Math 141 Lecture 8

Greg Maloney

Todor Milev

University of Massachusetts Boston

Spring 2015

Outline

- 1 Indeterminate Forms and L'Hospital's Rule
 - Indeterminate Products
 - Indeterminate Differences
 - Indeterminate Powers

- $\lim_{x\to 1} \ln x =$
- $\bullet \ \lim_{x\to 1}(x-1)=$

- $\lim_{x\to 1} \ln x =$
- $\bullet \ \lim_{x\to 1}(x-1)=$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\bullet \ \lim_{x\to 1}(x-1)=$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1} (x-1) =$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.

- $\bullet \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- We don't get any cancellation between top and bottom.

- $\bullet \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- We don't get any cancellation between top and bottom.
- We need new techniques.

 $\lim_{x\to a} f(x) = 0$

Theorem (L'Hospital's Rule)

Suppose that f and g are differentiable and $g'(x) \neq 0$ on an open interval that contains a (except possibly at a). Suppose that

and $\lim_{x\to a} g(x) = 0$

or that
$$\lim_{x\to a} f(x) = \pm \infty$$
 and $\lim_{x\to a} g(x) = \pm \infty$

(In other words, we have an indeterminate form of type 0/0 or ∞/∞ .) Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.

- $\bullet \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

$$\lim_{x\to 1}\frac{\ln x}{x-1}=$$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

$$\lim_{x\to 1}\frac{\ln x}{x-1}=\lim_{x\to 1}\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\ln x)}{\frac{\mathrm{d}}{\mathrm{d}x}(x-1)}=$$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

$$\lim_{x\to 1}\frac{\ln x}{x-1}=\lim_{x\to 1}\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\ln x)}{\frac{\mathrm{d}}{\mathrm{d}x}(x-1)}=\lim_{x\to 1}---=$$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

$$\lim_{x\to 1}\frac{\ln x}{x-1}=\lim_{x\to 1}\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\ln x)}{\frac{\mathrm{d}}{\mathrm{d}x}(x-1)}=\lim_{x\to 1}---=$$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

$$\lim_{x\to 1}\frac{\ln x}{x-1}=\lim_{x\to 1}\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\ln x)}{\frac{\mathrm{d}}{\mathrm{d}x}(x-1)}=\lim_{x\to 1}\frac{1/x}{1/x}=$$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

$$\lim_{x\to 1}\frac{\ln x}{x-1}=\lim_{x\to 1}\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\ln x)}{\frac{\mathrm{d}}{\mathrm{d}x}(x-1)}=\lim_{x\to 1}\frac{1/x}{1}=$$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

$$\lim_{x\to 1}\frac{\ln x}{x-1}=\lim_{x\to 1}\frac{\frac{\mathrm{d}}{\mathrm{d}x}(\ln x)}{\frac{\mathrm{d}}{\mathrm{d}x}(x-1)}=\lim_{x\to 1}\frac{1/x}{1}=$$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\frac{d}{dx} (\ln x)}{\frac{d}{dx} (x - 1)} = \lim_{x \to 1} \frac{1/x}{1} = \lim_{x \to 1} \frac{1}{x} = \lim_{x \to 1$$

- $\bullet \ \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(x - 1)} = \lim_{x \to 1} \frac{1/x}{1} = \lim_{x \to 1} \frac{1}{x} = 1.$$

- $\lim_{x\to\infty} e^x =$
- $\lim_{x\to\infty} x^2 =$

- $\lim_{X\to\infty} e^X =$
- $\lim_{x\to\infty} x^2 =$

- $\lim_{X\to\infty} e^X = \infty$.
- $\lim_{x\to\infty} x^2 =$

- $\lim_{x\to\infty} e^x = \infty$.
- $\lim_{x\to\infty} x^2 =$

- $\lim_{X\to\infty} e^X = \infty$.
- $\lim_{x\to\infty} x^2 = \infty$.

- $\lim_{X\to\infty} e^X = \infty$.
- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .

- $\lim_{X\to\infty} e^X = \infty$.
- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

- $\lim_{X\to\infty} e^X = \infty$.
- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x\to\infty}\frac{e^x}{x^2}=$$

- $\lim_{x\to\infty} e^x = \infty$.
- $\bullet \ \lim_{x\to\infty} x^2 = \infty.$
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x\to\infty}\frac{e^x}{x^2}=\lim_{x\to\infty}\frac{\frac{\mathrm{d}}{\mathrm{d}x}(e^x)}{\frac{\mathrm{d}}{\mathrm{d}x}(x^2)}=$$

•
$$\lim_{x\to\infty} e^x = \infty$$
.

- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x\to\infty}\frac{e^x}{x^2}=\lim_{x\to\infty}\frac{\frac{\mathrm{d}}{\mathrm{d}x}(e^x)}{\frac{\mathrm{d}}{\mathrm{d}x}(x^2)}=\lim_{x\to\infty}-$$

•
$$\lim_{x\to\infty} e^x = \infty$$
.

- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} -$$

- $\lim_{x\to\infty} e^x = \infty$.
- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{e^x}$$

Find $\lim_{x\to\infty} \frac{e^x}{x^2}$.

•
$$\lim_{x\to\infty} e^x = \infty$$
.

- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{e^x}$$

Find $\lim_{X\to\infty} \frac{e^x}{x^2}$.

•
$$\lim_{x\to\infty} e^x = \infty$$
.

- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

Find $\lim_{X\to\infty} \frac{e^x}{x^2}$.

- $\lim_{x\to\infty} e^x = \infty$.
- $\bullet \ \lim_{x\to\infty} x^2 = \infty.$
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

• $\lim_{x\to\infty} 2x =$

Find $\lim_{x\to\infty} \frac{e^x}{x^2}$.

- $\lim_{X\to\infty} e^X = \infty$.
- $\bullet \ \lim_{x\to\infty} x^2 = \infty.$
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

• $\lim_{x\to\infty} 2x = \infty$.

Find $\lim_{X\to\infty} \frac{e^x}{X^2}$.

- $\lim_{X\to\infty} e^X = \infty$.
- $\bullet \ \lim_{x\to\infty} x^2 = \infty.$
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

 $\bullet \ \lim_{x\to\infty} 2x = \infty.$

Find $\lim_{X\to\infty} \frac{e^x}{X^2}$.

- $\lim_{X\to\infty} e^X = \infty$.
- $\bullet \ \lim_{x\to\infty} x^2 = \infty.$
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

- $\lim_{x\to\infty} 2x = \infty$.
- This is an inderminate form of type ∞/∞ .

Find $\lim_{x\to\infty} \frac{e^x}{x^2}$.

- $\lim_{x\to\infty} e^x = \infty$.
- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

- $\lim_{x\to\infty} 2x = \infty$.
- This is an inderminate form of type ∞/∞ .
- Apply L'Hospital's rule again:

Find $\lim_{x\to\infty} \frac{e^x}{x^2}$.

- $\lim_{x\to\infty} e^x = \infty$.
- $\bullet \ \lim_{x\to\infty} x^2 = \infty.$
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

- $\lim_{x\to\infty} 2x = \infty$.
- This is an inderminate form of type ∞/∞ .
- Apply L'Hospital's rule again:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{e^x}{2x} =$$

Find $\lim_{X\to\infty} \frac{e^x}{x^2}$.

- $\lim_{X\to\infty} e^X = \infty$.
- $\bullet \ \lim_{x\to\infty} x^2 = \infty.$
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

- $\lim_{x\to\infty} 2x = \infty$.
- This is an inderminate form of type ∞/∞ .
- Apply L'Hospital's rule again:

$$\lim_{x\to\infty}\frac{e^x}{x^2}=\lim_{x\to\infty}\frac{e^x}{2x}=\lim_{x\to\infty}\frac{e^x}{2}=$$

Find $\lim_{X\to\infty} \frac{e^x}{X^2}$.

- $\lim_{x\to\infty} e^x = \infty$.
- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

- $\lim_{x\to\infty} 2x = \infty$.
- This is an inderminate form of type ∞/∞ .
- Apply L'Hospital's rule again:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{e^x}{2} = \infty.$$

Indeterminate Products

If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \pm \infty$, then it isn't clear what $\lim_{x\to a} (fg)(x)$ will be.

Indeterminate Products

If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \pm \infty$, then it isn't clear what $\lim_{x\to a} (fg)(x)$ will be.

In such a case, write the product fg as a quotient:

$$fg = \frac{f}{1/g}$$
 or $fg = \frac{g}{1/f}$.

Indeterminate Products

If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \pm \infty$, then it isn't clear what $\lim_{x\to a} (fg)(x)$ will be.

In such a case, write the product fg as a quotient:

$$fg = \frac{f}{1/g}$$
 or $fg = \frac{g}{1/f}$.

This converts the given limit into an indeterminate form of type 0/0 or ∞/∞ .

Evaluate $\lim_{x\to 0^+} x \ln x$.

