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Sequences

Example (A finite sequence)

1,2,3,4,5

is an example of a finite sequence. So is

−1,−2,−3, . . . ,−10000.

Definition (Finite sequence, Infinite sequence)
A finite sequence is a sequence that ends. It is possible to write down
all the terms in a finite sequence. A sequence that is not finite is called
an infinite sequence.

Example (An infinite sequence)

2,4,6,8, . . .

is an example of an infinite sequence.
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Sequences

Example (Sequence notation)
Consider the sequence

2,4,6,8, . . . .

We can express this sequence more compactly using the notation

an = 2n,

where an denotes the nth term.

So a1 = 2 · 1 = 2
a2 = 2 · 2 = 4
a3 = 2 · 3 = 6
a4 = 2 · 4 = 8

...
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Sequences

Example
The sequence

−1,1,−1,1,−1,1, . . .

can be written bn = (−1)n.

Example
The sequence

1,2,4,8,16, . . .

can be written cn = 2n−1.

Example
The sequence

1
2
,−1

4
,
1
8
,− 1

16
, . . .

can be written dn = −
(
− 1

2

)n.
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Sequences

Example (Given a formula, find the terms)
Find the first five terms of each of the following sequences.

1 an = 3 · 2−n

3
2
,
3
4
,
3
8
,

3
16
,

3
32
, . . .

2 bn = 1

1,1,1,1,1, . . .

3 cn = −3(n − 1) + 5

5,2,−1,−4,−7, . . .

4 dn = n2 + 1

2,5,10,17,26, . . .
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Sequences
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Sequences

Definition (Arithmetic sequence)
An arithmetic sequence is one in which successive terms differ by a
constant number. This constant is called the difference of the
arithmetic sequence.

Example (Which are arithmetic?)
1, 2, 3, 4, 5, . . . is arithmetic with difference 1.

23, 16, 9, 2, −5, . . . is arithmetic with difference −7.
8, 9, 12, 17, 24, . . . is not arithmetic.

(9− 8 = 1 but 12− 9 = 3.)
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Sequences

Example (Which are arithmetic?)

Sequence Arithmetic? Difference First term nth term
1,−1,1,−1, . . .

no — 1 (−1)n+1

1
6 ,

1
2 ,

5
6 ,

7
6 ,

3
2 , . . .

yes 1
3

1
6

1
6 + 1

3(n − 1)

2,2,2,2, . . .

yes 0 2 2

+ 0(n − 1)

If an arithmetic sequence has difference d , then the nth term has
formula

an = a1 + d(n − 1),

where a1 is the first term.
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Sequences

Definition (Geometric sequence)
A geometric sequence is one in which each term is obtained by
multiplying the previous one by the same constant. This constant is
called the ratio of the geometric sequence.

Example (Which are geometric?)

2, 4, 8, 16, 32, . . . is geometric with ratio 2.
1, −3, 9, −27, 81, . . . is geometric with ratio −3.

−42, −14, −21, 31, −22, . . . is not geometric.
(−14
−42 = 1

3 but −21
−14 = 3

2 .)
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Sequences

Example (Arithmetic and geometric)

Arithmetic/
Sequence geometric Diff. Ratio a1 an
2
3 ,

4
9 ,

8
27 ,

16
81 , . . .

geometric — 2
3

2
3

(2
3

)n

= 2
3

(2
3

)n−1

7,3,−1,−5, . . .

arithmetic −4 — 7 7− 4(n − 1)

4,4,4,4, . . .

both 0 1 4 4

= 4(1)n−1

π,−π2, π3,−π4, . . .

geometric — −π π π(−π)n−1

1,1,2,2,3,3, . . .

neither — — 1 dn
2e

If a geometric sequence has ratio r , then the nth term has formula

an = a1rn−1.
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Sequences

Sequences

Definition (Sequence)
A sequence is a list of numbers written in a definite order:

a1,a2,a3,a4, . . . ,an, . . .

The number a1 is called the first term, a2 is called the second term,
and in general an is the nth term.
We will always deal with infinite sequences, in which each term an has
a successor an+1.

