a dinner table.

> 1573928461

> 1795836241

In Chapter 3 we will show that for such a club with n members, the maximum
number of such seating arrangements possible is | (n — 1)/2]. (Here | x| denotes
the largest integer that is less than or equal to x for any real number x.)

In this section we have presented a handful of simple, practical applications
of graph theory. You can probably imagine many other problems that can be
modeled using these techniques. Although the basic concepts of graph theory
are readily applied even by the nonspecialist, it is necessary to formalize the
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notions highlighted by these examples to tackle more challenging and interesting
problems.

1.3 Mathematical Preliminaries

In this section we present a number of preliminaries. We give several definitions
and provide examples to illustrate how these definitions come about. Through-
out the book we describe various concepts followed by examples illustrating the
ideas, and then we include interesting relationships among the concepts. This
approach will make it easy for you to learn the essentials of graph theory. First
though, we need to specify some technical set theoretic conventions, which ev-
ery undergraduate majoring in computer science, engineering, mathematics, or
related fields should learn.

A set is a collection of objects. An object in a set is called an element. The
set containing no elements is called the empty set and is denoted by (). Let A
and B be sets. If a is an element contained in a set A, we denote this by a € A.
If for every a € A, it is also true that a € B, we say that A is a subset of B and
denote this by A C B.

We have the following set operations: The union of A and B, denoted by
AU B, is the set of those elements that are either in A or in B. The intersection
of A and B, denoted by A N B, is the set consisting of those elements that
are contained in both A and B. If AN B is empty, then we say that A and B
are disjoint. The difference of A and B, denoted by A \ B, consists of those
elements that are contained in A and not in B. The symmetric difference of A
and B, denoted by A A B, is equal to (A\ B) U (B \ A). It consists of those
elements that are contained in exactly one of the sets A and B. It makes sense
to generalize the definitions of union, intersection, and symmetric difference to a
collection of finitely many sets rather than just two. That is, one can show that
if Ay, Ao, ..., A, is a finite collection of sets then the notions of A; U---U A,
AN---NA, and A, A --- A A, all are sensible. The last one denotes the set
of elements that are contained in an odd number of the sets A;,..., A,. (Can
you see why?)

A set S containing finitely many elements is a finite set. We denote the
number of elements in the set S by |S|. For example, the set {1,2,3,4,5} has
five elements. That is, [{1,2,3,4,5}| equals five. If S is infinite, that is, not
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finite, then |S| = oo. The set of natural numbers, N = {1,2,3,...}, is an
infinite set. Nearly all sets in this book will be finite sets. If S is a set, then
the set of all subsets of S, denoted by P(S), is called the power set of S. For
example, if S = {1, 2,3}, then

P(5) = {0, {1}, {2}, {3}, {1,2},{1,3},{2,3}, {1, 2,3}}.

Let n € N and ay,as,...,a, be any n objects. Then (a,as,...,a,) is an
ordered n-tuple or just n-tuple for short. For each i € {1,2,...,n}, we say q;
is the i-th component of (ay,as, ..., a,).

There are several other sets of numbers that we use in this book. The set of
integersis Z = {...,—2,-1,0,1,2,...}. We use R to denote the real numbers.
The notation [a; b] denotes the of real numbers = such that a« < = < b. The
notation [a;b[ denotes [a;b] \ {b}, ]a;b] denotes [a; 0] \ {a}, and ]a; b[ denotes
[a;b] \ {a,b}. The set of rational numbers is

Q={a/b:a,beZandb+#0}.
The set of complex numbers is
C={r+vyi:z,y € R}

where i = v/—1 denotes the imaginary number satisfying i = —1.

A map (also called function or mapping) f : X — Y s injective or one-
to-one if f(x1) = f(x2) always implies that x; = 5. Also, f is surjective or
onto if for every y € Y, there is an € X such that y = f(z). A map that
is both injective and surjective is called bijective. Such functions are also called
bijections or one-to-one correspondences.

Example 1.7

Consider the function f : N+ N defined by f(n) = n?. Suppose f(n) = f(m).
This means n?> = m?. Since n,m € N, this implies n = m. Therefore, f is an
injective mapping. Notice f is not onto N, since there is no n € N such that
n? = 3. This means f is not a one-to-one correspondence. It is worth noting
that if f were defined on the integers, it would not be one-to-one.

The map from X to X that has a value of = for each © € X is called the
identity map. The identity map on X is denoted by Iy : X — X. Ix is a
bijective map for any X. Let f : X — Y and g : Y +— Z be any two maps.
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The composition of g with f denoted by go f : X — Z is the mapping such
that (g o f)(z) = g(f(x)) for each z € X. If f : X — Y is a bijective map,
then there is an unique map, denoted by f ! : Y ++ X, such that f 'o f =1y
and fo f ! =1I,. The map f ! is called the inverse of the map f. Finally, if
f:X = Yisamapand X' C X, then the restriction of f to X' is the map
fx: X' =Y defined by fx/(z) = f(x) for each x € X".

Example 1.8
Let f : N — R be defined by f(n) = n. Let g : R — R be defined by
g(x) =—x+1. Then go f : N R is defined. In fact,

(g0 f)(n) =g(f(n)) =g(n) = —n+1.

Note that f o g is not defined. It is easy to see that g is a bijection of R. So,
the inverse of g exists. In fact, g~'(x) = —x + 1. Notice

(gog V@) =glg ' (@) =g(-z+1)=—(—z+1)+1=z—-1+1=2z

We see go g=' = g7' o g = Ig. The restriction of g to N is defined by

gN() = g(x) for each z € N.

Let n be a natural number. The notation n! denotes the product
1-2---(n—1)-n.

Note 0! is defined to be 1. The notation n! is read n-factorial. Let n and k be
natural numbers with k less than or equal to n. The notation

n
k
denotes the number of ways to choose a k-element subset from a set containing

n elements. This value is equal to

n!
kl(n— k)

(Can you see why?) The notation is read n choose k. From this we can see that

(0)=()=
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U
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Figure 1.9: A graph with six vertices and seven edges.

(1) = ("))
(”Zl) - (Z) - (kﬁl)'

We now have the foundations to begin looking at graphs more closely.

1.4 What is a Graph?

Having settled on a few technical preliminaries, we can start to talk about graphs.
What is a graph? Informally, a graph is simply an ordered pair (V, E) consisting
of two sets. Here V is the set of vertices or nodes, and E is the set of edges
connecting the vertices together in some way. In §1.2 we saw a number of pictorial
representations of graphs. To be precise, the following definition captures the
essentials of the intuitive description of graphs.

Definition 1.9
A graph or a general graph is an ordered triple G = (V, E, ¢), where

1.V #0,
2. VNE=0, and

3. ¢: Ew P(V)is amap such that |p(e)| € {1,2} for each e € E. This
map is called an edgemap.
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The elements of V are the vertices of GG, and the elements of E are the
edges of G. The vertices in ¢(e) are called the endvertices of e.

We look at an example to illustrate this definition.

Example 1.10

The most common representation of a graph is a diagram. In such a diagram
the vertices are represented as points and each edge as a line segment or curve
Joining its endvertices. Often, this diagram itself is referred to as the graph.
Consider the graph represented by the diagram in Figure 1.9. In this case we
have G = (V,E,¢), where V. = {uy,ug,...,us}, E = {e1,es,...,e7}, and
where the edgemap ¢ is as follows:

= {u1, uz}

(e1)
d(e2)
¢(e3)
p(es) = ¢les) = {ur, us}
¢(es)
¢(er)

In the next definition we present some common graph-theoretic terminology
so that we can discuss the various aspects of graphs.

Definition 1.11
Two vertices u and v in V' are adjacent or neighbors, if they are the endvertices
of some edge e € E. That is, they are adjacent if there is an e € E such that

¢(e) = {u, v}.
Two edges e and f are incident with each other, if they have a common
endvertex. That is, ¢(e) N ¢(f) is nonempty.

A loop is an edge e whose endvertices are equal. That is,

o(e)| equals one.

We say that E' C E is a set of multiple edges or parallel edges if |E'| is
greater than or equal to two and all ¢’ € E' have the same set of endvertices.
That is, ¢(€') equals ¢(f') for all €', f' € E'.

A vertex u is called isolated if it is not an endvertex of any edge. That is,
u ¢ ¢le) foralle € E.

