
CS 486/586, Fall 2014, Lecture 10

1

© Lois Delcambre, David Maier 2005-2014 1

Normalization based on
Functional Dependencies (FDs)
l  Normalization works on relations in a relational

database.
l  Normalization based on FDs has been formalized

and the theory has been completely worked out.
l  Normalization makes it easier to update a database

but may degrade query performance – an
engineering tradeoff.

Thanks to Lois Delcambre

2

Keys for a Table
(reminder)

The key(s) for a table must have unique
values and the key(s) for a table help us
understand what the table is “about.”

© Lois Delcambre, David Maier 2005-2014

© Lois Delcambre, David Maier 2005-2014 3

Notice … only one value for non-key
attributes (for each key value)

For one particular SSN value, 123-45-6789, there is only ONE

name because
 1. there is only one tuple and
 2. we assume that attributes values are atomic.

Employee ssn name salary job-code

111111111 John Smith 40,000 15

123456789 Mary Smith 50,000 22

123456789 Marie Jones 50,000 24

1. NOT
allowed
because
SSN is key!

2. Only one name (and one salary and one job-code) for each row.

4

Functional Dependencies
(FDs) generalize keys

Functional dependencies (FDs) for relational
tables are a generalization of the notion
of key for a table.

© Lois Delcambre, David Maier 2005-2014

CS 486/586, Fall 2014, Lecture 10

2

© Lois Delcambre, David Maier 2005-2014 5

Functional Dependencies

An FD, X → Y, where X is a set of attributes and Y
is a set of attributes

It is a statement that if two tuples agree on attributes
X they must agree on attributes Y

For each X value there is ONLY one Y value.

© Lois Delcambre, David Maier 2005-2014 6

Functional Dependencies
(from semantics of the application)

Likely functional dependencies:
 ssn → employee-name
 course-number → course-title

Unlikely functional dependencies
 course-number → book
 birthdate → ssn

X
X

© Lois Delcambre, David Maier 2005-2014 7

Will FDs be enforced?
Consider this table:
Emp(ssn, name, phone, dnum, dept-name)

Suppose there is an FD from dnum → dept-name

But ssn is the key for this table.
What will prevent two names for one dept?

© Lois Delcambre, David Maier 2005-2014 8

Will this FD be enforced?
Let’s try it.
Consider this table:
Emp(ssn, name, phone, dnum, dept-name)

Can we put these two rows in this table?
Yes, it doesn’t violate the key constraint.
But, the FD from dept to dept-name is violated! We shouldn’t

haven’t two different names for dnum 12!

Employee ssn Name Phone Dnum Dept-name
111111111 John 555-1234 12 Sales

222222222 Mary 555-7890 12 Marketing

…

CS 486/586, Fall 2014, Lecture 10

3

© Lois Delcambre, David Maier 2005-2014 9

Functional Dependencies

For an FD
 X → Y
We say that X determines Y

We want to know if it is always true in the
 application.

We can then use FDs to figure out the keys for tables

and to normalize the tables.

© Lois Delcambre, David Maier 2005-2014 10

Employee (ssn, name, salary, job-code)"

Each key implies a set of functional dependencies (FDs)"
"from the key to the non-key attributes."

Every key implies a set of FDs

FDs implied by the key:"
 ssn → name"
 ssn → salary"
 ssn → job-code"

© Lois Delcambre, David Maier 2005-2014 11

But, some FDs are NOT implied
by the key.

Emp(ssn, name, phone, dnum, dept-name)

There is an FD from dnum → dept-name

12

The Problem:
“Troublesome” FDs

“Troublesome” FDs (FD where the left-hand-side of
the FD is NOT a key for the table where its
attributes appear) cause redundancy and
update anomalies.

© Lois Delcambre, David Maier 2005-2014

CS 486/586, Fall 2014, Lecture 10

4

© Lois Delcambre, David Maier 2005-2014 13

Advantages & Disadvantages of
Redundancy
l  Disadvantage: Any time information is stored more

than once, it has the possibility of being inconsistent.
l  Phone numbers in your laptop
l  Phone numbers in your cell phone
l  Phone numbers in your address book

If someone changes his or her phone number, do you
remember to change it in every place?

l  Advantage: Redundant information may improve

retrieval speed

© Lois Delcambre, David Maier 2005-2014 14

Sometimes Redundancy is
Caused by FDs
Consider this table:

EMP(name, SSN, birthdate, address, dnum, dname, dmgr)

Then dname and dmgr are stored redundantly – whenever there

are multiple employees in a department.

This redundancy is caused by what we informally call

“troublesome” FDs. The FDs shown in blue are “troublesome”.

© Lois Delcambre, David Maier 2005-2014 15

Redundancy Caused by
Troublesome FD – Sample Data

EMP(name, SSN, birthdate, address, dnum, dname, dmgr)
 John 111 June 3 123 St. D1 sales 222
 Sue 222 May 15 455 St. D1 sales 222
 Max 333 Mar. 5 678 St. D2 research 333
 Wei 444 May 2 999 St. D2 research 333
 Tom 555 June 22 888 St. D2 research 333

We have the department name and manager twice for D1 and

three times for D2!

