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What is Monte Carlo simulation?

Simulating an RV

Estimating E[g(X)]

Let X = (X1,X2, . . . ,Xn) denote a random vector

having density function f (x1,x2 . . . ,xn)

Objective is to find the expected value of g(X )

E [g (X )] =∫∫
. . .
∫

g (x1,x2, . . .xn) f (x1,x2, . . . ,xn) dx1dx2, . . . ,dxn

Analytical OR numerical integration is tedious
Alternately, approximate E [g (X)] by means of SIMULATION
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What is Monte Carlo simulation?

Approximating E [g (X)]

Monte Carlo Simulation
Generate a random RV,

X(1) =
(
X(1)

1 ,X(1)
2 , · · · ,X(1)

n

)
having density function f (x1,x2 . . . ,xn)

compute Y (1) = g
(
X(1)

)
Generate second RV,

X(2)

compute Y (2) = g
(
X(2)

)
Repeat this r number of times, generating i.i.d RVs

Y (i) = g
(
X(i)

)
, i = 1,2, . . . , r are generated

⇒ lim lim
r→∞

Y (1)+Y (2)+···+Y (r)

r = E
[
Y (i)

]
= E [g (X)]
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What is Monte Carlo simulation?

How to generate a Random Vectors, X(r)

Generating random vectors X having specified joint distribution?
Objective-

Generate a sequence of random vectors X(r) having aprticular
distribution,

As first step, we need to be able to generate random variables
from uniform distribution (0,1)
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What is Monte Carlo simulation?

Generating random variable on UNIFORM (0,1)

Generating a Uniform RV on (0,1), MANUALLY

10 identical slips, containing numbers 0..9
Successively select, n chits with replacement
Equivalent to generating a string of n digits with decimal in
front, thus
can be regarded as a value of a uniform (0,1) RV rounded off
to nearest

( 1
10

)n
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What is Monte Carlo simulation?

Generating random variable on UNIFORM (0,1)

Generating a Uniform RV on (0,1), on COMPUTER

Pseudo random instead of truly random
Starts with initial value X0 called seed
Then, recursively compute values using a, c and m

Xn+1 = (aXn + c) modulo m
Thus, each Xn is a number 0,1, . . .(m−1)

Xn
m is taken as an approximation to a UNIFORM (0,1) RV
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Inverse transform method

Proposition for inverse transform method

Let U be a UNIFORM (0,1) random variable
If we define a random variable X with continuous distribution
function F , then

X = F−1(U)

F−1(u)is defined as to equal that value of x for which
F (x) = u
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Inverse transform method- Proof

Proof for inverse transform method

FX (a) = P {X 6 a}= P
{
F−1(U) 6 a

}
Now, F (x) is a monotone function, it follows that
F−1(U) 6 a, iff U 6 F (a)

FX (a) = P {U 6 F (a)}== F (a)

Hence, we can simulate a RV X from continuos distribution F ,
When F−1is computable

by simulating a RV U, and then setting X = F−1(U)

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Inverse transformation method
The rejection method
Hazard rate method

Inverse transform method- Proof

Proof for inverse transform method

FX (a) = P {X 6 a}= P
{
F−1(U) 6 a

}
Now, F (x) is a monotone function, it follows that
F−1(U) 6 a, iff U 6 F (a)

FX (a) = P {U 6 F (a)}== F (a)

Hence, we can simulate a RV X from continuos distribution F ,
When F−1is computable

by simulating a RV U, and then setting X = F−1(U)

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Inverse transformation method
The rejection method
Hazard rate method

Inverse transform method- Proof

Proof for inverse transform method

FX (a) = P {X 6 a}= P
{
F−1(U) 6 a

}
Now, F (x) is a monotone function, it follows that
F−1(U) 6 a, iff U 6 F (a)

FX (a) = P {U 6 F (a)}== F (a)

Hence, we can simulate a RV X from continuos distribution F ,
When F−1is computable

by simulating a RV U, and then setting X = F−1(U)

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Inverse transformation method
The rejection method
Hazard rate method

Simulating an EXPONENTIAL RV

F(x)

F (x) = 1− e−x

For F (x) = 1− e−x ,
then F−1(u) is that value of x such that F (x) = u , i.e.

1− e−x = u
x = − log (1−u)
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Simulating an EXPONENTIAL RV ...

