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Integration, Review The Evaluation Theorem (FTC part 2)

Antiderivatives

Definition (Antiderivative)
A function F is called an antiderivative of f on an interval I if
F ′(x) = f (x) for all x in I.
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Integration, Review The Evaluation Theorem (FTC part 2)

Theorem
Let f be a continuous function on [a,b]. Then f is integrable over [a,b].

In other words,

∫ b

a
f (x)dx exists for any continuous (over [a,b])

function f .

Theorem (The Evaluation Theorem (FTC part 2))
If f is continuous on [a,b], then∫ b

a
f (x)dx = F (b)− F (a),

where F is any antiderivative of f .
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Integration, Review The Evaluation Theorem (FTC part 2)

Indefinite Integrals

The Evaluation Theorem establishes a connection between
antiderivatives and definite integrals.

It says that
∫ b

a f (x)dx equals F (b)− F (a), where F is an
antiderivative of f .
We need convenient notation for writing antiderivatives.
This is what the indefinite integral is.

Definition (Indefinite Integral)
The indefinite integral of f is another way of saying the antiderivative of
f , and is written

∫
f (x)dx . In other words,∫

f (x)dx = F (x) means F ′(x) = f (x).
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Integration, Review The Evaluation Theorem (FTC part 2)

Example ∫
x4dx =

x5

5
+ C

because
d

dx

(
x5

5
+ C

)
= x4.

The indefinite integral represents a whole family of functions.
Example: the general antiderivative of 1

x is

F (x) =

{
ln |x |+ C1 if x > 0
ln |x |+ C2 if x < 0

We adopt the convention that the constant participating in an
indefinite integral is only valid on one interval.∫ 1

x dx = ln |x |+ C, and this is valid either on (−∞,0) or (0,∞).
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Integration Techniques from Calc I, Review Differential Forms, Review

Differentials

Recall ∆y ,∆x stand for change of x , y . Recall: ∆y ≈ dy
dx

∆x

∆y ≈ dy
dx

∆x

If we substitute ∆y by the formal expression dy and ∆x by the
formal expression dx , the expression dx appears to “cancel” to
give a formal identity.
Define the differential d and the differential forms dx, d(f (x)) by
requesting that d and dx satisfy the transformation law

d(f (x)) = f ′(x)dx

for any differentiable function f (x). In abbreviated notation:

df = f ′dx

Expressions containing expression of the form d(something) are
called differential forms.
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Integration Techniques from Calc I, Review Differential Forms, Review

df (x) = f ′(x)dx .

On the previous slide we stated the differential d and the
differential forms dx ,df (x) are formal expressions related by a
transformation law.
The precise definitions of differential forms and differentials are
outside of the scope of Calculus I and II.
Differential forms “encode” linear approximations which in turn
“encode” “infinitesimal” lengths of segments.
Courses such as “Integration and Manifolds” or “Differential
geometry” usually give precise definitions and fill in the details.
Nonetheless, what we studied is completely sufficient for practical
purposes and carrying out computations.
Do not confuse differentials with derivatives.

The correct
equality is this.

df (x) = f ′(x)dx
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Integration Techniques from Calc I, Review Differential Forms, Review

We defined
∫

f (x)dx as an anti-derivative of f (x) and

b∫
a

f (x)dx

as the definite integral of f .

The
∫

sign stands for the limit of a Riemann sum (sum of
approximating rectangles).
dx “encodes” the length of the base of an “infinitesimally small”
approximating rectangle

, f (x) stands for the height.

“Infinitesimally small” is an informal expression.
Formally, the expression f (x)dx is a differential form (the same
differential forms discussed in the preceding slides).
We did not give a complete formal definition of a differential form,
but we showed how to compute with those.
Computing with differential forms is consistent with computing with
integrals: the integrals of equal differential forms are equal. This
follows directly from the Net Change Theorem (the substitution
rule for integrals), which in turn follows from the Fundamental
Theorem of Calculus and the Chain Rule.
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follows directly from the Net Change Theorem (the substitution
rule for integrals), which in turn follows from the Fundamental
Theorem of Calculus and the Chain Rule.
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All rules for computing with derivatives have analogues for
computing with differential forms.

The rules for computing differential forms are a direct
consequence of the corresponding derivative rules and the
transformation law d(f (x)) = f ′(x)dx .
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All rules for computing with derivatives have analogues for
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consequence of the corresponding derivative rules and the
transformation law d(f (x)) = f ′(x)dx .
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Let c be a constant.

Rule name: product rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg

(fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant.

Rule name: product rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +
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fdg (fg)′ = f ′g + fg′
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dc = 0 (c)′ = 0

∫
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Let c be a constant. Rule name: constant derivative rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0

(c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name: constant derivative rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name:

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df

(cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name:

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name: sum rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg

(f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name: sum rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name: chain rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx

(f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name: chain rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg

dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name: power rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg

dxn = nxn−1dx

(xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name: power rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name: exponent derivative rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx

(ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name: exponent derivative rule.