Notation:
The sequence {a1,a2,a3, . . .} can also be written

{an} or {an}∞n=1
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Sequences

Example (A sequence)

1,2,3,4,5, . . .

is an example of a sequence.

Definition (Sequence, Terms)
A sequence is a list of numbers written in a definite order. The
individual numbers in the sequence are called the terms of the
sequence.

Example (More sequences)
1, 2, 4, 8, 16, 32, . . . is a sequence.
−1, 1, −1, 1, −1, 1, . . . is a sequence.

1, −1, 1, −1, 1, −1, . . . is a different sequence.
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Sequences

Some sequences can by defined by giving a formula for the nth term
an. This example expresses four different sequences in three different
ways: first, by using the preceding notation; second, by giving a
formula; and third, by writing out the terms of the sequence.

Example{
n

n+1

}
an = n

n+1

{1
2 ,

2
3 ,

3
4 ,

4
5 , . . .

}
{

(−1)n(n+1)
3n

}
an = (−1)n(n+1)

3n

{−2
3 ,

3
9 ,
−4
27 ,

5
81 , . . .

}
{√

n − 3
}∞

n=3 an =
√

n − 3,n ≥ 3
{

0,1,
√

2,
√

3, . . .
}

{
cos nπ

6

}∞
n=0 an = cos nπ

6 ,n ≥ 0
{

1,
√

3
2 ,

1
2 ,0, . . .

}
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Sequences

Example
Find a formula for the general term an of the sequence{

0,
1
4
,−2

8
,

3
16
,− 4

32
,

5
64
, . . .

}

a1 = 0, a2 =
1
4
, a3 = − 2

8
, a4 =

3
16
, a5 = − 4

32
, a6 =

5
64
,

The numerators start at 0 and go up by one with each term.
The nth term has numerator

n − 1.

The denominators start at 2 and double with each term.
The nth term has denominator

2n.

The signs of the terms alternate between positive and negative.
We take this into account by multiplying by (−1)n.

an = (−1)n n − 1
2n
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an = (−1)n

n − 1
2n
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Sequences

Not all sequences can be represented by a simple formula.

Example (Sequences without a simple formula)
1 Consider the sequence (pn), where pn is the population of the

world as of January 1 of year n. This has no simple formula.

2 Let an be the nth digit of the number e. The first few terms of (an):

7,1,8,2,8,1,8,2,8,4,5, . . .

3 The Fibonacci sequence (fn) is defined recursively by

f1 = 1 f2 = 1 fn = fn−1 + fn−2, n ≥ 3

The first few terms are
1,1,

2,3,5,8,13, . . .

The Fibonacci sequence can be described by a formula, but not a

simple one

(
an =

√
5

5

((
1 +
√

5
2

)n

−

(
1−
√

5
2

)n))
.
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Sequences

1

n

a

0 1

The sequence
{

n
n+1

}
can be plotted on a number line or using

Cartesian coordinates.

From the pictures, the terms in the sequence appear to approach
1 as n gets larger.
1− n

n+1 =

1
n+1 .

This can be made arbitrarily small by choosing n large enough.
We express this by writing lim

n→∞
n

n+1 = 1.

Math 141 Lecture 10 Spring 2015



Sequences

1

n

a

1

a1 =
1

2

0 1a1

The sequence
{

n
n+1

}
can be plotted on a number line or using

Cartesian coordinates.

From the pictures, the terms in the sequence appear to approach
1 as n gets larger.
1− n

n+1 =

1
n+1 .

This can be made arbitrarily small by choosing n large enough.
We express this by writing lim

n→∞
n

n+1 = 1.

Math 141 Lecture 10 Spring 2015



Sequences
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Sequences
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Sequences
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0 1a1 a2 a3 a4

The sequence
{

n
n+1

}
can be plotted on a number line or using

Cartesian coordinates.

From the pictures, the terms in the sequence appear to approach
1 as n gets larger.
1− n

n+1 =

1
n+1 .

This can be made arbitrarily small by choosing n large enough.
We express this by writing lim

n→∞
n

n+1 = 1.