F(x)

Hence, if U is UNIFORM (0,1) variable, then following is a
random variable EXPONENTIALLY distributed

F−1(U) = − log(1−U)

As 1−U is also UNIFORM on (0,1)

− logU is EXPONENTIAL with mean 1
−c logU is EXPONENTIAL with mean c, as cX has mean c if
X has mean 1
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The Rejection Method

Simulating from distribution f(x), knowing method for g(x)

Suppose we have method for simulating an RV having density
function g(x)

Using this basis, let’s simulate from f (x)

First, we simulate Y from g
Then, ACCEPT this siulated value with a probability
proportional to f (Y )

g(Y )

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Inverse transformation method
The rejection method
Hazard rate method

The Rejection Method

Simulating from distribution f(x), knowing method for g(x)

Suppose we have method for simulating an RV having density
function g(x)

Using this basis, let’s simulate from f (x)

First, we simulate Y from g
Then, ACCEPT this siulated value with a probability
proportional to f (Y )

g(Y )

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Inverse transformation method
The rejection method
Hazard rate method

The Rejection Method

Simulating from distribution f(x), knowing method for g(x)

Suppose we have method for simulating an RV having density
function g(x)

Using this basis, let’s simulate from f (x)

First, we simulate Y from g
Then, ACCEPT this siulated value with a probability
proportional to f (Y )

g(Y )

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Inverse transformation method
The rejection method
Hazard rate method

The Rejection Method

Simulating from distribution f(x), knowing method for g(x)

Suppose we have method for simulating an RV having density
function g(x)

Using this basis, let’s simulate from f (x)

First, we simulate Y from g
Then, ACCEPT this siulated value with a probability
proportional to f (Y )

g(Y )

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Inverse transformation method
The rejection method
Hazard rate method

The Rejection Method ...

Technique for simulating from distribution f(x)

If
f (y)

g(y)
6 c for all y

Step_1 Simulate Y having density g(Y )

Step_2 Simulate U

Step_3 if U 6 f (Y )
cg(Y ) , set X = Y ; Otherwise RETURN to

Step_1
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Simulating a Normal RV

Simulating from Normal distribution

A normal RV Z has mean (µ)= 0 and variance (σ2)=1;
absolute value of Z will have density-

f (x) =
2√
2π

e−
x2
2

Given that X with g (x) = e−x is available
f (x)
g(x) =

√
2e
π

e−
(x−1)2

2 ≤
√

2e
π
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Simulating a Normal RV ...

Simulating from Normal distribution- procedure
1 Generate independent random variables Y and U, Y being

exponential with rate 1 and U being uniform on (0,1)

2 If U ≤ e−
(x−1)2

2 , or equivalantly, if − logU ≥ (Y−1)2

2 ; set X = Y
else return to 1.

Having X , we can generate Z , by letting Z be equally likely to
be either X or −X
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Hazard rate method

Simulatign an RV, S having hazard rate

λ (t)

Let F be a CDF with F̄ (0) = 1

let λ be hazaerd rate, given by λ (t) = f (t)

F̄ (t)
, t > 0

That is, λ represents the instantaneous intensity

that an item having life distribution F will fail at time t given
it has survived to that time
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Hazard rate method ...

Simulating an RV, S having hazard rate

λ (t)

Let’s simulate S having hazard rate function λ (t)

To do so, let λ be such that

λ (t)≤ λ for all t ≥ 0 &
∫

∞

0 λ (t)dt = ∞

Then, to simulate from λ (t) we will

simulate a Poisson process, with rate λ &

’count’ or ’accept’ ONLY certain of these Poisson events

COUNT an event that occurs at time t, independently of all
else, with probability λ (t)

λ
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Hazard rate method: Technique

Generating S having hazard rate

S : λS(t) = λ (t)

Let λ (t)≤ λ for all t ≥ 0
Generate pairs of RVs, Ui , Xi for i ≥ 1; Where Xibeing
exponential with rate λ & Uibeing uniform (0,1)
STOP at

N =min

n : Un ≤
λ

(
n

∑
i=1

Xi

)
λ


Set S = ∑

N
i=1 Xi
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[Hazard rate method:] Definition

Stopping Time

Definition
An integer RV N, is said to be stopping time for the sequence
X1,X2, . . ., if the event {N = n} is independent of Xn+1,Xn+2, . . .
for all n = 1,2, ...
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[Hazard rate method:] Example