© Lois Delcambre, David Maier 2005-2014 16

The name and the manager of the department is
repeated, for each employee that works in that
department."
"
Redundancy! "
"
If you replicate information, the copies might be
inconsistent."

EMP(name, SSN, birthdate, address, dnum, dname, dmgr)

What’s wrong?

CS 486/586, Fall 2014, Lecture 10

5

© Lois Delcambre, David Maier 2005-2014 17

Insertion anomalies: "
 if you insert an employee with a department"

"then you need to know the descriptive information for 
" "that department."

 if you want to insert a department, you can’t ... until"
"there is at least one employee."

"
Deletion anomalies: if you delete an employee, is that dept."

"gone? Was this the last employee in that dept.?"
"
Modification anomalies: If you want to change dname, for  

"example, you need to change it everywhere! And you  
"have to find them all first. "

"
Troublesome FDs cause (redundancy and) update anomalies."

Update Anomalies
caused by “troublesome” FDs
EMP(name, SSN, birthdate, address, dnum, dname, dmgr)

18

The Solution: Lifting
“Troublesome” FDs

Normalization by decomposition, based on
FDs (where “troublesome” FDs are lifted
into a separate table), reduces
 redundancy and update anomalies.

© Lois Delcambre, David Maier 2005-2014

© Lois Delcambre, David Maier 2005-2014 19

Example:
Finding Troublesome FDs

EMP(name, ssn, birthdate, address, dnum, dname, dmgr)

We have a problem!
dnum is NOT the key for this table!

So these blue FDs will not be enforced
automatically by the DBMS (using only keys).

And there can be redundancy and update
anomalies

© Lois Delcambre, David Maier 2005-2014 20

Example:
Lifting Troublesome FDs

EMP(name, ssn, birthdate, address, dnum, dname, dmgr)

1. Lift the “troublesome” FDs into their own table
 with dnum as the key. Now they will be enforced.

Dept(dnum, dname, dmgr)

New-Emp(name, ssn, birthdate, address, dnum)

2. Leave the LHS of the “troublesome” FDs behind.
 Define a foreign key where
 New-Emp.dnum REFERENCES Dept.dnum

CS 486/586, Fall 2014, Lecture 10

6

© Lois Delcambre, David Maier 2005-2014 21

Table is Split onto New Schemas
New-EMP(name, SSN, birthdate, address, dnum)
 John 111 June 3 123 St. D1
 Sue 222 May 15 455 St. D1
 Max 333 Mar. 5 678 St. D2
 Wei 444 May 2 999 St. D2
 Tom 555 June 22 888 St. D2

Dept(dnum, dname, dmgr)
 D1 sales 222
 D2 research 333

Less redundancy!

© Lois Delcambre, David Maier 2005-2014 22

Basic Idea:
Normalize based on FDs
•  Identify all the (non-trivial) FDs in an

application.
•  Identify FDs that are implied by the keys.
•  Identify FDs that are NOT implied by the keys –

the “troublesome” ones.

•  Decompose a table with a “troublesome” FD into two
or more tables by “lifting” each troublesome FD into
a table of its own. Note: when there are two or more
“troublesome” FDs with the same left side, then they
can be lifted, together, into a single table.

© Lois Delcambre, David Maier 2005-2014 23

Can Define a View to Get Original
Table

Emp(name, ssn, birthdate, address, dnum, dname, dmgr)

split into

 Dept(dnum, dname, dmgr)

 New-Emp(name, ssn, birthdate, address, dnum)

If there are applications that currently query Emp, can define a

view:
 CREATE VIEW Emp AS

SELECT *
FROM Dept NATURAL JOIN New-Emp

Update statements will require changes in most cases

© Lois Delcambre, David Maier 2005-2014 24

Advantages of Normalization
based on Decomposition
When this table:
Emp(name, ssn, birthdate, address, dnum, dname, dmgr)

is replaced by these two tables:
Dept(dnum, dname, dmgr)
New-Emp(name, ssn, birthdate, address, dnum)

Are there any update anomalies in the new tables?

CS 486/586, Fall 2014, Lecture 10

7

© Lois Delcambre, David Maier 2005-2014 25

Let’s Check the Update
Anomalies

Insertion anomalies:
 if you insert an employee with a department

 then you need to know the descriptive information for
 that department. NO – ONLY THE NUMBER

 if you want to insert a department, you can’t ... until
 there is at least one employee. NO PROBLEM

Deletion anomalies: if you delete an employee, is that dept.

 gone? Was this the last employee in that dept.? NO PROBLEM

Modification anomalies: If you want to change dname, for

 example, you need to change it everywhere! And you
 have to find them all first. dname is only stored once!

Is there any redundancy? Yes – in the foreign key.

26

2NF, 3NF, BCNF:
Normal forms based on

FDs

Given a set of FDs and one or more tables,
three increasingly stronger normal forms,
namely 2NF, 3NF, and BCNF, have been
defined.