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x =$
- $\lim_{x\to 0^+} x =$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\lim_{x\to 0^+} \ln x =$
- $\lim_{x\to 0^+} x =$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x = -\infty.$
- $\lim_{x\to 0^+} x =$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x = -\infty.$
- $\lim_{x\to 0^+} x =$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x = -\infty.$
- $\lim_{x\to 0^+} x = 0$.

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x = -\infty.$
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x = -\infty.$
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x = -\infty.$
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x\to 0^+} x \ln x =$$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\lim_{x\to 0^+} \ln x = -\infty$.
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} =$$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\lim_{x\to 0^+} \ln x = -\infty$.
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{1/x} = \lim_{x \to 0^{+}} \frac{\frac{d}{dx} (\ln x)}{\frac{d}{dx} (1/x)}$$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x = -\infty.$
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{1/x} = \lim_{x \to 0^{+}} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(1/x)}$$
$$= \lim_{x \to 0^{+}} -----$$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x = -\infty.$
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{1/x} = \lim_{x \to 0^{+}} \frac{\frac{d}{dx} (\ln x)}{\frac{d}{dx} (1/x)}$$
$$= \lim_{x \to 0^{+}} -----$$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\lim_{x\to 0^+} \ln x = -\infty$.
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{1/x} = \lim_{x \to 0^{+}} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(1/x)}$$
$$= \lim_{x \to 0^{+}} \frac{1/x}{1/x}$$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x = -\infty.$
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{1/x} = \lim_{x \to 0^{+}} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(1/x)}$$
$$= \lim_{x \to 0^{+}} \frac{1/x}{1/x}$$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\lim_{x\to 0^+} \ln x = -\infty$.
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{1/x} = \lim_{x \to 0^{+}} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(1/x)}$$
$$= \lim_{x \to 0^{+}} \frac{1/x}{-1/x^{2}}$$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\lim_{x\to 0^+} \ln x = -\infty$.
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{1/x} = \lim_{x \to 0^{+}} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(1/x)}$$
$$= \lim_{x \to 0^{+}} \frac{1/x}{-1/x^{2}} = \lim_{x \to 0^{+}} (-x)$$

Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \ \lim_{x\to 0^+} \ln x = -\infty.$
- $\lim_{x\to 0^+} x = 0$.
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{1/x} = \lim_{x \to 0^{+}} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(1/x)}$$
$$= \lim_{x \to 0^{+}} \frac{1/x}{-1/x^{2}} = \lim_{x \to 0^{+}} (-x) = 0.$$

Indeterminate Differences

If $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = \infty$, then the limit

$$\lim_{x\to a}[f(x)-g(x)]$$

is called an indeterminate form of type $\infty - \infty$.

Indeterminate Differences

If $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = \infty$, then the limit

$$\lim_{x\to a}[f(x)-g(x)]$$

is called an indeterminate form of type $\infty - \infty$.

To compute such a limit, try to convert it into a quotient (by using a common denominator, or by rationalizing, or by factoring out a common factor).

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-} \sec x =$
- $\bullet \ \lim_{x\to (\pi/2)^-} \tan x =$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x =$
- $\lim_{x\to(\pi/2)^-}\tan x =$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-}\tan x =$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\bullet \ \lim_{x\to (\pi/2)^-} \sec x = \infty.$
- $\lim_{x\to(\pi/2)^-}\tan x =$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-}\tan x=\infty$.

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{X\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x\to(\pi/2)^{-}}(\sec x - \tan x) = \lim_{x\to(\pi/2)^{-}}\left(\frac{1}{\cos x} - \frac{\sin x}{\cos x}\right)$$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\bullet \ \lim_{x\to (\pi/2)^-} \sec x = \infty.$
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$
$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$
$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$
(indeterminate form of type 0/0.)