No. of finite successes
Let Xn, n = 1,2, ... be independent and such that
P {Xn = 0}= P {Xn = 1}= 1

2 , n = 1,2, ...
If we let N = min{n : X1 + · · ·+Xn = 10}
Then, N is a stopping time.
e.g. N may be regarded as being the stopping time of
EXPERIMENT that successively flips a fair coin and then
stops when the number of HEADs reaches 10.
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Simulating from discrete distributions

Simulating X having probability mass function Pj

Let X be a discrete RV i.e. P {X = xj}= Pj for all j = 0,1 . . .,
where ∑

j
Pj = 1

Inverse transform analogue; Let U be uniform (0,1)
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Simulating from discrete distributions ...

Simulating X having probability mass function Pj
X can be set as following

X =



x1 if U < P1
x2 if P1 < U < P1+P2
...

xj if
j−1

∑
1

Pi < U <
j

∑
1

Pi

...

As

P
{
X = xj

}
= P

{
j−1

∑
1

Pi < U <
j

∑
1

Pi

}
= Pj
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Simulating from Geometric distribution

Simulating X having GEOMETRIC probability mass function
Let’s simulate X having Geometric pmf , i.e.
P {X = i}= p (1−p)i−1

j−1

∑
i=1

P {X = i}= 1−P {X > j−1}= 1− (1−p)i−1

We start with generating U, and then setting X to that value
of j for which

1− (1−p)i−1 < U < 1− (1−p)i

(1−p)j−1 > 1−U > (1−p)i
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Simulating from Geometric distribution ...

Simulating X having GEOMETRIC probability mass function
As U has same distribution as 1−U, X can also be defined as

X = min
{

j : (1−p)j < U
}

= min
{

j : j >
logU

log (1−p)

}
= 1+

logU
log (1−p)
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Simulating a Binomial RV

Binomial discrete RV
A binomial RV (n,p) can be most easily simulated considering
that

it can be expressed as the sum of n independent Bernoulli RV

e.g., if U1,U2, . . .Un are independent Uniform (0,1) RVs then
letting

Xi =

{
1 if Ui < p
0 otherwise

then X =
n

∑
i=1

Xi is a binomial RV with (n,p)
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Simulating a Binomial RV: Procedure

Improvements

<1->The previous method requires
generation of n random numbers

<2->Instead of using value of U, the
previous algorithm uses the fact
Ui < p or not

<3->Conditional distribution of U
given that U < p is uniform in (0,p)
& conditional distribution of U given
that U > p is uniform in (p,1)

Procedure

Step_1 Let α = 1/p and
β = 1/(1−p)

Step_2 Set k = 0

Step_3 Generate a uniform RV U

Step_4 If k = n stop, else RESET
k = k +1

Step_5 If U ≤ p set Xk = 1 and
RESET U to αU. If U > p
set Xk = 0 and RESET U
to β (U−p). RETURN to
Step_4
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Outline

1 Introduction
What is Monte Carlo simulation?

2 General techniques for simulating continuous RVs
Inverse transformation method
The rejection method
Hazard rate method

3 Special techniques for simulating continuous RVs
4 Simulating from discrete distributions

Alias method
5 Multivariate distributions & Stochastic Processes
6 Variance reduction techniques
7 Determining optimal number of runs

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Binomial Distribution
Alias method

Alias Method

Alias Method

Let quantities, P, P(k) ,Q(k), k ≤ n−1 represent pmf on
1,2, . . . ,n i.e. they are n-vectors of non-negative numbers
summing to 1
Additionally, each of P(k)will have at most k non-zero
components
Each of Q(k)will have at most 2 non-zero components

Corollary

Let P = {Pi , i = 1,2, . . . ,n} denote pmf , then
(a) there exists and i , 1≤ i ≤ n, such that Pi <

1
n−1 , and

(b) for this i , there exists a j , j 6= i , such that Pi +Pj ≥ 1
n−1

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Binomial Distribution
Alias method

Alias Method

Alias Method

Let quantities, P, P(k) ,Q(k), k ≤ n−1 represent pmf on
1,2, . . . ,n i.e. they are n-vectors of non-negative numbers
summing to 1
Additionally, each of P(k)will have at most k non-zero
components
Each of Q(k)will have at most 2 non-zero components