We revisit Figure 1.9 to see examples of these concepts.
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G
Figure 1.10: Portions of three infinite graphs.

0 Example 1.12
In Figure 1.9 the endvertices of ey are us and uy. The vertices u, and ugz are
adjacent, but u, and u4 are not. So, uy and ug are neighbors, but u, and u, are
not. The vertex uy is adjacent to itself. The edges e; and ez are incident with
each other, but e; and e, are not. The edge e, is incident both with itself and
ey. The edge ey is the only loop in this graph. The set {e4,e5} consists of two
parallel edges. The vertex ug is isolated.

We next state an important convention.

0 Convention 1.13
For a graph G, the set V(G) will always denote the set of vertices of G, and
E(QG) will always denote the set of edges of G.

Note that in Example 1.10, both V(G) and E(G) are finite sets. However,
in our definition of a graph, neither the vertex set V' (G) nor the edge set E(G)
need to be finite. In most applications these sets are finite. A graph with a finite
number of vertices and edges is called a finite graph; otherwise, it is called an
infinite graph. Portions of three infinite graphs are shown in Figure 1.10.

[0 Note 1.14
In this book we shall focus on the study of finite graphs. Unless otherwise stated,
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Uy U Uus Uy Up—1 Up

Figure 1.11: Null graph N,,.

the term “graph” will always mean finite graph.

Many problems in graph theory can be reduced to the study of those graphs
with no loops nor multiple edges. These graphs form an important class among
graphs called simple graphs. Simple graphs can be defined without the edgemap
¢ in Definition 1.9 since each edge is in a one-to-one correspondence with its pair
of endvertices, which are always distinct. Because simple graphs are important
and used frequently, we state their formal definition separately.

Definition 1.15
A simple graph is an ordered pair G = (V, E), where V is a nonempty set of
vertices and FE is a set of unordered pairs of distinct vertices of V. That is,

EC{X: X CV,|X|=2} = {{u,v}:u,v € Vu#v}.

The notation above is read “the set of X such that X is a subset of V' and
X has two elements.” The second part of this line is read “the set containing
two element sets having elements u and v such that both u and v are in the set
V', and u does not equal v.” A non-literal reading of the last part is “the set
containing sets having two distinct elements both of which are in the set V"

1.5 Important Examples of Graphs

We give several examples of common simple graphs below. In the examples that
follow m,n € {1,2,...}.

Example 1.16
The null graph on n vertices is the simple graph N,, = (V, E), with the sets
V ={uy,ug,...,u,} and E = 0.

Example 1.17
The path graph on n vertices is the simple graph P, = (V,E), where V =
{uy, ug, ..., u,} and E = {{uy,us}, {ug, us}, ..., {u, 1,un}}.
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Example 1.18
In this case assume that n is a natural number greater than or equal to two. The
cycle on n vertices is the simple graph C,, = (V, E), where

V:{ul,...,un}

and
E = {{Ul, Uz}, {U‘Q) Ug}, IO {un—h un}a {Un, ul}}
Note that C,, has one more edge than P,.

Example 1.19
The complete graph on n vertices is the simple graph K, = (V,E), where
V' = {uy,us,...,u,} and every pair of distinct vertices are connected by an

edge. Thatis, E equals {{u;,u;} 4,5 € {1,2,...,n},i <j}.

Example 1.20

The complete bipartite (m, n)-graph on m+n vertices is the simple graph K, ,, =
(V,E), where V. = {uy,ug, ..., upn} U{vi,v9,...,0,} and E = {{u;,v;} i €
{1,...,m},5€{1,...,n}}.

o o o o - 006—0

Uy Uz us Uy Up-1 Up

Figure 1.12: Path graph P,.

U1 Up,
. ./.—\ .
Uzl.\.—./. Ui
Uj Ujt1

Figure 1.13: Cycle graph C,.
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Uy

Ug Uz

Uus Ug

Uy Us

Figure 1.14: Complete graph K.

0 Note 1.21
In this book, a graph is a finite graph with possibly some loops and multiple
edges. In many places in the literature simple graphs are called graphs, and
general graphs are called multigraphs referring to their multiple edges.

When drawing a graph, it is immaterial whether the lines are drawn straight
or curved, long or short: the incidence between the edges and the vertices is of

(5} U2 us

U1 Ug U3 Uy

Figure 1.15: Complete bipartite graph K 4.
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U
Uy
U9 Uy
U2 @ Uy
Uus
Uus

Figure 1.16: Same graph drawn in two ways.

great importance. For example, the two graphs drawn in Figure 1.16 are the
same because incidence between vertices and edges is the same in both cases.

As we have already seen in the examples of diagrams of graphs, sometimes
two edges intersect at a point that does not represent a vertex. Another example
of this phenomenon occurs between edges e and f in Figure 1.17. Such edges
should be thought of as being in different planes and thus having no common
point. (Some authors break one of the two edges at such a crossing to emphasize
this fact.)

c

Figure 1.17: Edges e and f have no common point despite apparent intersection.
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1.6 Degrees and Regular Graphs

Many properties of graphs can be stated in terms of numerical values that are
attached to each vertex or to each edge of the graph by some logical rule. One
of the most important of these attributes is the degree of a vertex that we now
define.

Definition 1.22

Let G = (V,E,¢) be a graph and uw € V a vertex of G. The degree of u,
denoted dg(u) or d(u), is defined to be the number of edges having u as an
endvertex. Note, the loops at u are counted twice. Formally,

d(u) = [{e € E:u € dle), |¢(e)] = 2} + 2[{e € E : u € ¢(e),[d(e)| = 1}].

Informally speaking, d(u) just tallies the number of “edge ends” connected
to u. Thus it makes intuitive sense to count the loops twice since both loop’s
ends go into its endvertex. If G is a simple graph, then d(u) is precisely the
number of edges with u as an endvertex.

Example 1.23
Consider the graph shown in Figure 1.18.

In this case we have
3
2

=4, and
3.

We can now state our first theorem in graph theory. It relates degrees of

vertices to the number of vertices and edges of a given graph.

Theorem 1.24 (Hand Shaking Theorem)
For a graph G we have
Y ) =2E(@)]

ueV (G

The name “Hand Shaking Theorem” comes from the following party analogy.
Consider a collection of guests at a party. Suppose some guests shook hands
with some other guests. If we asked everyone at the party how many guests
they shook hands with and added those numbers all up, then this sum would be
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Uyg

us

Uy Uz

Figure 1.18: Various degrees.

equal to twice the number of total hand shakes. In graph theory terms, each
vertex represents a guest and an edge between two guests represents a hand
shake between them.

PROOF: (Theorem 1.24) In this proof we represent a loop in a graph by
an edge {u,u}. Each edge {u,v} € E(G) contributes two to the sum on the
lefthand side of the formula displayed in the theorem—one to d(u) and one to
dv). O

As a consequence of the Hand Shaking Theorem, we obtain the following
corollary.

Corollary 1.25
In any graph the number of vertices of odd degree is always even.

PROOF: By the Hand Shaking Theorem, ) d(u) is always even. The
number of odd d(u)-terms is therefore even. O

Graphs that have a uniform property often play an important role in applica-
tions. The following notion is one the most important such uniformity properties.

Definition 1.26
A graph G is called k-regular if d(u) equals k for all u € V(G). A graph G is
regular if it is k-regular for some natural number k.

Here are several examples of k-regular graphs.
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0 Example 1.27
We consider some typical regular graphs. Let m,n € {1,2,...} unless otherwise
noted.

> The null graph N, is a O-regular graph.

> For n a natural number greater than or equal to two, the cycle C,, is a
2-regular graph since d(u) equals two for all u € C,, (V).

> The complete graph K, is an (n — 1)-regular graph.

> The complete (m, n)-bipartite graph K, ,, is a regular graph if and only if
m equals n, in which case K, ,, is n-regular.

> The graph shown in Figure 1.9 is not regular since d(u,) = 3 # 0 = d(ug).

By the Hand Shaking Theorem, we obtain the following corollary about reg-
ular graphs.

Corollary 1.28
Every k-regular graph on n vertices has kn/2 edges. In particular, the complete
graph K, has (n — 1)n/2 edges.

1.7 Subgraphs

When studying a specific graph, many times our attention is focused solely on
a special part of the graph. Perhaps on a smaller graph lying inside the larger
graph. This motivates the following definition of a subgraph.

