Arithmetic

Integer Addition

• Example: 7 + 6

Integer AdditionExample: 7 + 6

§3.2 Addition and Subtraction

Integer Subtraction

How to represent negative numbers?

Sign and Magnitude Representation

- Use Sign Bits
 - Add a sign bit, 0 means positive, I means negative
 - 0000 0000 0000 0000 ... $0011_2 = +3_{10}$
 - $|000\ 0000\ 0000\ 0000\ \dots\ 001\ |_2 = -3_{10}$
 - $0000\ 0000\ 0000\ 0000\ \dots\ |0|0_2 = +|0_{10}$
 - $1000\ 0000\ 0000\ 0000\ \dots\ 1010_2 = -10_{10}$

Disadvantages of Sign and Magnitude

Ambiguity:

- Put the sign to left or right?, 0 or 1 ?
- Two representations for zero!
- Design issues:
 - More complex hardware for adders if they don't know in advance what is the proper sign
 - Software programmers

Unsigned Numbers

Unsigned Numbers

Allows only positive numbers

0000 (0)

- 0001 (1)
- 0010 (2)
- 0011 (3)
- 0100 (4)
- 0101 (5) 0110 (6)
- 0111 (7)
- 1000 (8)
- 1001 (9)

1010 (10) 1011 (11)

- 1100 (12)
- 1101 (13)

1110 (14)

|||| (|5)

Two's Complement representation using 4 bit binary strings

	-1	0000	1			
-2 1110	1111	0000	0001	2 0010	I	2-1=1
-3				3		- =0
1101				0011		
-4 1100				4 0100	I	0-1=-1
-5 1011				5 0101	I	•••
-6 1010	-7		7	6 0110		
	1001	-8 1000	0111			

•
$$x + x_c = -1$$

•
$$x + x_c + I = 0$$

- $x_c + | = -x$
- Short cut technique
 - Complement all bits (change all I's to 0's and all 0's to I's)
 - Then add I
 - Ignore carries for the last (left most) column

- Short cut technique
 - Complement all bits (change all I's to 0's and all 0's to I's) then add I
- Assume word length of 8 bits. Express -4 in two's complement form.

- Short cut technique
 - Complement all bits (change all I's to 0's and all 0's to I's) then add I
- Assume word length of 8 bits. Express -4 in two's complement form.

+4 =	0000	0100
Complement :	1111	1011
-4 =	1111	1100

Integer Subtraction

Add 5 to -5 using two's complement

- Subtraction: Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is I
 - Addition: Overflow if result out of range
 - Adding two +ve operands
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions

Dealing with Overflow

- If overflow occurs,
 - Address of instruction causing overflow is saved in a register
 - Computer jumps to a pre-defined address to invoke a special procedure

Multiplication

Start with long-multiplication approach

the sum of operand lengths

Multiplication Start with long-multiplication approach

Multiplication Start with long-multiplication approach Start multiplicand Multiplier0 = 0 Multiplier0 = 1 1. Test 1000 Multiplier0 multiplier 1001 Х 1000 1a. Add multiplicand to product and 0000 place the result in Product register 0000 1000 product 1001000 2. Shift the Multiplicand register left 1 bit 3. Shift the Multiplier register right 1 bit Length of product is the sum of operand lengths No: < 32 repetitions 32nd repetition? Yes: 32 repetitions Chapter 3 — Arithmetic for Done Computers - 19

Multiplication

Long multiplication is slow. 3 steps, add, shift, & shift are repeated 32 times – almost 100 cycles for one multiplication instruction!!

Optimized Multiplier

- Save hardware (32 bit adders and multiplicand registers)
- Faster, because shifting and addition can be in parallel
- Put multiplier in 32 bits of the Product register

One cycle per partial-product addition
 That's ok, if frequency of multiplications is low

Faster Multiplier

Uses multiple adders

Cost/performance tradeoff

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mflo and mfhi to move result from HI/LO to a general purpose register

History

Registers were precious

- Single register called Accumulator
- Add 200
- Separate accumulators for special operations like multiply, divide ..

History

- General purpose registers any register may be used for any purpose. E.g, MIPS
- Register-memory architecture: allow memory operands others demand operands must always be in registers - MIPS