Arithmetic

Integer Addition

= Example:7 + 6

Chapter 3 — Arithmetic for
Computers — 2

Integer Addition
" Example: 7 + 6

ANA0AT

(0) 0o ©®o0 ©1 ()1 (1o

Chapter 3 — Arithmetic for
Computers — 3

Integer Subtraction

" How to represent negative numbers?

Chapter 3 — Arithmetic for
Computers — 4

Sign and Magnitude Representation

= Use Sign Bits

= Add a sign bit, 0 means positive, | means negative

0000 0000 0000 0000 ... 0011, =+3,

1000 0000 0000 0000 ... 0011, = -3,,

0000 0000 0000 0000 ... 1010, = +10,,

1000 0000 0000 0000 ... 1010, =-10,

Disadvantages of Sign and Magnitude

= Ambiguity:
= Put the sign to left or right?,0 or | ?
= Two representations for zero!

= Design issues:

= More complex hardware for adders if they don’t
know in advance what is the proper sign

= Software programmers

Unsigned Numbers

Unsigned Numbers

= Allows only positive numbers

0000 (0)
0001 (1)
0010 (2)
0011 (3)
0100 (4)
0101 (5)
0110 (6)
oIl (7)
1000 (8)
1001 (9)
1010 (10)
1011 (11)
1100 (12)
1101 (13)
1110 (14)
1111 (15)

Two’s complement

Two's Complement representation using 4 bit binary strings

-1 0000 1

1111 0001 —_
-2 2 = 2-1=
1110 0010
= : = |-1=0
1101 0011
10 Y = 0-1=-1
1100 0100 - =
=8 5
1011 0101 .
-6 6
1010 0110

-7 7

=l
001 5o 0111

Two’s complement

= x+x =-I
= x+x +1=0
e x .t I=-x

= Short cut technique

= Complement all bits (change all I’s to 0’s and all O’s to |’s)
= Then add |
= lgnore carries for the last (left most) column

10

Two’s complement

= Short cut technique

= Complement all bits (change all I’s to 0’s and all
O’s to I’s) then add |

= Assume word length of 8 bits. Express -4 in
two’s complement form.

11

Two’s complement

= Short cut technique

= Complement all bits (change all I’s to 0’s and all
O’s to I’s) then add |

= Assume word length of 8 bits. Express -4 in
two’s complement form.

+4 = 0000 0100
Complement: 1111 1011
-4 = 1111 1100

Integer Subtraction

= Add 5 to -5 using two’s complement

Chapter 3 — Arithmetic for
Computers — 13

Overflows

= Subtraction: Overflow if result out of range
= Subtracting two +ve or two —ve operands, no overflow

= Subtracting +ve from —ve operand

e Overflow if result sign is 0

= Subtracting —ve from +ve operand

* Overflow if result sign is |

s Addition: Overflow if result out of range

= Adding two +ve operands

= Overflow if result signis 1

Dealing with Overflow

= Some languages (e.g., C) ignore overflow
= Use MIPS addu, addu, subu instructions

= Other languages (e.g.,Ada, Fortran) require
raising an exception
= Use MIPS add, add1, sub instructions

Chapter 3 — Arithmetic for
Computers — 15

Dealing with Overflow

= If overflow occurs,

= Address of instruction causing overflow is saved in
a register

= Computer jumps to a pre-defined address to
invoke a special procedure

16

Multiplication

= Start with long-multiplication approach

Length of product is
the sum of operand
lengths

Chapter 3 — Arithmetic for
Computers — 17

Multiplication

= Start with long-multiplication approach

| muttiplicand | —

_ - 1000 Multiplicand Shift oft le_
X 1001 64 bits
1000 }
0000 \/ Multiplier
0000 64-bit ALU Shift right
1000 Y 32 bits
- T
1001000 Product Wrte Conm
Length of product is 64 bits

the sum of operand
lengths

_

Chapter 3 — Arithmetic for
Computers — 18

Multiplication

= Start with long-multiplication approach

Multiplier0 = 1

Multiplier@ = 0

Multiplierd
1000 Y

1a. Add multiplicand to product and
O O O O place the result in Product register

1000 l

\
- T 1001000 2. Shift the Multiplicand register left 1 bit

¥
Le ngt h Of P rOd uctis 3. Shift the Mulliplier register right 1 bit

the sum of operand
lengths

No: < 32 repeiltions

32nd repetition?

Yes: 32 repetitiona

Chapter 3 — Arithmetic for
Computers — 19

Multiplication

" Long multiplication is slow. 3 steps, add, shift, &
shift are repeated 32 times — almost 100 cycles
for one multiplication instruction!!

Chapter 3 — Arithmetic for
Computers — 20

= Save hardware (32 bit adders

opt".nl?ed and multiplicand registers)
Multiplier | Faster, because shifting and
_ addition can be in parallel
e = Put multiplier in 32 bits of the
Product register

Product Shift rlght @
Write

64 bits

= One cycle per partial-product addition
= That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for
Computers — 21

Faster Multiplier
= Uses multiple adders

= Cost/performance tradeoff

Mplier3t = Mcand Mplier3d = Mcand Mplier2 = Mcand Mplier28 = Mcand Mplierd = Mcand Mplier2=Mcand Mpliert =Mcand MplierQ = Mcand

S S B N S B

N N N N
32 bits 32 bits T 32 bits 32 hits
N N
32 hits 32 bits

1 bit =1~ 1 bit— 1 bit-~ 1 bit+

N

/

ProductS3 Productc2 Product47..16 ca Product! ProductO

1

Chapter 3 — Arithmetic for
Computers — 22

MIPS Multiplication

= Two 32-bit registers for product
= HI: most-significant 32 bits
= LO: least-significant 32-bits

* |nstructions
=mult rs, rt /7 multu rs, rt
e 64-bit product in HI/LO

= mfFlo and mfhi to move result from HI/LO
to a general purpose register

Chapter 3 — Arithmetic for
Computers — 23

History

= Registers were precilous

= Single register called Accumulator
= Add 200

= Separate accumulators for
special operations like
multiply, divide ..

History

General purpose registers — any
register may be used for any
purpose. E.g, MIPS

Register-memory architecture:
allow memory operands others
demand operands must always be
In registers - MIPS