Definition 1.29
For graphs G' = (V' E',¢') and G = (V, E, ¢) we say that G' is a subgraph of
G if

1. V'CV,

2. E'CE, and

3. ¢'(e) = ¢(e) foralle € E.
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We denote the subgraph relation on graphs using the standard subset nota-
tion, namely C. If G' is a subgraph of G, we write G' C G.

In particular, for simple graphs G' = (V', E") and G = (V, E) we have that
G' is a subgraph of G if V! CV and F' C E.

Sometimes we need to talk about how a subgraph is derived from a group of
vertices or edges. The following definition is useful for doing this.

Definition 1.30

Let G be a graph. Let W C V(G) with W # (). The subgraph of G induced by
W, denoted G[W, is the graph with vertex set W and edge set consisting of all
the edges of G having both endvertices in .

Let F C E(G) with F # (). The subgraph of G induced by F', denoted G[F],
is the graph with edge set ' whose vertex set consists of all the endvertices of
edges of F.

The following example illustrates this definition.

Example 1.31

Consider the graph G depicted in Figure 1.19(a). In Figure 1.19(b) we present a
subgraph G of G. In Figure 1.19(c) we depict a subgraph induced by the vertex
set {uy,ug,us}. That is, we show G[{uy,us,us}|. In Figure 1.19(d) we show
the subgraph induced by the edges {e, €2, €3, €4} together with their endvertices.
That is, we show G[{e1, e, e3,e4}].

The next mathematical definition provides us with a mechanism for relating
various graphs to one another.

Definition 1.32
Let S be a set. A relation < between the elements of S satisfying the following
properties is called a partial order on S':

1. It holds that s < s for all s € S (reflexive condition),
2. Ifs <t andt < u, then s < u (transitive condition), and

3. Ifs<tandt =s, then s =t (antisymmetric condition).

The set S together with a partial order < is called a partially ordered set or
poset for short.
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Uy U2 Uy Ug
€3 e PS €3
€x €4 Us €9 Ug Us €9
€7 i €7
o
Us €6 Uy Us €6 Uy
G G'CG
(a) (b)
U U (51 U2
es 7] €4 €2
ug Usg Ug
G[{'LLI,UQ,U:),}] g G G[{€17€2763764}] g G
(c) (d)

Figure 1.19: Various subgraphs.

Notice that the following properties hold for graphs and the subgraph relation:

1. For any graph G we have that G C (. Since each graph is a subgraph of
itself, the subgraph relation satisfies the reflexive property.

2. f G C G" and G" C G then G’ C G. So, the subgraph relation satifies
the transitive condition.

3. f G C G"and G' C G then G = G'. So, the subgraph relation satisfies

the antisymmetric condition.

This simply means that we have a partial order on any collection of subgraphs
of a given graph. Some subgraphs are “larger” than others. Suppose G’ and
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G" are both subgraphs of a graph G. It is possible that G’ C G" but not
necessary. They may be incomparable using the subgraph relation. Hence, the
word “partial” is used for this type of ordering.

Observation 1.33
Any collection of subgraphs of a given graph along with the C relation forms a
poset. Hence the relation “A is a subgraph of B” forms a poset.

1.8 Problem Solving Using Graph Theory

In what follows we illustrate how a particular problem can be solved using graphs.
Similar techniques can be used to model and solve other problems. After some
practice, it will become easier for you to model a wide range of problems with
graphs.

O Problem 1.34

A Puzzle with Multicolored Cubes

Two steps are involved in modeling the puzzle. First, the physical problem
is converted into a problem of graph theory. Second, the graph-theory problem
is solved. Let us consider the following well-known puzzle available in toy stores
under the name of Instant Insanity.

We are given four cubes. The six faces of every cube are either colored blue,
green, red, or white. Is it possible to stack the cubes one on top of the other
to form a column such that no color appears twice on any of the four sides of
this column? Clearly, a trial-and-error method is unsatisfactory because there are
41,472 = 3 x 24 x 24 x 24 possibilities.

Solution:

1. Draw a graph with four vertices B, G, R, and W —one for each color. Pick
a cube and call it cube 1; then represent its three pairs of opposite faces by
three edges drawn between the vertices with appropriate colors. In other
words, if a blue face in cube 1 has a white face opposite to it draw an edge
between vertices B and W in the graph. Do the same for the remaining
two pairs of faces in cube 1. Put label 1 on all three edges resulting from
cube 1. A loop with the edge labeled 1 at vertex R, for instance, would
result if cube 1 had a pair of opposite faces both colored red. Repeat the
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R B w R
RIB|G|W W|IG|G|R R|IB|W|R W|G|B|G
R W G B
Cube 1 Cube 2 Cube 3 Cube 4

Figure 1.20: Four cubes unfolded and the corresponding color graph.

procedure for the other three cubes on these same vertices. The result is
a graph with four vertices and 12 edges. A particular set of four colored
cubes and its graph are shown in Figure 1.20.

2. We analyze the graph resulting from this representation in what follows.
The degree of each vertex is the total number of faces with the correspond-
ing color. For the cubes of Figure 1.20, we have five blue faces, six green,
seven red, and six white.

Consider two opposite vertical sides of the desired column of four cubes,
say facing north and south. A subgraph with four edges represents these
eight faces—four facing north and four south. Each of the four edges in
this subgraph has a different label—1, 2, 3, and 4. Moreover, no color
occurs twice in either the north side or south side of the column if and only
if every vertex in this subgraph is of degree two.

Exactly the same argument applies to the east and west sides of the column.

Thus the four cubes can be arranged to form a column such that no color
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B 4 R B R

W 3 G W G
(a) North-South subgraph (b) East-West subgraph

Figure 1.21: Two edge-disjoint subgraphs of the graph in Figure 1.20.

appears more than once on any side if and only if there exist two edge-
disjoint subgraphs each having four uniquely labeled edges such that each
vertex is of degree two. For the set of cubes shown in Figure 1.20 this
condition is satisfied and the two subgraphs are shown in Figure 1.21.

Techniques similar to those used in Problem 1.34 can be applied to solve
more complex problems as well. The key step is to determine how to obtain a
visual representation of the problem using graphs. This is usually followed by an
analysis phase.

1.9 A Brief History of Graph Theory

This section is devoted to a brief glimpse of graph theory's history. Additional
information can be obtained by pursing the references.

As mentioned before, graph theory was born in 1736 with Leonhard Euler’s
paper in which he solved the Konigsberg bridge problem. For the next 100 years
nothing more was done in the field.

In 1847, Gustav Robert Kirchhoff (1824-1887) developed the theory of trees
for their applications in electrical networks. Ten years later, Arthur Cayley (1821-
1895) discovered trees while he was trying to enumerate the isomers of saturated
hydrocarbons C),Hs, 2. About the time of Kirchhoff and Cayley, two other
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important problems in graph theory were formulated. One was the four-color
problem. It asks whether four colors are sufficient for coloring any atlas (a map
drawn in the plane) so that countries with common boundaries have different
colors.

It is believed that August Ferdinand Mabius (1790-1868) first presented the
four-color problem in one of his lectures in 1840. About ten years later, Augus-
tus De Morgan (1806-1871) discussed this problem with his fellow mathemati-
cians in London. De Morgan's letter is the first authenticated reference to the
four-color problem. The problem became well-known after Cayley published it
in 1879 in the first volume of the Proceedings of the Royal Geographic Society.
The four-color problem was finally solved by Kenneth Appel and Wolfgang Haken
in 1976; and hence, it is now justifiably called the Four Color Theorem. Appel
and Haken's proof depends on extensive computer calculation to check 1476
nontrivial cases. These are the so-called “unavoidable configurations.”

A new approach was given to the proof of the Four Color Theorem in the
1990’s by Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas
where the number of cases of unavoidable configurations was reduced to 633
(see [12]). Interestingly, they found the computer program worked faster when
dealing with edge colorings instead of vertex colorings. This was good since a
famous equivalence relation of Peter Guthrie Tait (1831-1901) from 1878 states
that every planar graph satisfying certain conditions is edge 3-colorable if and only
if it is vertex 4-colorable. The number of cases one needs to check is still too huge
for one person to verify. Hence, the proof still depends extensively on computer
computations. Therefore, many mathematicians and computer scientists remain
waiting and hoping for a self-contained and explanatory proof of the Four Color
Theorem.

