
Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

Android Development
Lecture 7

Android & Concurrency

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Lecture Summary

- Concurrency

- Concurrency & Java

- Concurrency & User Interface

- Concurrency & Android

‣ Handler

‣ AsyncTask

- Status Bar Notification

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Concurrency
- Concurrency is the ability to run several parts of a program or several programs in parallel.

- Concurrency can highly improve the throughput of a program if certain tasks can be performed
asynchronously or in parallel.

- Computer users take it for granted that their systems can do more than one thing at a time. They
assume that they can continue to work in a word processor, while other applications download files,
manage the print queue, and stream audio.

- Even a single application is often expected to do more than one thing at a time. For example, that
streaming audio application must simultaneously read the digital audio off the network, decompress
it, manage playback, and update its display. Even the word processor should always be ready to
respond to keyboard and mouse events, no matter how busy it is reformatting text or updating the
display. Software that can do such things is known as concurrent software.

- Almost every computer nowadays has several CPU's or several cores within one CPU. The ability to
leverage these multi-cores can be the key for a successful high-volume application.

http://www.vogella.com/articles/JavaConcurrency/article.html

mailto:marco.picone@unipr.it?subject=
http://www.vogella.com/articles/JavaConcurrency/article.html

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Concurrency Approaches
- Shared memory Communication

- Concurrent components communicate by concurrently working on the same contents of the shared
memory locations (e.g: Java and C#).

- Usually requires the application of some form of locking (e.g., mutexes, semaphores, or monitors) to
coordinate between threads working on the same critical sections.

- Message passing Communication

- Concurrent components communicate by exchanging messages.

- The exchange of messages may be carried out asynchronously, or may use a rendezvous style in
which the sender blocks until the message is received.

- Asynchronous message passing may be reliable or unreliable (sometimes referred to as "send and
pray").

- Message-passing concurrency tends to be far easier to reason about than shared-memory
concurrency, and is typically considered a more robust form of concurrent programming.

mailto:marco.picone@unipr.it?subject=
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Mutual_exclusion
http://en.wikipedia.org/wiki/Semaphore_(programming)
http://en.wikipedia.org/wiki/Monitor_(synchronization)
http://en.wikipedia.org/wiki/Message_passing

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Critical Section
- A critical section is a portion of code that accesses a shared resource (e.g. data structure or

device) that must not be accessed at the same time by more than one thread.

- Usually it terminates in fixed time, and a thread, task, or process must wait for a fixed time to enter
it.

- Synchronization mechanism is required at the entry and exit of the critical section to ensure
exclusive use, for example a semaphore.

Critical
Section

Thread
1

Thread
2

Critical
Section

Thread
1

Thread
2

mailto:marco.picone@unipr.it?subject=
http://en.wikipedia.org/wiki/Code

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Process & Threads

- Process: A process runs independently and
isolated of other processes. It cannot directly
access shared data in other processes. The
resources of the process are allocated to it via the
operating system, e.g. memory and CPU time.

- Threads: threads are so called lightweight
processes which have their own call stack but an
access shared data. Every thread has its own
memory cache. If a thread reads shared data it
stores this data in its own memory cache.

OS Process

Application with multiple entry points

Dalvik VM

Activity 1 Activity 2 Activity 3

Service 1
(No UI)

Service 2
(No UI)

Thread Thread

Thread Thread

Thread

Android Platform

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Concurrency Issue

- When two or more threads have access to the same set of variables, it’s possible for the threads to
modify those variables in a way that can produce data corruption and break application’s logic.

- We can have two basic problems visibility and access problems.

- A visibility problem occurs if one thread reads shared data which is later changed by other thread
and if thread A does not see this change.

- A access problem occurs if several thread trying to access and change the same shared data at the
same time.

- Visibility and access problem can lead to

- Liveness failure: The program does not react anymore due to problems in the concurrent access
of data, e.g. deadlocks.

- Safety failure: The program creates incorrect data.

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Concurrency & Java

- Java supports threads as part of the Java language. Java 1.5 also provides improved support for
concurrency with the in the package java.util.concurrent.

- Java also provides locks to protect certain parts of the coding to be executed by several threads at
the same time. The simplest way of locking a certain method or Java class is to use the keyword
"synchronized" in a method or class declaration.

- The synchronized keyword in Java ensures:

- that only a single thread can execute a block of code at the same time

- ensures that each thread entering a synchronized block of code sees the effects of all previous
modifications that were guarded by the same lock

- One simple rule for avoiding thread safety violation in Java is: When two different threads access the
same mutable state (variable) all access to that state must be performed holding a single lock.