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x

Math 141 Lecture 2 Spring 2015



Integration Techniques from Calc I, Review Differential Forms, Review

Let c be a constant. Rule name:

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx

(sin x)′ = cos x

d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name:

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =

∫

df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x

d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Let c be a constant. Rule name:

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫

d(fg) =

∫

gdf +

∫

fdg (fg)′ = f ′g + fg′

∫

dc = 0 (c)′ = 0

∫

d(cf ) = c

∫

df (cf )′ = cf ′

∫

d(f + g) =
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df +

∫

dg (f + g)′ = f ′ + g′

∫

df (g(x)) =

∫

f ′(g(x))dg(x)
=

∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)

∫

df (g) =

∫

f ′(g)dg
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dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x

d cos x = − sin xdx

(cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Integration Techniques from Calc I, Review Differential Forms, Review

Let c be a constant. Rule name:

Corresponding integration rules.
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Fundamental Theorem of Calculus
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Integration Techniques from Calc I, Review Differential Forms, Review
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Integration Techniques from Calc I, Review Differential Forms, Review

Let c be a constant. Rule name:

Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Differential rule Derivative rule

∫
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Integration Techniques from Calc I, Review Differential Forms, Review

Let c be a constant. Rule name:
Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Integration rule Derivative rule∫
d(fg) =

∫
gdf +

∫
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Integration Techniques from Calc I, Review Differential Forms, Review

Let c be a constant. Rule name: Integration by parts.
Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Integration rule Derivative rule∫
d(fg) =

∫
gdf +

∫
fdg (fg)′ = f ′g + fg′∫

dc = 0 (c)′ = 0∫
d(cf ) = c

∫
df (cf )′ = cf ′∫

d(f + g) =
∫

df +
∫

dg (f + g)′ = f ′ + g′∫
df (g(x)) =

∫
f ′(g(x))dg(x)

=
∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)∫
df (g) =

∫
f ′(g)dg

dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
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Integration Techniques from Calc I, Review Differential Forms, Review

Let c be a constant. Rule name: Integration is linear.
Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Integration rule Derivative rule∫
d(fg) =

∫
gdf +

∫
fdg (fg)′ = f ′g + fg′∫

dc = 0 (c)′ = 0∫
d(cf ) = c

∫
df (cf )′ = cf ′∫

d(f + g) =
∫

df +
∫

dg (f + g)′ = f ′ + g′∫
df (g(x)) =

∫
f ′(g(x))dg(x)

=
∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)∫
df (g) =

∫
f ′(g)dg
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Integration Techniques from Calc I, Review Differential Forms, Review

Let c be a constant. Rule name: Substitution rule.
Corresponding integration rules.

Integration rules justified via the
Fundamental Theorem of Calculus

Integration rule Derivative rule∫
d(fg) =

∫
gdf +

∫
fdg (fg)′ = f ′g + fg′∫

dc = 0 (c)′ = 0∫
d(cf ) = c

∫
df (cf )′ = cf ′∫

d(f + g) =
∫

df +
∫

dg (f + g)′ = f ′ + g′∫
df (g(x)) =

∫
f ′(g(x))dg(x)

=
∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)∫
df (g) =

∫
f ′(g)dg

dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Integration Techniques from Calc I, Review Differential Forms, Review

Let c be a constant. Rule name:
Corresponding integration rules. Integration rules justified via the
Fundamental Theorem of Calculus
Integration rule Derivative rule∫

d(fg) =
∫

gdf +
∫

fdg (fg)′ = f ′g + fg′∫
dc = 0 (c)′ = 0∫
d(cf ) = c

∫
df (cf )′ = cf ′∫

d(f + g) =
∫

df +
∫

dg (f + g)′ = f ′ + g′∫
df (g(x)) =

∫
f ′(g(x))dg(x)

=
∫

f ′(g(x))g′(x)dx (f (g(x)))′ = f ′(g(x))g′(x)∫
df (g) =

∫
f ′(g)dg

dxn = nxn−1dx (xn)′ = nxn−1

dex = exdx (ex )′ = ex

d sin x = cos xdx (sin x)′ = cos x
d cos x = − sin xdx (cos x)′ = − sin x

d ln x =
1
x

dx (ln x)′ =
1
x
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Integration and Logarithms, Review

We recall from previous slides that

d
dx

(ln |x |) =
1
x
.

This formula has a special application to integration:

Theorem (The Integral of 1/x)∫
1
x

dx = ln |x |+ C.

This fills in the gap in the rule for integrating power functions:∫
xndx =

xn+1

n + 1
+ C, n 6= −1.

Now we know the formula for n = −1 too.
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