Math 141 Lecture 10 Spring 2015



Sequences

1

n

a

1 2 3 4 5

a5 =
5

6

0 1a1 a2 a3 a5

The sequence
{

n
n+1

}
can be plotted on a number line or using

Cartesian coordinates.

From the pictures, the terms in the sequence appear to approach
1 as n gets larger.
1− n

n+1 =

1
n+1 .

This can be made arbitrarily small by choosing n large enough.
We express this by writing lim

n→∞
n

n+1 = 1.

Math 141 Lecture 10 Spring 2015



Sequences
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Sequences
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Sequences
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Sequences

Definition (Limit of a Sequence)
A sequence {an} has the limit L, and we write

lim
n→∞

an = L or an → L as n→∞

if we can make an as close to L as we like by taking n large enough.

Definition (Convergent)
A sequence that has a limit is called convergent. A sequence that has
no limit is called divergent.

a

n

L

a

n

L
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Sequences

If you compare the definition of the limit of a sequence with the
definition of the infinite limit of a function, you’ll see that the only
difference between

lim
n→∞

an = L and lim
x→∞

f (x) = L

is that n is required to be an integer.
a

n

L

Theorem
If limx→∞ f (x) = L and f (n) = an for all integers n, then limn→∞ an = L.
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Sequences

Example
Find limn→∞

n
n+1 .

Divide numerator and denominator by the highest power of n, and use
the limit laws:

lim
n→∞

n
n + 1

·
1
n
1
n

= lim
n→∞

1
1 + 1

n

=
lim

n→∞
1

lim
n→∞

1 + lim
n→∞

1
n

=
1

1 + 0
= 1
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Sequences

Just like for functions, there is a notion of sequences tending to infinity:
If an grows large as n becomes large, we write limn→∞ an =∞.

You can probably guess what limn→∞ an = −∞ means.
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Sequences

The Limit Laws from section 2.3 also hold for sequences:
If {an} and {bn} are convergent sequences and c is a constant, then

1 lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

2 lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn

3 lim
n→∞

can = c lim
n→∞

an

4 lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn

5 lim
n→∞

an

bn
=

lim
n→∞

an

lim
n→∞

bn
if limn→∞ bn 6= 0

6 lim
n→∞

ap
n =

[
lim

n→∞
an

]p
if p > 0 and an > 0.
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Sequences

The Squeeze Theorem also works for sequences:

Theorem (The Squeeze Theorem for Sequences)
If an ≤ bn ≤ cn for n ≥ n0 and limn→∞ an = L = limn→∞ cn, then
limn→∞ bn = L.

a

n

L

cn

bn

cn

Corollary
If limn→∞ |an| = 0, then limn→∞ an = 0.
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Sequences

Example

Calculate limn→∞
ln n
n .

Both ln n and n go to∞ as n gets bigger.
We can’t use L’Hospital’s Rule directly, because L’Hospital’s Rule
is for functions.
Define f (x) = ln x

x . Now use L’Hospital’s Rule:

lim
x→∞

ln x
x

= lim
x→∞

1/x
1

= 0

Therefore

lim
n→∞

ln n
n

= lim
x→∞

f (x) = 0
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Sequences

Example
Is the sequence an = (−1)n convergent or divergent?

1

−1

1 2 3 4 5 6 7 8

a

n

The terms oscillate between
−1 and 1 infinitely many times.
Therefore the sequence
doesn’t approach any number.
{an} is divergent.
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Sequences

Example

Is an = (−1)n

n convergent or divergent?

lim
n→∞

∣∣∣∣(−1)n

n

∣∣∣∣ = lim
n→∞

1
n
= 0

Therefore, by the corollary to the Squeeze Theorem,

lim
n→∞

(−1)n

n
= 0

Therefore
{

(−1)n

n

}
is convergent.

a

n

1

1 2 3
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Sequences

Theorem
If limn→∞ an = L and the function f is continuous at L, then

lim
n→∞

f (an) = f (L)
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Sequences

Example
Find limn→∞ sin(π/n).