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Synchronized
- The synchronized keyword in Java ensures:

- that only a single thread can execute a block of code at the same time

- ensures that each thread entering a synchronized block of code sees the effects of all previous
modifications that were guarded by the same lock

- Synchronization is necessary for mutual exclusive access of code blocks and for reliable
communication between threads.

- Synchronized can be used in three contexts:

- To create a block (in this case the keyword take as argument a reference to an object to be used
as a semaphore. Primitive types cannot be used as semaphore, but any object can)

- on a dynamic method

- on a static method

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Synchronized
public class SynchronizationExample
{

public synchronized void firstSynchMethod()
{

...
}

public synchronized void secondSynchMethod()
{

synchronized(this){
...

}
}

private Object objLock = new Object();

public synchronized void thirdSynchMethod()
{

synchronized(objLock){
...

}
}

}

A thread executing this method
holds the lock on “this”. Any other

thread attempting to use this or any
other method synchronized on
“this” will be queued until this

thread releases the lock.

This is equals to using the
synchronized keyword in the

method def.

A thread executing this method
holds the lock on “objLock”, not
this. Threads attempting to seize
“this” may succeed. Only those

attempting to seize “objLock” will
be blocked.

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Synchronized, wait & notify
- Synchronized is absolutely very convenient, but must be used with caution.

- For example a complex class that has multiple high-use methods and synchronizes them in this way may be
setting itself up for lock contention.

- If several external threads are attempting to access unrelated pieces of data simultaneously, it is best to
protect those pieces of data with separate locks.

- The class java.lang.Object defines the methods wait() and notify() as a part of the lock protocol that is part of
every object.

- wait: Causes current thread to wait until either another thread invokes the notify() method or the notifyAll()
method for this object, or a specified amount of time has elapsed.

- notify: Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this
object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the
implementation. A thread waits on an object's monitor by calling one of the wait methods.

- notifyAll: Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's
monitor by calling one of the wait methods.

http://www.slideshare.net/koolhits/java-performance-threading-and-concurrent-data-structures

mailto:marco.picone@unipr.it?subject=
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#notify()
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#notifyAll()
http://www.slideshare.net/koolhits/java-performance-threading-and-concurrent-data-structures

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Concurrency & User Interface

- Careful use of concurrency is particularly important to an application with User Interface.

- A well-written UI program uses concurrency to create a user interface that never "freezes" and that
allows the application to be always responsive to user interaction, no matter what it's doing.

- Traditionally GUI runs on a single thread dedicated to manage both the input (mouse, touch screen,
keyboard/keypad, etc ...) and output devices (display, etc ...) and executes requests from each,
sequentially, usually in the order they were received.

- Users demands responsive application, for this reason time-intensive operations (like networking,
data storage and loading) should not block the main UI thread.

- When timeouts, large amounts of data or additional processing (such as data parsing or
processing) is added to your application you should move these time-intensive operations off the
main UI thread.

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Concurrency in Android
- The Android Platform supports Background Processing/Activities in 4 different ways:

- Threads: Android supports the usage of the Threads class to perform asynchronous processing.
Android also supplies the java.util.concurrent package to perform something in the background,
e.g. using the ThreadPools and Executor classes. Only the user interface face is allow to update
the user interface. If you need to update the user interface from another Thread, you need to
synchronize with this user interface Threads or you can use the "android.os.Handler" or
"AsyncTasks" classes.

- Handler: The Handler class can update the user interface. A Handler provides methods for
receiving instances of the Message or Runnable class.

- AsyncTask: Is a special class for Android development that encapsulate background processing
and facilitates the communication and updating of the application’s UI.

- Service: A Service allows an application to implement longer-running background operations. An
application controls when its service runs by explicitly starting and stopping the service.

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Handler

- The Android SDK provides a helper class that allow the developer to run code on another thread.
The Handler class can allow a piece of code to run on a target thread - the thread that the Handler
was instantiated in.

- The Handler class allows for example to update the application UI from a different Thread is doing a
background activity such as downloading an Image from a remote WebSite.

- To use a handler you have to subclass it and override the handleMessage() to process messages. To
process a Runnable you can use the post() method. You only need one instance of a Handler in your
Activity.