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\bullet \ \lim_{x\to (\pi/2)^-} \sec x = \infty.$
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$
(indeterminate form of type 0/0.)
$$= \lim_{x \to (\pi/2)^{-}} \frac{\frac{d}{dx} (1 - \sin x)}{\frac{d}{dx} \cos x}$$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$
(indeterminate form of type 0/0.)
$$= \lim_{x \to (\pi/2)^{-}} \frac{\frac{d}{dx} (1 - \sin x)}{\frac{d}{dx} \cos x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{-1}{\cos x}$$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$
(indeterminate form of type 0/0.)
$$= \lim_{x \to (\pi/2)^{-}} \frac{\frac{d}{dx} (1 - \sin x)}{\frac{d}{dx} \cos x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{-1}{\cos x}$$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$
(indeterminate form of type 0/0.)
$$= \lim_{x \to (\pi/2)^{-}} \frac{\frac{d}{dx} (1 - \sin x)}{\frac{d}{dx} \cos x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{-\cos x}{\cos x}$$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{X\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$
(indeterminate form of type $0/0$.)
$$= \lim_{x \to (\pi/2)^{-}} \frac{\frac{d}{dx} (1 - \sin x)}{\frac{d}{dx} \cos x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{-\cos x}{\cos x}$$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$
(indeterminate form of type 0/0.)
$$= \lim_{x \to (\pi/2)^{-}} \frac{\frac{d}{dx} (1 - \sin x)}{\frac{d}{dx} \cos x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{-\cos x}{-\sin x}$$

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$
(indeterminate form of type 0/0.)
$$= \lim_{x \to (\pi/2)^{-}} \frac{\frac{d}{dx} (1 - \sin x)}{\frac{d}{dx} \cos x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{-\cos x}{-\sin x} = 0$$

Indeterminate Powers

Several indeterminate forms arise from the limit $\lim_{x\to a} f(x)^{g(x)}$.

$$\lim_{x\to a} f(x) = 0$$
 and $\lim_{x\to a} g(x) = 0$ type 0^0

$$\lim_{x\to a} f(x) = \infty$$
 and $\lim_{x\to a} g(x) = 0$ type ∞^0

$$\lim_{x\to a} f(x) = 1$$
 and $\lim_{x\to a} g(x) = \pm \infty$ type 1^{∞}

Indeterminate Powers

Several indeterminate forms arise from the limit $\lim_{x\to a} f(x)^{g(x)}$.

$$\lim_{x\to a} f(x) = 0$$
 and $\lim_{x\to a} g(x) = 0$ type 0^0 $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = 0$ type ∞^0

$$\lim_{x\to a} f(x) = 1$$
 and $\lim_{x\to a} g(x) = \pm \infty$ type 1^{∞}

These can all be solved either by taking the natural logarithm:

let
$$y = [f(x)]^{g(x)}$$
, then $\ln y = g(x) \ln f(x)$

or by writing the function as an exponential:

$$[f(x)]^{g(x)} = e^{g(x)\ln f(x)}.$$

Find $\lim_{x\to 0^+} x^x$.

Find $\lim_{x\to 0^+} x^x$.

•
$$0^x = 0$$
 for any $x > 0$.

Find $\lim_{x\to 0^+} x^x$.

- $0^x = 0$ for any x > 0.
- $x^0 = 1$ for any $x \neq 0$.

Find $\lim_{x\to 0^+} x^x$.

- $0^x = 0$ for any x > 0.
- $x^0 = 1$ for any $x \neq 0$.
- This is an indeterminate form of type 00.

- $0^x = 0$ for any x > 0.
- $x^0 = 1$ for any $x \neq 0$.
- This is an indeterminate form of type 00.
- Write as an exponential:

- $0^x = 0$ for any x > 0.
- $x^0 = 1$ for any $x \neq 0$.
- This is an indeterminate form of type 00.
- Write as an exponential:
- $x^x = e^{x \ln x}$.

- $0^x = 0$ for any x > 0.
- $x^0 = 1$ for any $x \neq 0$.
- This is an indeterminate form of type 0⁰.
- Write as an exponential:
- $x^x = e^{x \ln x}.$
- Recall that $\lim_{x\to 0^+} x \ln x = 0$.

- $0^x = 0$ for any x > 0.
- $x^0 = 1$ for any $x \neq 0$.
- This is an indeterminate form of type 00.
- Write as an exponential:
- $x^x = e^{x \ln x}.$
- Recall that $\lim_{x\to 0^+} x \ln x = 0$.
- Therefore

$$\lim_{x\to 0^+} x^x =$$

- $0^x = 0$ for any x > 0.
- $x^0 = 1$ for any $x \neq 0$.
- This is an indeterminate form of type 00.
- Write as an exponential:
- $x^x = e^{x \ln x}$.
- Recall that $\lim_{x\to 0^+} x \ln x = 0$.
- Therefore

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} =$$

- $0^x = 0$ for any x > 0.
- $x^0 = 1$ for any $x \neq 0$.
- This is an indeterminate form of type 00.
- Write as an exponential:
- $x^x = e^{x \ln x}$.
- Recall that $\lim_{x\to 0^+} x \ln x = 0$.
- Therefore

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^0 = 1$$