The other important problem formulated during the time of Kirchhoff and
Cayley was due to Sir William Rowan Hamilton (1805-1865). In the year 1859,
he invented a puzzle and sold it for 25 guineas to a game manufacturer in Dublin.
The puzzle consisted of a wooden, regular dodecahedron (a polyhedron with 12
faces and 20 corners, each face being a regular pentagon and three edges meeting
at each corner; see Figure 1.22). The corners were marked with the names of 20
important cities: Delhi, London, New York, Paris, and so on. The object in the
puzzle was to find a route along the edges of the dodecahedron passing through
each of the 20 cities exactly once. In Chapter 3 we will see that the solution of
this specific problem is easy to obtain. However, no one has found a necessary
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)

Figure 1.22: Dodecahedron.

and sufficient condition for the existence of such a route, called a Hamiltonian
cycle, in an arbitrary graph.

This fertile period was followed by half a century of relative inactivity. Then
a resurgence of interest in graphs started during the 1920s. One of the pioneers
in this period was Denes Konig (1884-1944). He organized the work of other
mathematicians with his own research, and wrote the first book on the subject.
It was published in 1936.

The past 30 years has been a period of intense activity in graph theory—
both applied and pure. A great deal of research continues to be done. Many
papers have been published and numerous books on graph theory have been
written during the past decades. Among the most interesting characters who
have worked in the field, the wandering mathematician Paul Erdos (1913-1996)
with his many contributions to graph theory ranks near the top.

1.10 Remainder of This Book

We highlight the contents of each of the remaining chapters below.

In Chapter 2 we look at paths and cycles, and examine the concepts of
connectedness, homomorphisms, and isomorphisms.

Chapter 3 contains Eulerian graphs, several important operations on graphs,
bipartite graphs, Hamiltonian paths and cycles, and a look at the well-known
traveling salesman problem.

In Chapter 4 we present the concepts of trees and forests, demonstrate why
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trees are one of the most important types of graphs, discuss the fundamental
properties of trees and forests, present the concept of rooted trees, define binary
and regular binary trees, present inductive proofs on trees, examine some im-
portant applications of trees, prove the Erdos-Szekeres Theorem, define distance
and centers for graphs in general and specifically to trees, describe some charac-
terizations of trees, and study path lengths of trees with respect to algorithmic
efficiency.

Chapter 5 includes a classic application of trees to a problem in chemistry, the
concepts of spanning tree and spanning forest, Cayley’'s Theorem for counting
labeled trees, Prufer codes and their uses, how to find all of the spanning trees of
a graph, the minimum cost spanning tree, KRUSKAL’S and PRIM’S algorithms,
several applications of spanning trees, and degree-constrained spanning trees.

In Chapter 6 we define edge cuts and discuss their basic properties, examine
edge and vertex connectivity issues, define blocks and separability of a graph,
discuss the structure of 1- and 2-connected graphs, and explore the notions of
1- and 2-isomorphisms for graphs.

Chapter 7 defines planar graphs, discusses graphs embeddable in various sur-
faces, presents Euler's Formula for planar graphs and various consequences of it,
presents a characterization of planar graphs in the Kuratowski-Wagner Theorem,
and defines homeomorphic graphs, contraction, and minors of graphs.

In Chapter 8 we examine geometric duals of planar graphs, define combinato-
rial duals of graphs, present characterizations of planar graphs in terms of duality
and basic cycles, explore thickness and crossings as measures of the degree of
planarity, define the genus of a general graph, and give a generalization of Euler’s
Formula.

In Chapter 9 we define semigroups, monoids, and groups, discuss rings and
fields, present modular arithmetic and Galois fields, define a vector space over
a field, define a vector space associated with a graph, study basis vectors of a
graph, look at cycle and edge cut subspaces, and prove some graph-theoretic
results using vector spaces.

In Chapter 10 we define the adjacency matrix for a graph, define the (reduced)
incidence matrix, present the Matrix-Tree Theorem, define the (fundamental)
circuit matrix, define the (fundamental) edge cut matrix, derive relationships
among these matrices, present an application in a switching network, and present
an application in electrical network analysis.
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1.11 Exercises

1. Draw all simple graphs having exactly one, two, three, or four vertices.

2. Draw a portion of your academic department’'s Web page as a graph by
modeling Web pages as vertices and hyperlinks as edges. Include at least
ten different Web pages and draw edges for all of the existing hyperlinks
between the Web pages you select. Label the vertices with their uniform
resource locators.

3. Draw graphs representing problems of (a) two houses and the three utilities
water, gas, and electricity (b) four houses and the four utilities water, gas,
electricity, and telephone.

4. Model the seating assignments problem for seven club members. List a
set of sequences that illustrates the maximum number of possible different
seating arrangements satisfying the conditions of Problem 1.6.

5. Refer to the job assignments problem shown in Figure 1.6. Is the company
able to meet its hiring needs? If so, provide a possible set of hires that
meet their needs?

6. Name six situations (games, activities, real-life problems, and so on) that
can be represented by a graph. Explain what the vertices and edges repre-
sent.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Draw a graph with 64 vertices representing the squares of a chess board.
Join these vertices appropriately by edges, each representing a move of the
knight. You will see that every vertex in this graph has degree two, three,
four, six, or eight. How many vertices are there of each type?

Write out complete 3-tuples that describe the graphs shown in Figures 1.6
and 1.7.

Show that an infinite graph with a finite number of edges (that is, a graph
with a finite number of edges and an infinite number of vertices) must
have an infinite number of isolated vertices.

Show that an infinite graph with a finite number of vertices (that is, a
graph with a finite number of vertices and an infinite number of edges)
will have at least one pair of vertices or one vertex that is joined by an
infinite number of edges.

Show that the maximum degree of any vertex in a simple graph with n
vertices is n — 1.

Show that the maximum number of edges in a simple graph with n vertices
is (n—1)n/2.

For n equals one, two, and five draw the following graphs: N,,, P,, C,,
K,, and K, ,. Which of the graphs are the same?

Construct a table whose entries are formulas for the number of vertices
and edges for the graphs N, P,, C),, K,, and K, , for an arbitrary value
of n.

For what values of n less than 20 can you draw a 3-regular graph having
n vertices?

Express both the maximum and minimum degree of vertices in the graphs
N,, P,, C,, K,,, and K, ,, in terms of n.

How are N,,, P,, and C), related via the subgraph relationship?

For what values of n is K,, a subgraph of K, for given values of [ and
m?
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19

20.

21.

22.

23.

24.

25.

26.

Specify a minimum value of n in terms of [ and m such that K, is a
subgraph of K.

For every k-regular graph is there a (k+ 1)-regular graph that contains the
k-regular graph as a subgraph?

Prove that the usual less than relation (<) is a partial order on the set of
integers Z=1{...,—-2,-1,0,1,2,...}.

Define a relation on graphs that is a partial order and include a proof that
your relation is indeed a partial order.

Decanting problem. You are given three vessels A, B, and C' of capacities
8, 5, and 3 gallons respectively. A is initially filled while B and C' are
empty. Divide the liquid in A into two equal quantities. This is the classical
decanting problem. [Hint: Let a, b, and ¢ be the amounts of liquid in A,
B, and C respectively. We have a + b + ¢ = 8 at all times. Since at
least one of the vessels is always empty or full at least one of the following
equations must always be satisfied: ¢ =0, a =8, b=0,b =5, ¢c =0,
or ¢ = 3. You will find that with these constraints there are 16 possible
states (situations) in this process. Represent this problem by means of
a 16-vertex graph. Each vertex stands for a state and each edge for a
permissible change of states between its two endvertices. Now when you
look at this graph, it will be clear to you how to go from state (8,0, 0) to
state (4,4,0).]

Refer to the set of cubes represented by the graph shown in Figure 1.20. Is
it possible to stack all four cubes into a column such that each side shows
only one color? Explain.

Write a one page biography of Paul Erdos. Be sure to include several of
his most popular sayings and a description of the Erdos number. [Hint:
Use the World Wide Web to conduct your research.]

Construct a timeline that includes twenty-five of the most important events
in graph theory. [Hint: Use the World Wide Web to conduct your research.]
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Basic Concepts in Graph Theory

Chapter Goals

Define and study paths and cy- Present homomorphisms.
cles.
Examine connectivity. Present isomorphisms.