- You can instantiate an Handler in your class declaration using for example the following code:

public final Handler handler = new Handler();

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Handler & Image Download Example
Thread imageDownload = new Thread(new Runnable() {

@Override
public void run() {

Drawable d = null;
try {

InputStream is = (InputStream) new URL("http://farm8.staticflickr.com/7149/6526427657_3c790c2af7_b.jpg"+image).getContent();
d = Drawable.createFromStream(is, "image");

} catch (Exception e) {
e.printStackTrace();

}

if(d != null)
{

final Drawable dFinal = d;
handler.post(new Runnable() {

@Override
public void run() {

ImageView imageView = (ImageView)findViewById(R.id.imageView);
imageView.setImageDrawable(dFinal);

}
});

}
}

});
imageDownload.start();

mailto:marco.picone@unipr.it?subject=
http://farm8.staticflickr.com/7149/6526427657_3c790c2af7_b.jpg

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

AsyncTask

- AsyncTask is an abstract helper class for managing background operations that eventually
post back to the application’s User Interface.

- It creates a simpler interface for asynchronous operations than manually creating a Java
Thread class.

- Instead of creating your Thread you can subclass the AsyncTask implementing the
appropriate event methods.

- An asynchronous task is defined by a computation that runs on a background thread and
whose result is published on the UI thread. An asynchronous task is defined by 3 generic
types, called Params, Progress and Result, and 4 steps, called onPreExecute,
doInBackground, onProgressUpdate and onPostExecute.

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

AsyncTask
- When an asynchronous task is executed, the task goes through 4 steps:

- onPreExecute(), invoked on the UI thread immediately after the task is executed. This step is normally
used to setup the task, for instance by showing a progress bar in the user interface.

- doInBackground(Params...), invoked on the background thread immediately after onPreExecute()
finishes executing. This step is used to perform background computation that can take a long time.
The parameters of the asynchronous task are passed to this step. The result of the computation must
be returned by this step and will be passed back to the last step. This step can also use
publishProgress(Progress...) to publish one or more units of progress. These values are published on
the UI thread, in the onProgressUpdate(Progress...) step.

- onProgressUpdate(Progress...), invoked on the UI thread after a call to publishProgress(Progress...).
The timing of the execution is undefined. This method is used to display any form of progress in the
user interface while the background computation is still executing. For instance, it can be used to
animate a progress bar or show logs in a text field.

- onPostExecute(Result), invoked on the UI thread after the background computation finishes. The
result of the background computation is passed to this step as a parameter.

mailto:marco.picone@unipr.it?subject=
http://developer.android.com/reference/android/os/AsyncTask.html#onPreExecute()
http://developer.android.com/reference/android/os/AsyncTask.html#doInBackground(Params...)
http://developer.android.com/reference/android/os/AsyncTask.html#onPreExecute()
http://developer.android.com/reference/android/os/AsyncTask.html#publishProgress(Progress...)
http://developer.android.com/reference/android/os/AsyncTask.html#onProgressUpdate(Progress...)
http://developer.android.com/reference/android/os/AsyncTask.html#onProgressUpdate(Progress...)
http://developer.android.com/reference/android/os/AsyncTask.html#publishProgress(Progress...)
http://developer.android.com/reference/android/os/AsyncTask.html#onPostExecute(Result)

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

AsyncTask

- A task can be cancelled at any time by invoking cancel(boolean). Invoking this method will cause
subsequent calls to isCancelled() to return true. After invoking this method, onCancelled(Object),
instead of onPostExecute(Object) will be invoked after doInBackground(Object[]) returns. To ensure
that a task is cancelled as quickly as possible, you should always check the return value of
isCancelled() periodically from doInBackground(Object[]), if possible (inside a loop for instance.)

- There are a few threading rules that must be followed for this class to work properly:

- The task instance must be created on the UI thread.

- execute(Params...) must be invoked on the UI thread.

- Do not call onPreExecute(), onPostExecute(Result), doInBackground(Params...),
onProgressUpdate(Progress...) manually.