BCNF implies 3NF.
3NF implies 2NF.
(BCNF = Boyce-Codd Normal Form)

© Lois Delcambre, David Maier 2005-2014

© Lois Delcambre, David Maier 2005-2014 27

Informal Definitions
Normal Forms Based on FDs

1NF - all attribute values (domain values) are atomic
 (part of the definition of the relational model)
2NF - all non-key attributes must depend on a whole key (no

partial dependencies)
 r (A B C D E) B → C violates 2NF
3NF – table is in 2NF and all non-key attributes must depend

on only a key (no transitive dependencies)
 r (A B C D E) C → D violates 3NF
BCNF – every left side of an FD is a key for the table

(All FDs are implied by the keys)
 r (A B C D E) C → D violates BCNF (but not 3NF)

© Lois Delcambre, David Maier 2005-2014 28

Examples of Violations
2NF - all non-key attributes must depend on a whole key
 Assigned-to (a-project, a-emp, emp-name, percent)

3NF - all non-key attributes must depend on only a key
Employee (SSN, name, address, project, p-title)

BCNF - every determinant (LHS of an FD) is a key for this table

 (all FDs are implied by the keys) emp-ID → SSN

Assigned-to (emp-ID, a-project, SSN, percent)

CS 486/586, Fall 2014, Lecture 10

8

© Lois Delcambre, David Maier 2005-2014 29

Fix violations of Normal Forms
by lifting “troublesome” FDs

 Assigned-to (a-project, a-emp, emp-name, percent)

 Employee (a-emp, emp-name)

1. Lift the troublesome FD(s) into a table of their own.

Key for new table is left hand side of the troublesome FD.

2. Leave the left side of the FD behind in the original table.

Assigned-to (a-project, a-emp, percent)

3. Eliminate emp-name from the Assigned-to table.

© Lois Delcambre, David Maier 2005-2014 30

Formal definition of BCNF

For a table R, every FD X → A that occurs among
attributes of R then either:

l  A is an element of X (X → A is trivial), or
l  X is a superkey of R

For 3NF there is one other option:
l  A is part of a key

31

Decomposition is
correct when it is

lossless

The decomposition algorithm (based on lifting
“troublesome” FDs into a separate table)
guarantees that the decomposition of the
original table is lossless.

© Lois Delcambre, David Maier 2005-2014

© Lois Delcambre, David Maier 2005-2014 32

Decompose: Project Operator
Recompose: Join Operator
When
Emp(name, SSN, birthdate, address, dnum, dname, dmgr)

is replaced by these two tables:
Department(dnum, dname, dmgr)
NewEmp (name, SSN, birthdate, address, dnum)

We use the project operator to decompose
Department = πdnum,dname,dmgrEmp
NewEmp = πname,SSN,birthdate,address,dnumEmp
And we use the join operator to put the pieces together
Emp = Department ⋈ D.dnum=NE.dnum NewEmp

CS 486/586, Fall 2014, Lecture 10

9

© Lois Delcambre, David Maier 2005-2014 33

What is a lossless (and a lossy)
decomposition?
We want to make sure that we haven’t thrown away

any information from the original schema.

When table R is decomposed into tables R1 and R2

then the decomposition is lossless (correct) if:

 (R1 ⋈ R2) is identical to R

If it is a lossy decomposition, then R1 ⋈ R2 gives
you TOO MANY tuples.

natural join

© Lois Delcambre, David Maier 2005-2014 34

original
Employee(emp-number, name, p-num, p-title)

 1 smith p1 accounting
 2 jones p1 accounting
 3 smith p2 billing

decomposition:
Employee (emp-number, name) Project (p-num, p-title, name)

 1 smith p1 account smith
 2 jones p1 account jones
 3 smith p2 billing smith

now with natural join: you get at least one extra tuple!

 1 smith p2 billing

Example: a lossy decomposition

© Lois Delcambre, David Maier 2005-2014 35

One Guarantee for a
Lossless Decomposition
Consider a table:

 R (a, b, c, d, e) with a troublesome FD d→e.
Decompose it into two tables:

 R1(a, b, c, d)
 R2(d, e)

As long as

 the attributes in common are a key for (at least) one of the
relations, R1 or R2
then we know that the decomposition is lossless.

For this example d is the attribute in common.
And d is a key for R2, the second table.

© Lois Delcambre, David Maier 2005-2014 36

Is the Decomposition Algorithm
Lossless?
1. Lift the “troublesome” FD(s) (all the FDs with the same LHS)

into a table of their own. Key for new table is left hand side of
the troublesome FD(s).

2. Leave the left side of the FD behind in the original table.

3. Eliminate the RHS attributes from the original table.

Yes, we are guaranteed that the decomposition is lossless. The

attribute in common is definitely a key for the new “lifted”
table.

CS 486/586, Fall 2014, Lecture 10

10

© Lois Delcambre, David Maier 2005-2014 37

Employee(emp-number, name, p-num, p-title)

decomposition: Employee (emp-number, name)
 Project (p-num, p-title, name)

Notice that the common attribute, name, is not a key

for either of these tables.

Example of a Lossy
Decomposition (revisited)