2.1 Introduction

In this chapter we continue to develop some basic tools to handle problems in
graph theory. These building blocks are essential in order to discuss more complex
parts of this subject. In §2.2 we present paths and cycles. These ideas lead us to
the notion of connectivity, the topic of §2.3. In §2.4 we present two interesting
facts about graph components. We then examine the structures of graphs. The
concepts of homomorphisms and isomorphisms introduced in §2.5 and §2.6 allow
us to compare graphs and determine their similarities.

2.2 Paths and Cycles

Although two vertices in a given graph may not be adjacent, they might be
adjacent to a common neighbor, or more generally, connected by a sequence of
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edges. This type of connectivity turns out to be an important concept in graph
theory. The following definition captures this idea.

Definition 2.1

>

v VvV V VvV

A walk in a graph G is an alternating sequence
(UO, €1,U1,€2,...,€L, uk)

of vertices and edges that begins and ends with a vertex. For each i €
{1,2,...,k} the endvertices of e; are u; 1 and u;. That is,

o(ei) = {ui1,ui}.

The vertex uy is the initial vertex of the walk. The vertex uy, is the final
vertex of the walk. The initial or final vertex of a walk is also called an
endvertex of the walk.

The natural number k is the length of the walk.
A trail in G is a walk with all of its edges e, es, . .., e distinct.
A path in G is a walk with all of its vertices ug, uy, ..., u; distinct.

For vertices w and v in G, a u,v-walk (u,v-trail or u,v-path) is a walk
(respectively, trail or path) with initial vertex u and final vertex v.

A walk or trail of length at least one is closed if the initial vertex and the
final vertex are the same. A closed trail is also called a circuit.

A cycle is a closed trail with distinct vertices except the initial and final
vertices are the same.

Note that one can view a single vertex as a walk, trail, or path of length
0. We extend Definition 2.1 to include these cases. Cycles always have positive
length. We never view a single vertex as a trivial cycle. The only cycles of length
one are loops. Also, the set of vertices and edges constituting a given walk, trail,

path,

or cycle in a graph G clearly forms a subgraph of G.

Observe that in a simple graph a walk, trail, path, or cycle can be specified
by a sequence of vertices (ug, uy,...,u;) instead of (ug, ey, us, €, ..., €k, Ug).
This is because a pair of adjacent vertices u;_; and u; completely determine the
only edge e; = {u;_1,u;} between them.

The next example illustrates Definition 2.1.
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0 Example 2.2
Consider the graph shown in Figure 2.1.

> w= (ula a, Uz, b7 us, ¢, us, g, Uy, @, Uz, €, U4, h7 U5)
In the figure we see w is a walk of length seven. Note that w is not a trail
since the edge a appears twice. A walk that is not a trail is clearly not a
path. Hence, w is not a path.

> t= (ula a, Uz, b7 us, €, U3, d7 Uy, €, U2, f7 U5)
The walk t is a trail of length six. Note that t is not a path since the
vertices uo and uz appear twice.

> P = (ula a, Uz, b7 us, d7 U4)
The walk p is a path of length three.

> o = (ula a, Uz, b7 us, C, us, d7 Uy, €, U2, 4, ul)
The walk ¢, is a closed walk of length six.

> ¢ = (ula g, us, C,us, b7 Ug, €, Uy, h7 Us, f7 Uz, a, ul)
The walk ¢y is a closed trail of length seven.

> c3 = (uhgaui’nda U4,€,U2,G,U1)

The walk c3 is a cycle of length four.

Sometimes we need to combine walks, trails, or paths. Clearly, if we know
how to go from A to B and B to C, then we can get from A to C'. This
observation inspires the following definition.

Definition 2.3
Let p and q be two walks, two trails, or two paths with

p = (ug,e1,u1, ..., e, u) and
q= ('U07f1;'U17 .- -,fl,Uz)-

If u, = vy then we can form the composite walk, trail, or path
pq = (U’07€17U’17 e '7€k7uk7flavla .. '7fl7'Ul)

by first traversing along p and then along q.
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'U5

Uy

h

Figure 2.1: Graph used to illustrate walks, trails, paths, and cycles.

We can also form the inverse walk, trail, or path of p

pil — (ukaeka <oy Uy, 61,U0).

We observe that although the concept of path and cycle are very simple, their
formal definitions become quite involved. The complications arise in specifying
precisely which vertices can and can not be duplicated.

Note the “left-right” difference between compositions of walks, trails, or paths
and the composition of two maps ¢ and f. The composition of maps (go f)(x)
means that we first apply f to x on its right, and then g to f(z) on its right.
Walks, trails, or paths are not applied to anything on their right. Instead they
are simply concatenated.

The diagram in Figure 2.2 explains the relationship of the items from Defini-
tion 2.1 in any given graph G'. In the figure an arrow from one oval to another
means that items in the first oval are more general than items in the second. So,
for example, walks are a subset of trails.

The diagram in Figure 2.2 is actually an example of a directed graph, where
each edge has a direction. We will discuss directed graphs in more detail in
Chapter 13.

The next result shows that if there is a walk between two vertices in a graph,
then there must also be a path between them. Intuitively, the idea is simply to
go directly between the two vertices without taking any “detours.”
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walks

closed walks >

( trails

circuits

( paths

cycles )

Figure 2.2: Relationship between various subgraphs and walks.

Theorem 2.4
Let G' be a graph having distinct vertices w and v. If G contains a u,v-walk,
then G' contains a u, v-path.

PROOF: If there is a u, v-walk in G, then there is one of shortest length.

Let p be a u, v-walk of shortest length £:

b= (u07617u17 €2,.. '7€kauk)7

where © = ug and v = uy.

We want to show that p is actually a path. Assume the contrary, that p is
not a path. Then there must be a repeated vertex in p. That is, there must be
a pair of indices 7,5 € {0,1,2,...,k} with i < j and u; = u;. In this case we
can form a new u, v-walk

/
P = (Up, €1, U1, ..., €5, Ui Ej41, Ujt1, - - - 5 €y Uk)

of length k — (j — i) < k. Figure 2.3 depicts the situation. This means that p is
not the shortest u, v-walk. Thus we have a contradiction. Our assumption that
p is not a path is therefore wrong. This proves the theorem. [
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Figure 2.3: Walk p' is shorter than walk p.

It should be clear from context when we talk about walks, trails, paths, or
cycles whether we mean the actual sequence of vertices and edges as defined,
or simply the underlying subgraph it produces. The phrase “G contains a trail
of length five” means that the graph GG contains a subgraph with five edges and
their endvertices such that this very subgraph makes up a trail of length five in
an unambiguous and clear fashion.

2.3 Connectedness

Intuitively, the concept of connectedness is obvious. A graph is connected if we
can reach any vertex from any other vertex by traveling along the edges. This
leads to the following definition.

Definition 2.5
A graph G is said to be connected if for every pair of vertices, u and v in GG, the
graph has a u,v-path. Otherwise, we say the graph is disconnected.

The next example illustrates this definition.

Example 2.6
Consider the graphs G and G’ depicted in Figure 2.4. G is a connected graph
but G' is not since G' has no u, v-path.
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G G’

Figure 2.4: Graph G is connected but G’ is not.

It is not hard to see that a disconnected graph consists of two or more
connected subgraphs. Each of these connected subgraphs is called a component
or connected component of the graph. More formally, we have the following
definition.

Definition 2.7
Let G be a graph. Let C, ..., C} be subgraphs of G whose vertex sets and edge
sets are pairwise disjoint and such that they cover all the vertices and edges of
G. That is,
V(G) = V(Cl) U---u V(Ck) and
E(G)=E(C))U---UE(Cy),

where V(C;) N V(C;) = E(C;) N E(C;) = 0 for each distinct i and j.

Each of the subgraphs C; is called a component or connected component of
GG. The order of a component C; is simply the number of vertices in C;.

Note Definitions 1.9 on page 13 and 1.29 on page 22 imply that V' (C;) # ()
for each 7 since each C; is a subgraph. The next result states the intuitive idea
that every graph is made up of its components and its components alone.
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Theorem 2.8
Every graph G has a finite number of connected components C', ..., Cl.

It is evident that a graph G is connected if and only if % is equal to one.

Before proving Theorem 2.8, we define a very convenient mathematical tool.
This notion has far reaching applications.

Definition 2.9
Let S be a set. A relation ~ between the elements of S that satisfies the following
properties is called an equivalence relation of S':

1. Forall s € S, s ~ s (reflexive condition),
2. If s ~t thent ~ s (symmetric condition), and

3. Ifs~tandt~ u, then s ~ u (transitive condition).

Shortly, we will see an example of a graph-theoretic equivalence relation.