- The task can be executed only once (an exception will be thrown if a second execution is
attempted.)

mailto:marco.picone@unipr.it?subject=
http://developer.android.com/reference/android/os/AsyncTask.html#cancel(boolean)
http://developer.android.com/reference/android/os/AsyncTask.html#isCancelled()
http://developer.android.com/reference/android/os/AsyncTask.html#onCancelled(Result)
http://developer.android.com/reference/android/os/AsyncTask.html#onPostExecute(Result)
http://developer.android.com/reference/android/os/AsyncTask.html#doInBackground(Params...)
http://developer.android.com/reference/android/os/AsyncTask.html#isCancelled()
http://developer.android.com/reference/android/os/AsyncTask.html#doInBackground(Params...)
http://developer.android.com/reference/android/os/AsyncTask.html#execute(Params...)
http://developer.android.com/reference/android/os/AsyncTask.html#onPreExecute()
http://developer.android.com/reference/android/os/AsyncTask.html#onPostExecute(Result)
http://developer.android.com/reference/android/os/AsyncTask.html#doInBackground(Params...)
http://developer.android.com/reference/android/os/AsyncTask.html#onProgressUpdate(Progress...)

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

AsyncTask
 private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {
 protected Long doInBackground(URL... urls) {
 int count = urls.length;
 long totalSize = 0;
 for (int i = 0; i < count; i++) {
 totalSize += Downloader.downloadFile(urls[i]);
 publishProgress((int) ((i / (float) count) * 100));
 }
 return totalSize;
 }

 protected void onProgressUpdate(Integer... progress) {
 setProgressPercent(progress[0]);
 }

 protected void onPostExecute(Long result) {
 showDialog("Downloaded " + result + " bytes");
 }
 }

new DownloadFilesTask().execute(url1, url2, url3);

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

AsyncTask

execute(args ...)

doInBackground(args ...) : result

doPostExecute(result)

Creation Thread Daemon Thread

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

AsyncTask

- If AsyncTask simplifies the implementation of concurrent processing at the same time imposes
strong constraints that cannot be verified automatically.

- The violation of these constraints will cause concurrency bugs that are very difficult to find.

- The most important of these constraints is that the doInBackground method it is executed on a
different Thread. For this reason it must make only thread-safe references to variables inherited into
its scope.

- You should avoid that one or more variables are accessed from two different threads without
synchronization.

- The best solution to this problem is to make the arguments to AsyncTask are immutable. If they can’t
be changed they are thread-safe and need no further care.

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Status Bar Notifications

- A status bar notification adds an icon to the system's status bar (with an optional ticker-text
message) and a notification message in the notifications window. When the user selects the
notification, Android fires an Intent that is defined by the Notification (usually to launch an Activity).
You can also configure the notification to alert the user with a sound, a vibration, and flashing lights
on the device.

- A status bar notification should be used for any case in which a background service needs to alert
the user about an event that requires a response. A background service should never launch an
activity on its own in order to receive user interaction. The service should instead create a status
bar notification that will launch the activity when selected by the user.

- An Activity or Service can initiate a status bar notification. Because an activity can perform actions
only while it is running in the foreground and its window has focus, you will usually create status bar
notifications from a service. This way, the notification can be created from the background, while the
user is using another application or while the device is asleep. Classes dedicate to the creation and
management of notifications are Notification and NotificationManager.

http://developer.android.com/guide/topics/ui/notifiers/notifications.html

mailto:marco.picone@unipr.it?subject=
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Status Bar Notifications
- A Notification object defines the details of the notification message that is

displayed in the status bar and notifications window, and any other alert
settings, such as sounds and blinking lights.

- A status bar notification requires all of the following:

- An icon for the status bar

- A title and message, unless you define a custom notification layout

- A PendingIntent, to be fired when the notification is selected

- Optional settings for the status bar notification include:

- A ticker-text message for the status bar

- An alert sound

- A vibrate setting

- A flashing LED setting

http://developer.android.com/guide/topics/ui/notifiers/notifications.html

mailto:marco.picone@unipr.it?subject=
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html#CustomExpandedView
http://developer.android.com/reference/android/app/PendingIntent.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Status Bar Notifications
- The NotificationManager is an Android system service that executes and manages all status bar

notifications. You do not instantiate the NotificationManager directly. In order to give it your
Notification, you must retrieve a reference to theNotificationManager with getSystemService() and
then, when you want to notify the user, pass it your Notification with notify().

String ns = Context.NOTIFICATION_SERVICE;
NotificationManager mNotificationManager = (NotificationManager) getSystemService(ns);

- When you want to deliver your status bar notification, pass the Notification to the
NotificationManager with notify(int, Notification). The first parameter is the unique ID for the
notification and the second is theNotification object. The ID uniquely identifies the notification from
within your application. The ID is necessary if you need to update the notification or (if your
application manages different kinds of notifications) select the appropriate action when the user
returns to your application via the intent defined in the notification.