Sine is continuous at 0.

lim
n→∞

sin(π/n)

= sin
(

lim
n→∞

(π/n)
)

= sin

0

= 0

Find limn→∞ cos(π/n).

Cosine is continuous at 0.

lim
n→∞

cos(π/n)

= cos
(

lim
n→∞

(π/n)
)

= cos

0

= 1
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Sequences

Example

Discuss the convergence of the sequence an = n!
nn , where

n! = 1 · 2 · 3 · · · · · n.

Both the top and the bottom go to infinity as n→∞.
We can’t use L’Hospital’s Rule, because we have no function
corresponding to n! (x! isn’t defined if x isn’t an integer).

a1 = 1 a2 =
1 · 2
2 · 2

a3 =
1 · 2 · 3
3 · 3 · 3

an =
1 · 2 · 3 · 4 · · · · · n
n · n · n · n · · · · · n

=
1
n

(
2 · 3 · 4 · · · · · n
n · n · n · · · · · n

)

2
n ≤ 1, 3

n ≤ 1, 4
n ≤ 1,. . . n

n ≤ 1. Therefore 0 ≤ an ≤ 1
n .

Since 1
n → 0 as n→∞, by the Squeeze Theorem an → 0 as

n→∞.
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n! = 1 · 2 · 3 · · · · · n.
Both the top and the bottom go to infinity as n→∞.
We can’t use L’Hospital’s Rule, because we have no function
corresponding to n! (x! isn’t defined if x isn’t an integer).

a1 = 1 a2 =
1 · 2
2 · 2

a3 =
1 · 2 · 3
3 · 3 · 3

an =
1 · 2 · 3 · 4 · · · · · n
n · n · n · n · · · · · n

=
1
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2 · 3 · 4 · · · · · n
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n ≤ 1,. . . n

n ≤ 1.

Therefore 0 ≤ an ≤ 1
n .

Since 1
n → 0 as n→∞, by the Squeeze Theorem an → 0 as

n→∞.
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Sequences

Example

For what values of r is the sequence {rn}
convergent?

Consider the exponential function y = r x .

lim
x→∞

r x =

{

∞

if r > 1

0

if 0 < r < 1
Therefore

lim
n→∞

rn =

{

∞

if r > 1

0

if 0 < r < 1
Also, lim

n→∞
1n =

1

and lim
n→∞

0n =

0

.
If −1 < r < 0, then 0 < |r | < 1, and

lim
n→∞

|rn| = lim
n→∞

|r |n = 0

Therefore lim
n→∞

rn = 0.
If r ≤ −1, then rn diverges.

In particular,
(−1)n diverges.

a

n

1

1

a

n

1

1
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Sequences

This theorem summarizes the results of the previous example.

Theorem (Convergence of Geometric Sequences)
The sequence {rn} is convergent if −1 < r ≤ 1 and divergent
otherwise.

lim
n→∞

rn =

{
0 if −1 < r < 1
1 if r = 1
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Sequences

Definition (Increasing and Decreasing)
A sequence {an} is called increasing if an < an+1 for all n ≥ 1. In other
words, {an} is increasing if a1 < a2 < a3 < · · · .
A sequence {an} is called decreasing if an > an+1 for all n ≥ 1. In
other words, {an} is decreasing if a1 > a2 > a3 > · · · .
A sequence is called monotonic if it is either increasing or decreasing.
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Sequences

Example

The sequence
{

1
2n+1

}
is decreasing because

an =
1

2n + 1
an+1 =

1
2(n + 1) + 1

=
1

2n + 3

and
1

2n + 1
>

1
2n + 3

because the denominator of the latter is bigger.
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Sequences

Definition (Bounded Sequence)
A sequence {an} is called bounded above if there exists a number M
such that

an < M for all n ≥ 1.

It is called bounded below if there exists a number M such that

an > M for all n ≥ 1.

A bounded sequence is a sequence that is bounded below and above.
a

n

M

L

1
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Sequences

Theorem (Monotonic Sequence Theorem)
Every bounded, monotonic sequence is convergent.
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