The following result shows how an equivalence relation can be used to split
its underlying set into pieces. This type of division is called a partition.

Theorem 2.10

Let X be a finite set and ~ an equivalence relation on X. Then we have a
partition
X=XjU---UX;

for some natural number k, where
1. X; is nonempty for 1 < i <k,
2. X;nX; = () for each distinct i and j between 1 and k, and

3 X;={ye X:y~ua;} forevery x; € X;.

Each of the subsets X; is called an equivalence class corresponding to ~.

PROOF: (Sketch) Choose z; € X and let X; = {y € X : y ~ x}. If
X; equals X then we stop. Otherwise, we pick 5 € X \ X; and let X, =
{y € X 1y ~ x2}. Note that because ~ is an equivalence relation, we see that
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Figure 2.5: Partition of a set S = {1,2,...,10} into three equivalence classes.
(The area of each region is not significant.)

X, NX, = (. Since otherwise, if y € X; N X5, then we have ; ~ y and x5 ~ 1.
Hence, by the symmetric and transitive conditions, we get x; ~ x5. But then
T9 € X4, which is not the case.

Again, if X = X;U X5, then we stop. Otherwise, we continue in this manner
and pick 3 € X \ (X; U X5) and let X3 = {y € X : y ~ z3}. As before, we
have X5 N X, = () for i equals 1 or 2.

The procedure outlined here must stop because X is a finite set. At the
stopping point, we have that X = X; U---U X}, where xy,...,2; € X and
X;NX; = 0 for all distinct i and j between 1 and k. Since z; € X, for1 <i <k,
we see that X; is nonempty.

Finally, let i € {1,...,k} and let z} € X;. Since x} ~ x;, we have that if
y ~ x; then y ~ 2 and the other way, that if y ~ 2 then y ~ z;. Therefore,

Xi={yeX:y~u}={ye X y~ua}
This holds for each x; € X; and we have the theorem. O
Figure 2.5 depicts the partition of the set S = {1,2,...,10} corresponding
to the relation congruent to the same value mod three. Notice S is partitioned
into three equivalence classes. For example, 3 mod 3 = 0, 6 mod 3 = 0, and

9 mod 3 = 0, so these three values all fall into the same part (equivalence class)
of the partition.

We need one more result before tackling the proof of Theorem 2.8. Let G
be a graph. We define the path relation between the vertices of G as follows:
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u ~ v if and only if there is a u, v-path in G. (2.1)

The next theorem shows that the path relation is an equivalence relation.

Theorem 2.11
Let G be a graph. The path relation is an equivalence relation between the
vertices of GG. That is,

1. Forallu e V(G), u~u,
2. Ifu~ v thenv ~ u, and

3. Ifu~wvandv~ w, then v ~ w.

PRrROOF: For any vertex u the path of length zero is in G and hence u ~ wu.

1

Suppose u ~ v and that p is a u,v-path in G. The inverse p~* is also a

v, u-path in G and hence v ~ u.

Finally, if p is a u,v-path in G and ¢ is a v, w-path in GG, then pq is a u, w-
walk in G. Hence, by Theorem 2.4 there is a u, w-path in GG. Thus we have the
theorem. O

We are now ready to present the proof of Theorem 2.8.

PROOF: (Theorem 2.8, page 41) By Theorem 2.11 using the path relation,
we get a partition of the vertices of GG

V(G)=ViU--- UV,

where V; NV} = 0 for all distinct 7 and j between 1 and k. Note that every pair
of vertices u and v in each V; is connected by a path in G.

Let C; = G[V;] be the subgraph of G induced by V;. Let E; be the edge set
of C; for i between 1 and k. Since no two of the C;’s have a vertex in common,
they can have no edge in common either. Hence, E; N E; = () for all distinct ¢
and j between 1 and k.

Finally, if e € E is an edge of (&, then the endvertices of e say u and v are
connected by the path (u,e,v). So, u,v € V; for some i. Therefore, e € F;.
Thus we have the covering

E(G)=E U---UE.

This proves the theorem. O
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2.4 Two Facts about Graph Components

In this section we present two interesting facts about graphs and their compo-
nents.

Theorem 2.12
If a graph G has exactly two vertices u and v of odd degree, then G has a
u, v-path.

PROOF: Assume that all of the vertices of G except u and v are of even
degree. If u and v are both in the same component of (G, then that component
of G and hence G itself has a u, v-path. Otherwise, u and v are in different
components. Let C, and C, be the respective components. The only odd
degree vertex of C,, (C,) is u (respectively, v). This contradicts Corollary 1.25
on page21. O

Before proving our next theorem, we need an algebraic inequality.

Observation 2.13
If x1,29,...,2, > 1 are real numbers and v = x1 + - - - + x}, then

zk:xf <a2?—(k—1)(2x — k).

PrROOF: For each i let x; = y;+ 1, where y; > 0. Let y =y, +---+yx. By
expressing the right hand side of the above inequality in terms of y, we have
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= (k—-1)2z—k) = (y+k)?—(k—1)Q2y+k)
= Yy’ +2y+k

(B ()

k k
> z(z)k
=1 =1
k
= > W+ +1)
=1
k
v
=1

This proves the observation. O

We now have the necessary machinery to prove the following theorem.

Theorem 2.14
A simple graph G with n vertices and k components can have at most

(n—k)(n—Fk+1)/2

edges.

ProOOF: Let C,...,C) be the components of G. Denote the order of C;
by n; for 1 < ¢ < k. Note that n = n; + --- 4+ ng. Observe that each Cj; is
a simple graph. From Corollary 1.28 on page 22, it follows that C; can have at
most (n; — 1)n;/2 edges. Hence, using Observation 2.13, the maximum number
of edges of GG can be estimated as follows:
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(mi—Dni 1[5\ n
P 5(?}”1’)‘5

< %[nQ—(k—l)(Qn—k)] -2
(n—k)(n—k—i—l).

2

This proves the theorem. O

There are many other interesting facts about graph components. The two
results presented in this section give a flavor of how such results are proven.

2.5 Homomorphisms and Isomorphisms of
Graphs

Many mathematical objects can be studied and described by certain special maps
between them, and the same holds true for graphs. These maps are called
homomorphisms. A homomorphism from a graph G to another graph G’ is a
function that maps the vertices of GG to the vertices of ', and the edges of GG
to the edges of G’ in the following way. If an edge e in G has endvertices v and
v, then the corresponding image edge ¢’ of G’ has endvertices v’ and v’; these
are the respective images of « and v under the mapping.

To state this precisely and to be in coherence with Definition 1.9 on page 13,
we make the following definition.

Definition 2.15
Let G = (V,E,¢) and G' = (V', E', ¢') be two graphs. A homomorphism

f:G— G

from G to G' is an ordered pair f = (f1,f2) of maps f; : V +— V' and
fo 1 E — E' satisfying the following condition:

if 9(e) = {u, v} then ¢'(f2(e)) = {f1(u), i(v)}.
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That is, if u and v are the endvertices of e in G, then fi(u) and fi(v) are the
endvertices of fy(e) in G'.

If both maps f, and f5 are bijective, then f is called an isomorphism. In this
case we say that the graph G is isomorphic to the graph G', or that G and G'
are isomorphic. We denote graph isomorphism by

G=dG.
An isomorphism from G to itself is called an automorphism of G.

Before discussing the implication of this definition further, we consider two
examples. The first example illustrates the concept of homomorphism.

0 Example 2.16
Consider the two graphs G and G' shown in Figure 2.6.

Define the maps f, and f, as follows:

filur) = fi(ug) = fi(us) = fi(ug) = uj,

fl(u2) = UIQ, and
fl(U3) = us,

and

Let f : G — G' be defined by f = (f1, fo). Having defined the maps f;
and f5, one can consider each edge in G and check whether its endvertices are
mapped to the corresponding endvertices of the mapped edge in G'. So, we
consider the list of edges ey, es,. .., e;5:

> We have ¢(er) = {ur} and ¢'(fa(er)) = ¢/(e}) = {ui} = {fu(u)}. So,

this checks out okay.
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Figure 2.6: GG and G’ used in Example 2.16 to illustrate a homomorphism.

> We have ¢(ex) = {us,us} and ¢'(fa(e2)) = ¢'(e)) = {upui} =
{f1(uz), f1(us)}. So, this checks out okay.