Corollary

Let P = {Pi , i = 1,2, . . . ,n} denote pmf , then
(a) there exists and i , 1≤ i ≤ n, such that Pi <

1
n−1 , and

(b) for this i , there exists a j , j 6= i , such that Pi +Pj ≥ 1
n−1

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Binomial Distribution
Alias method

Alias Method

Alias Method

Let quantities, P, P(k) ,Q(k), k ≤ n−1 represent pmf on
1,2, . . . ,n i.e. they are n-vectors of non-negative numbers
summing to 1
Additionally, each of P(k)will have at most k non-zero
components
Each of Q(k)will have at most 2 non-zero components

Corollary

Let P = {Pi , i = 1,2, . . . ,n} denote pmf , then
(a) there exists and i , 1≤ i ≤ n, such that Pi <

1
n−1 , and

(b) for this i , there exists a j , j 6= i , such that Pi +Pj ≥ 1
n−1

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Binomial Distribution
Alias method

Alias Method

Alias Method

Let quantities, P, P(k) ,Q(k), k ≤ n−1 represent pmf on
1,2, . . . ,n i.e. they are n-vectors of non-negative numbers
summing to 1
Additionally, each of P(k)will have at most k non-zero
components
Each of Q(k)will have at most 2 non-zero components

Corollary

Let P = {Pi , i = 1,2, . . . ,n} denote pmf , then
(a) there exists and i , 1≤ i ≤ n, such that Pi <

1
n−1 , and

(b) for this i , there exists a j , j 6= i , such that Pi +Pj ≥ 1
n−1

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Binomial Distribution
Alias method

Alias Method ...

Alias Method ...
Any pmf P can be represented as an equally weighted mixture
of n−1 pmf Q, i.e. for suitably defined Q(1),Q(2), . . .Q(n−1)

P =
1

n−1

n−1

∑
k=1

Q(k)

Alongwith example illustration, a general technique is described
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Example- Alias method ... (1)

Example: Alias Method ...

Let P1 = 7
16 ,P2 = 1

2 ,P3 = 1
16 stand for P. here n = 3 and

hence k = 1,2
lets’ presume following two 2-point mass-functions Q(1) &Q(2)

to constitute P.
Q(1): all weight on 3 and 2
Q(2): may be derived using Q(1) and
Pj = 1

2

(
Q(1)

j +Q(2)
j

)
j = 1,2,3
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Example- Alias method ...(2)

Example: Alias Method ...

⇒ Q(2)
3 = 0; and

Q(1)
3 = 2P3;Q(1)

2 = 1−Q(1)
3 = 1

8 ;Q(1)
1 = 0

Q(2)
3 = 0;Q(2)

2 = 2P2− 7
8 = 1

8 ;Q(2)
1 = 2P1 = 7

8

Similar procedure may be followed for case of 4-point
mass-function P; n = 4 ,k = 3
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Alias Method: General rocedure

General procedure: Alias Method
This method outlines proceure for any n-point pmf P can be written as
follows; We presume corollary/Lemma above for i and j ;

P =
1

n−1

n−1

∑
k=1

Q(k)

Lets define Q(1) concentrating on points i and j

which will contain all of the mass for point i by noting that in
representtion above, Q(k)

i = 0 for k = 2,3, . . . ,n−1

i.e. Q(1)
i = (n−1)Pi and so Q(1)

j = 1− (n−1)Pi

Vineet Sahula Simulation: Random Variables & Stochastic processes



beamer-icsi-logo

Introduction
General techniques for simulating continuous RVs
Special techniques for simulating continuous RVs

Simulating from discrete distributions
Multivariate distributions & Stochastic Processes

Variance reduction techniques
Determining optimal number of runs

Binomial Distribution
Alias method

Alias Method: General rocedure ... (2)

General procedure : Alias Method
Writing

P =
1

n−1
Q(1) +

n−2
n−1

P(n−1)

here, P(n−1) represents the remaining mass, hence

P(n−1)
i = 0

P(n−1)
j =

n−1
n−2

(
Pj −

1
n−1

Q(1)
j

)
=

n−1
n−2

(
Pi +Pj −

1
n−1

)
P(n−1)

k =
n−1
n−2

Pk , k 6= i or j
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Alias Method: General rocedure ... (3)