- To clear the status bar notification when the user selects it from the notifications window, add the
"FLAG_AUTO_CANCEL" flag to your Notification. You can also clear it manually with cancel(int),
passing it the notification ID, or clear all your notifications with cancelAll().

mailto:marco.picone@unipr.it?subject=
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/app/Activity.html#getSystemService(java.lang.String)
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/NotificationManager.html#notify(int,%20android.app.Notification)
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/app/NotificationManager.html#notify(int,%20android.app.Notification)
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/NotificationManager.html#cancel(int)
http://developer.android.com/reference/android/app/NotificationManager.html#cancelAll()

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Status Bar Notifications
- Normally Android considers all activities within an application to be part of that application's UI flow,

so simply launching the activity like this can cause it to be mixed with your normal application back
stack in undesired ways.

- To make it behave correctly, in the manifest declaration for the activity the attributes
android:launchMode="singleTask", android:taskAffinity="" and android:excludeFromRecents="true"
must be set. The full activity declaration for this sample is:

<activity
android:name=".app.IncomingMessageInterstitial"
 android:label="You have messages"
 android:theme="@style/ThemeHoloDialog"
 android:launchMode="singleTask"
 android:taskAffinity=""
 android:excludeFromRecents="true">
</activity>

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Status Bar Notifications

// Prepare the intent triggered if the notification is selected
Intent intent = new Intent(this, MainActivity.class);
PendingIntent pIntent = PendingIntent.getActivity(this, 0, intent, 0);

// Build the notification
// Use NotificationCompat.Builder instead of just Notification.Builder to support older Android versions
Notification n = new NotificationCompat.Builder(this)
 .setContentTitle("MobDev - YouTube App")
 .setContentText("New Video List Available")
 .setSmallIcon(R.drawable.icon_notification_exclamation_mark)
 .setContentIntent(pIntent)
 .setAutoCancel(true).build();

NotificationManager notificationManager = (NotificationManager) getSystemService(NOTIFICATION_SERVICE);
notificationManager.notify(0, n);

Compatibility using support
library v4.
NotificationCompat.Builder
instead of the traditional
Notification.Builder

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Status Bar Notifications (Previous Version)

int icon = R.drawable.icon_notification_exclamation_mark; // icon from resources
CharSequence tickerText = "New Video List Available"; // ticker-text
long when = System.currentTimeMillis(); // notification time
CharSequence contentTitle = "ADSource 6 - YouTube"; // message title
CharSequence contentText = "New Video List Available"; // message text

Intent notificationIntent = new Intent(this, MainActivity.class);
PendingIntent contentIntent = PendingIntent.getActivity(this, 0, notificationIntent, 0);

// the next two lines initialize the Notification, using the configurations above
Notification notification = new Notification(icon, tickerText, when);
notification.setLatestEventInfo(this, contentTitle, contentText, contentIntent);
notification.flags = Notification.DEFAULT_LIGHTS | Notification.FLAG_AUTO_CANCEL;

String ns = Context.NOTIFICATION_SERVICE;
NotificationManager mNotificationManager = (NotificationManager) getSystemService(ns);
mNotificationManager.notify(NOTIFICATION_ID, notification);

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Status Bar Notifications + Actions

Notification n = new Notification.Builder(this)
 .setContentTitle("Missed Call")
 .setContentText("Home")
 .setSmallIcon(R.drawable.user__icon)
 .setContentIntent(pIntent)
 .setAutoCancel(true)
 .addAction(R.drawable.reply_icon, "Call back", callBackIntent)
 .addAction(R.drawable.delete_icon, "Message", messageIntent).build();

You can add specific actions to your notification. An action allows the user to go directly
from the incoming notification to an Activity (defined through an Intent) in your
application, where they can look at one or more events or do further work.

mailto:marco.picone@unipr.it?subject=
http://developer.android.com/reference/android/app/Activity.html

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

Notification Style

Starting from Android 4.1 in addition to normal notification view it is also possible to
define a big view which gets shown when notification is expanded. There are three
styles to be used with the big view: big picture style, big text style, Inbox style.

String longText = "bla bla bla bla ... :) ";

Notification noti = new Notification.Builder(this).
[...]
.setStyle(new Notification.BigTextStyle().bigText(longText))

mailto:marco.picone@unipr.it?subject=

Università degli Studi di Parma

Marco Picone, Ph.D. - marco.picone@unipr.it Mobile Application Development 2014/2015 - Parma

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

Android Development
Lecture 7

Android & Concurrency

mailto:marco.picone@unipr.it?subject=