> We have ¢(es) = {u1,us} and ¢'(f2(es)) = ¢'(ey) = {ui} = {u}, uj} =
{fi(u1), fi(us)}. So, this checks out okay.

Hence, f : G — G' is indeed a homomorphism. Note that f is not an
isomorphism.

The following remark helps clarify how one graph can be mapped to another
by a homomorphism.

0 Remark 2.17
By the definition of homomorphism, any pair of adjacent vertices are mapped
to adjacent vertices or to the same vertex. Moreover, any pair of edges incident
with each other are mapped to edges that are incident with each other or to the
same edge. Also a non-loop edge can be mapped to a non-loop edge or to a
loop. However, a loop can only be mapped to a loop.
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Figure 2.7: Are graphs G and G’ isomorphic?

The following example illustrates the notion of isomorphism.
0 Example 2.18
Consider the two graphs G and G’ depicted in Figure 2.7.

Here both G and G' are simple graphs. Therefore, each edge in these graphs
can be expressed as a 2-element set of vertices.

Let f1 : V +— V' be the map defined by

filuy) =v;
for each i € {1,2,...,10}. Let fo: E +— E' be the map defined by

fo{ui, uz}) = {vi, vy} (2.2)

for every edge {u;,u;} in E. The condition in Equation 2.2 is necessary for
f = (f1, f2) to be a homomorphism. The reader should verify that f is indeed
a homomorphism.

Note that f, is a bijective map. The map f> : E — E' is an injective map
from a set E of 15 edges to another set E' of 15 edges. Therefore, f, is also
a bijection. So, f; : V +— V' and f, : E — E' are both bijective maps. Thus
f is an isomorphism. This means that the graphs in Figure 2.7 are ‘“equivalent”
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U2 —
/N
Uy

us

Figure 2.8: We stretch GG to the right as indicated by the arrows in a step to
deform G into G'.

in the sense that every graph-theoretic property fulfilled by one of the graphs is
also fulfilled by the other.

In this example it is not hard to see that geometrically G' is a simple defor-
mation of G. Hence, the isomorphism should come as no surprise. To see G’
is a deformation of G simply take G' and deform it by stretching to the right
as illustrated in Figure 2.8. Next reflect the vertices us and u; about the edge
{ug, us} and let the edges with endvertices uy and uy follow. This is shown in
Figure 2.9. We now see that G and G' “are the same.”

The following theorem describes an equivalence relation among graphs.

Theorem 2.19
The isomorphism relation between graphs in a fixed collection is an equivalence
relation. That is,

1. For any graph G, G = G. In fact,

IG — (IVa IE)

is always an automorphism of G.
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2 IfG=2G and G = G", then G = G". In fact, if f = (f1, f2) is an
isomorphism from G = (V,E,¢) to G' = (V' E',¢') and ' = (f1, f3)
is an isomorphism from G' = (V' E', ¢') to G" = (V",E",¢"), then the
ordered pair

frof=(fiofi,fz0f2)

is an isomorphism from G to G".

3. IfG =G then G' = G. In fact, if f = (f1, f2) is an isomorphism from
G=(V,E,¢) toG" = (V',E',¢'), then the ordered pair

=N

is an isomorphism from G' to G.

PROOF: Since the proofs of each of the three statements are very similar,
we leave the proofs of the first two enumerated statements as exercises.

To prove the third statement, we assume that f = (f1, f2) is an isomorphism
from G to G’. Since both f; and f, are bijective, then so are their inverses f,
and f,*. Toshow f~' = (f;!, £, ') is an isomorphism from G’ to G, we need
that the condition

if ¢'(¢') = {u/,v'} then &(f, '(e")) = {f, (), f; 1(¥))}

Figure 2.9: Reflection about the edge {ug,us} to obtain G’ from G.
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holds for every ¢’ € E’ and its endvertices v/, v € V.

Assume that ¢'(¢') = {u/,v'} and ¢(f;'(¢')) = {z,y}. We want to show
that {z,y} = {f7' ('), f;7 (v")}. Set f5'(e') = e so we have that fy(e) = ¢’
and ¢(e) = {z,y}. Since f = (f1, f2) is an isomorphism, we have

{u/,v'} = ¢'(¢') = ' (f2(€)) = {/i(2), /1 (y)}-

Therefore, either u' = fi(x) or v’ = fi(y). For symmetric reasons we can
assume the former. We then have that v’ = fi(x) and v = fi(y) (note this
holds regardless of whether v/ and v are distinct). From this we get f; ' (u/) =
and f'(v') = y. Therefore, {z,y} = {f7 ('), f{'(v')}. This proves f~! =
(fi ', £, 1) is an isomorphism. O

Theorem 2.19 ensures that when considering graph-theoretic properties it
suffices to study one particular graph of the equivalence class defined by = (is
isomorphic to). This is because any graph isomorphic to our chosen one would
have the same graph-theoretic properties like “containing a vertex of degree
greater than or equal to 23,” “containing a simple path with more than half the
number of vertices of the entire graph,” “being connected,” and so on. This
is true because we can transform back and forth between the graphs in the
equivalence class via the isomorphism.

This allows us to talk about “the graph” N, (as we have done already,
without justification, in Example 1.16 on page 16, and the examples following
that one!) as just one representative of the countless graphs isomorphic to N,,.
This is because all graphs isomorphic to /V,, have exactly the same graph-theoretic
properties as N,,. Therefore, they can be viewed to be the same graph as the
graph represented in Example 1.16.

As we saw in Example 2.18 on page 50, the graphs GG and G’ represented
by the diagrams in Figure 2.7 where isomorphic. Hence, we can say that GG and
G' are the same graph. This graph is called the Petersen graph. It is usually
presented as the diagram of G on the left of Figure 2.7.

In the next section we look at homomorphisms and isomorphisms of simple
graphs. By restricting ourselves to simple graphs, working with the corresponding
definitions will be easier.
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2.6 Homomorphisms and Isomorphisms of Sim-
ple Graphs

Notice that in Example 2.18 on page 50, the isomorphism from G to G’ was
completely determined by the vertex map f;. This is the case for all simple
graphs. Since most graph-theoretic problems can actually be reduced to the
study of simple graphs, we can simplify our general definition (Definition 2.15
on page 47) of homomorphism and isomorphism between simple graphs. Recall
that by Definition 1.15 on page 16, an edge in a simple graph is a two element
subset of the set of its vertices.

Definition 2.20
Let G = (V,E) and G' = (V', E') be two simple graphs. A homomorphism

f:G— G

from G to G' is an ordered pair f = (fi, f2) of maps, fi : V — V' and
fao : E — E' satisfying the compatibility condition

fa{u, v}) = {fi(u), fr(v)} (2:3)

for every edge {u,v} € E.

The homomorphism f is an isomorphism if both f, and f, are bijective.

Note that this definition is completely compatible with the more general
Definition 2.15 on page 47 restricted to simple graphs. Hence, the isomorphism
relation defines an equivalence relation between any collection of simple graphs
as well.

Any subgraph of a given graph G, which is isomorphic to a complete graph
K, for some [, is called an [-clique in G. When the number of vertices in the
subgraph is irrelevant, we simply call it a clique. With this definition in mind, the
following items are worth noticing for homomorphisms between simple graphs:

1. Two adjacent vertices must be mapped to different adjacent vertices. So
in particular, a clique is always mapped to a clique having the same number
of vertices.
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2. Suppose that f = (fi, f2) is a homomorphism from G to G'. The vertex
map f1 : V +— V' completely determines the edge map f, : E — E’ by
the compatibility condition (Equation 2.3).

Note that these two facts do not hold for graphs with loops and multiple
edges.

Determining if two graphs are isomorphic is a well-known, but difficult open
problem in graph theory. Given two graphs, the problem boils down to determin-
ing whether all graph-theoretic properties satisfied by one graph are also satisfied
by the other. If we can spot a property that one graph satisfies but the other
one does not, then we can rest assured that the graphs are not isomorphic. But
even if two graphs are not isomorphic, finding a particular property satisfied by
one and not the other can be quite tricky task even though we know for a fact
that such a property exists.