General procedure : Alias Method

Repeating to expand P(n−1) likewise

P(n−1) =
1

n−2
Q(2) +

n−3
n−2

P(n−2)

Hence, full expansion,

P =
1

n−1
Q(1) +

1
n−1

Q(2) +
n−3
n−2

P(n−2)

P =
1

n−1

(
Q(1) +Q(2) + . . .+Q(n−1)

)
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Algorithm for Alias method

Algorithm
The P can now be simulated as follows

Generating random integer N equally likely to be either 1,2, . . .(n−1)

If N is such that Q(N) puts positive weight only on point iN and jN ,

then we can set X equal to iN , if second random number is less
that Q(N)

iN ; equal to jN , otherwise,

Step_1 Generate U1and set N = 1+[(n−1)U1]
Step_2 Generate U2 and set

X =

{
iN if U2 < Q(N)

iN
jN Otherwise
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Error minimization

Minimizing error while generating X
Let X1,X2, . . . ,Xn have given distribution,

having density function f (x1,x2 . . . ,xn)

Objective is to find the expected value of E [g(X )]

θ = E [g (X1,X2, . . .Xn)]
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Error minimization ...

Minimizing error while generating X

Generate X (1)
1 ,X (1)

2 , . . .X (1)
n and then

Y (1) = g
(
X (1)

1 ,X (1)
2 , . . .X (1)

n

)
&

Generate Y (2) = g
(
X (2)

1 ,X (2)
2 , . . .X (2)

n

)
Ȳ =

k

∑
i=1

Yi/k and E
[
Y
]

= θ , E
[(

Y −θ
)2]

= Var
(
Y
)

Y is an estimator of θ ; we wish to minimize E
[(

Y −θ
)2]
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Use of Anti-thetic variables

Let Y1and Y2 be idetically distributed RVs, with mean θ

Var
(

Y1 +Y2

2

)
=

1
4

(Var (Y1) +Var (Y1) +2Cov (Y1,Y2))

=
Var (Y1)

2
+

Cov (Y1,Y2)

2

Variance reduction- Using Antithetic variables
It would be more advantageous for Y1and Y2 NOT to be
idetically distributed, BUT negatively correlated
X1,X2, . . . ,Xn are independent and simulated by inverse
method from U

Xi is simulated from F−1
i (U)
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Use of Anti-thetic variables ...

Variance reduction- Using Antithetic variables

Y1 = g
(
F−1

1 (U1),F−1
2 (U2), . . .F−n(Un)

)
Since, 91−U) is also uniform (0,1) and is negatively
correlated with U

Y2 = g
(
F−1

1 (1−U1),F−1
2 (1−U2), . . .F−n(1−Un)

)
Hence, if Y1 and Y2 are negatively correlated, then generating
Y2 by this method would lead to smaller variance
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Determining the number of runs

Number of RUNs
Let use simulation to generate i.i.d. (independent idetically
distributed) Y1,Y2, . . . ,Yr having mean µ and variance σ2

Y r = Y (1)+Y (2)++Y (r)

r , we use Y r as an estimate of µ

The precision of this estimate is
Var(Y r ) = E

[
(Y r −µ)2]= σ2

r
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Number of RUNs
Let use simulation to generate i.i.d. (independent idetically
distributed) Y1,Y2, . . . ,Yr having mean µ and variance σ2

Y r = Y (1)+Y (2)++Y (r)

r , we use Y r as an estimate of µ

The precision of this estimate is
Var(Y r ) = E

[
(Y r −µ)2]= σ2

r
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Determining the number of runs ...

Number of RUNs

We wish to choose r sufficiently large so that σ2

r is acceptably
small

BUT σ2 is not known in advance

To get around this, we initially simulate k times to evalaute
σ2, and use simulated Y (1),Y (2), . . .Y (k) to estimate σ2 by
sample variance

∑

(
Y (k)−Y k

)2
k−1

Based on this estimate, rest of the r −k values can be
simulated
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Completed!

END
Thanks!

Vineet Sahula Simulation: Random Variables & Stochastic processes


	Introduction
	What is Monte Carlo simulation?

	General techniques for simulating continuous RVs
	Inverse transformation method
	The rejection method
	Hazard rate method

	Special techniques for simulating continuous RVs
	Simulating from discrete distributions
	Alias method

	Multivariate distributions & Stochastic Processes
	Variance reduction techniques
	Determining optimal number of runs