There are times when we can tell right away that two graphs are not isomor-
phic. Although we discuss isomorphism between graphs further in Chapters 6
and 15, we now note a couple of properties that can easily be checked. Such
properties are called invariants of a graph. If two graphs are isomorphic, they
must satisfy the following:

1. They must have the same number of vertices and edges.
2. Their number of components must be the same.

3. For each i € {0,1,2,...} the number of vertices with degree i must be
the same in both graphs.

It becomes harder to determine whether two graphs are isomorphic when the
number of edges is increased. When dealing only with simple graphs, we have
a slight simplification. Recall that a simple graph with n vertices can have at
most (n — 1)n/2 edges. Theorem 2.19 shows that when considering two graphs
both having n vertices and e edges we can restrict our attention to graphs with
n vertices and at most |(n — 1)n/4| edges. Before presenting that result, we
need to introduce the notion of the complement of a graph.

Definition 2.21
For a simple graph G = (V| E), the complement of G is defined as

G=(V.E),
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where E = {{u,v} : {u,v} & E}. In other words, G is a simple graph with the
same set of vertices as G' and where two vertices are adjacent if and only if they
are not adjacent in G

Note that NN, equals K,, and K,, equals N,,. In general, we have G equals G
for any simple graph G. With Definition 2.21 in mind, we obtain the following
theorem.

Theorem 2.22 -
For simple graphs G and G', G = G" if and only if G = G'.

PROOF: Exercise 21. O

Two simple graphs G and G’ on n vertices are isomorphic if and only if their
complements are isomorphic. So, we can conclude that if they both have e greater
than |[(n — 1)n/4| edges, then the number of edges in their complements, €', is
bounded above.

In this case it might be easier to determine if the graphs are isomorphic by
working with their complements.

In the following examples we consider several additional invariants that may
be used to determine whether or not two graphs are isomorphic.

Example 2.23
Consider the two graphs depicted in Figure 2.10.

Notice that the graph G' on the left has two paths of length four. The graph
G' on the right only has one path of length four. Therefore, G and G' cannot
be isomorphic.

A more analytical argument works as follows: Both graphs G and G' are
simple with six vertices and five edges. Both graphs have three vertices of
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G G’

Figure 2.10: Graphs used in Example 2.23. Are the graphs isomorphic?

degree one, two vertices of degree two, and one vertex of degree three. Hence,
if G and G' are isomorphic and f : G — G' is an isomorphism, then f,(u) = v’
must hold. This is because a vertex of degree k must be mapped to a vertex
having degree k. A vertex adjacent to u must be mapped to a vertex adjacent
to u'. Notice that the three vertices adjacent to u in G, two with degree one
and one with degree two, must be mapped to the three vertices adjacent to u'
in G', two of which have degree two and one which has degree one. This is
clearly impossible, since as previously stated, a degree k vertex must be mapped
to a degree k vertex. Thus we conclude that the two graphs G and G’ are not
isomorphic.

Example 2.24
Consider the two graphs illustrated in Figure 2.11.

Both graphs are 3-regular simple graphs on six vertices. We note that the
graph G on the left has a cycle of length three, but G' on the right has no
3-cycles. Therefore, these graphs are not isomorphic. Another argument can be
achieved by examining the complements. The complements of the graphs are
shown in Figure 2.12. From Figure 2.12 we see that the complement G is the
cycle Cg on six vertices. It is connected. However, the complement G' is the
disjoint union of two copies of the cycle C5 on three vertices. This graph has
two components. So, G is not isomorphic to G'. Hence, by Theorem 2.22, the
graphs G and G’ are not isomorphic either.

It is not hard to see that the graph G’ on the right side of Figure 2.11
is isomorphic to K33. As discussed in the Utilities Problem on page 5, K333
is nonplanar in the sense that it cannot be drawn in the plane without edges
crossing each other. Clearly, the graph G on the left side of Figure 2.10 is
planar, there are no edge crossings. Hence, we have yet another way to see
that G and G’ are not isomorphic. We could continue to list graph-theoretic
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G G’

Figure 2.11: Graphs used in Example 2.24. Are the graphs isomorphic?

JANpe

a:cﬁ @Z“QXC?,”

Figure 2.12: Complements of the graphs shown in Figure 2.11.

properties satisfied by one graph and not by the other. However, just one such
property suffices for the two graphs not to be isomorphic.
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2.7 Exercises

1. Is it possible to draw a graph that has a trail of length seven but no path of
length seven? If so, draw such an example. Is it possible to draw a graph
that has a path of length seven but no trail of length seven? If so, draw
such an example.

2. Represent the maze shown in Figure 2.13 with a graph such that a vertex
denotes either a corridor or a dead end (as numbered). An edge represents
a possible path between two vertices. (This is one of numerous mazes that
were drawn or built by the Arabs, Greeks, Hindus, Romans, Vikings, and
others. See also Exercise 3.)

3. What is the length of the path from the entrance to the center of the maze
shown in Exercise 27

4. When considered separately, for what values of n do N,,, P,, C,,, K, and
K, , have

(a) trails of length n
(b) walks of length n
(c) cycles of length n

5. Show that if a graph G contains a closed trail of odd length, then G
contains a cycle of odd length. Does the same hold if we replace the word
“odd” with “even” throughout the previous sentence?

6. Prove that a simple graph with n vertices must be connected if it has more
than
(n—1)(n—2)
2

edges. [Hint: Use Theorem 2.14.]

7. Prove that a connected graph GG remains connected after removing an edge
e if and only if e is in some circuit of GG.

8. Draw a connected graph with at least six vertices that becomes discon-
nected when any edge is removed.
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4
7
8 13 12| 11
14
21 22 Destination 18 17 6 5
19 | 20
15| 16
10
9

9.

10.

Figure 2.13: A maze.

Prove that a graph with n vertices satisfying the conditions of Exercise 8
is simple and has exactly n — 1 edges.

Define a relation on graphs such that G and G’ are related if and only if
the degree of the maximum degree vertex of G is less than or equal to the
degree of the maximum degree vertex of G'? Does this relationship satisfy
the reflexive, transitive, and antisymmetric properties? lIs it a partial order?
Does it satisfy the symmetric property? |Is the relation an equivalence
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11.

12.

13.

14.

15.

16.

17.

(a) (b) ()

Figure 2.14: Three isomorphic graphs used in Exercise 14.

relation?

A connected graph is called 2-connected if the deletion of any single vertex
does not split the graph into two components. For which, if any values of
n are N, P,, C,,, K,,, and K, ,, 2-connected?

For each natural number n greater than or equal to three, what is the
maximum number of edges a simple graph with n vertices can have and
contain three components? For n equal to seven draw a graph that realizes
this maximum? What are the degrees of its vertices?

Suppose GG and G’ are two graphs having n vertices. For what values of n
is it possible for G to have more components and edges than G'?

Verify that the three graphs shown in Figure 2.14 are isomorphic. Label
the corresponding vertices and edges.

Show that the two graphs depicted in Figure 2.15 are isomorphic.
Enter a query of “Graph Isomorphism” to your favorite search engine. Read
a number of the Web pages selecting from the hyperlinks returned by your

query. Summarize your findings in a one page paper.

Construct three examples to show that conditions 1, 2, and 3 on page 55
are not sufficient for isomorphism between graphs.
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18.

19.

20.

21.

22.

23.

24.

25.

Show that for n greater than one, the graph K, 2, has a subgraph isomor-
phic to (Y, for any even 4 < k < 2n.

Prove that any two simple connected graphs with n vertices, all having
degree two, are isomorphic.

Are the two graphs shown in Figure 2.16 isomorphic? If so, provide an
isomorphism between them. If not, provide a clear explanation why not.

Prove Theorem 2.22. [Hint: Use one isomorphism to establish the other
isomorphism and use the fact that G equals G']

Are any of the graphs N, P,, C,, K,, and K, , complements of each
other?

Prove whether or not the complement of every regular graph is regular.

Show that if a simple graph G is isomorphic to its complement G, then G
has either 4k or 4k + 1 vertices for some natural number k. Find all simple
graphs on four and five vertices that are isomorphic to their complements.

Let G be a simple graph. Show that either G or its complement G is
connected.

(a) (b)

Figure 2.15: Isomorphic graphs used in Exercise 15.
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Figure 2.16: Graphs used in Exercise 20. Are these graphs isomorphic?

26. A newspaper reporter from the New York Times has contacted you to write
a one page article for the Times that makes the concepts of connectedness
and isomorphism understandable to the masses. Develop such an article
being sure to include lots of intuition about these concepts.
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