Math 141 Lecture 10

Greg Maloney

Todor Milev

University of Massachusetts Boston

Spring 2015

Outline

Sequences

Example (A finite sequence)

is an example of a finite sequence. So is

$$-1, -2, -3, \ldots, -10000.$$

Definition (Finite sequence, Infinite sequence)

A finite sequence is a sequence that ends. It is possible to write down all the terms in a finite sequence. A sequence that is not finite is called an infinite sequence.

Example (A finite sequence)

is an example of a finite sequence. So is

$$-1, -2, -3, \ldots, -10000.$$

Definition (Finite sequence, Infinite sequence)

A finite sequence is a sequence that ends. It is possible to write down all the terms in a finite sequence. A sequence that is not finite is called an infinite sequence.

Example (An infinite sequence)

is an example of an infinite sequence.

Example (Sequence notation)

Consider the sequence

We can express this sequence more compactly using the notation

$$a_n = 2n$$

where a_n denotes the *n*th term.

So
$$a_1 = 2 \cdot 1 = 2$$

 $a_2 = 2 \cdot 2 = 4$
 $a_3 = 2 \cdot 3 = 6$
 $a_4 = 2 \cdot 4 = 8$
 \vdots

Example

The sequence

$$-1, 1, -1, 1, -1, 1, \dots$$

can be written $b_n = (-1)^n$.

Example

The sequence

can be written $c_n = 2^{n-1}$.

Example

The sequence

$$\frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, -\frac{1}{16}, \dots$$

can be written $d_n = -(-\frac{1}{2})^n$.

$$a_n = 3 \cdot 2^{-n}$$

2
$$b_n = 1$$

3
$$c_n = -3(n-1) + 5$$

4
$$d_n = n^2 + 1$$

1
$$a_n = 3 \cdot 2^{-n}$$

2
$$b_n = 1$$

3
$$c_n = -3(n-1) + 5$$

$$d_n = n^2 + 1$$

$$a_n = 3 \cdot 2^{-n}$$

$$\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \dots$$

2
$$b_n = 1$$

3
$$c_n = -3(n-1) + 5$$

$$d_n = n^2 + 1$$

$$a_n = 3 \cdot 2^{-n}$$

$$\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \dots$$

2
$$b_n = 1$$

3
$$c_n = -3(n-1) + 5$$

$$d_n = n^2 + 1$$

$$a_n = 3 \cdot 2^{-n}$$

$$\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \dots$$

2
$$b_n = 1$$

3
$$c_n = -3(n-1) + 5$$

$$d_n = n^2 + 1$$

$$a_n = 3 \cdot 2^{-n}$$

$$\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \dots$$

2
$$b_n = 1$$

3
$$c_n = -3(n-1) + 5$$

$$d_n = n^2 + 1$$

$$a_n = 3 \cdot 2^{-n}$$

$$\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \dots$$

2
$$b_n = 1$$

3
$$c_n = -3(n-1) + 5$$

$$5, 2, -1, -4, -7, \dots$$

$$d_n = n^2 + 1$$

$$a_n = 3 \cdot 2^{-n}$$

$$\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \dots$$

2
$$b_n = 1$$

3
$$c_n = -3(n-1) + 5$$

$$5, 2, -1, -4, -7, \dots$$

$$d_n = n^2 + 1$$

$$a_n = 3 \cdot 2^{-n}$$

$$\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \dots$$

2
$$b_n = 1$$

3
$$c_n = -3(n-1) + 5$$

$$5, 2, -1, -4, -7, \dots$$

$$d_n = n^2 + 1$$

$$\mathbf{0}$$
 $a_n =$

$$2, \frac{1}{2}, \frac{1}{8}, \frac{1}{32}, \frac{1}{128}, \dots$$

$$\mathbf{2} b_n =$$

$$-1, 4, -9, 16, -25, \dots$$

$$\circ$$
 $c_n =$

$$-1, 5, 11, 17, 23, \dots$$

$$\mathbf{0}$$
 $a_n =$

$$2, \frac{1}{2}, \frac{1}{8}, \frac{1}{32}, \frac{1}{128}, \dots$$

$$\mathbf{2} b_n =$$

$$-1, 4, -9, 16, -25, \dots$$

$$\circ$$
 $c_n =$

$$-1, 5, 11, 17, 23, \dots$$

$$a_n = 2 \cdot \left(\frac{1}{4}\right)^{n-1}$$

$$2, \frac{1}{2}, \frac{1}{8}, \frac{1}{32}, \frac{1}{128}, \dots$$

$$\mathbf{2} b_n =$$

$$-1, 4, -9, 16, -25, \dots$$

$$-1, 5, 11, 17, 23, \dots$$

$$a_n = 2 \cdot \left(\frac{1}{4}\right)^{n-1}$$

$$2, \frac{1}{2}, \frac{1}{8}, \frac{1}{32}, \frac{1}{128}, \dots$$

2
$$b_n =$$

$$-1, 4, -9, 16, -25, \dots$$

$$-1, 5, 11, 17, 23, \dots$$

$$a_n = 2 \cdot \left(\frac{1}{4}\right)^{n-1}$$

$$2, \frac{1}{2}, \frac{1}{8}, \frac{1}{32}, \frac{1}{128}, \dots$$

2
$$b_n = (-1)^n n^2$$

$$-1, 4, -9, 16, -25, \dots$$

$$-1, 5, 11, 17, 23, \dots$$

$$a_n = 2 \cdot \left(\frac{1}{4}\right)^{n-1}$$

$$2, \frac{1}{2}, \frac{1}{8}, \frac{1}{32}, \frac{1}{128}, \dots$$

2
$$b_n = (-1)^n n^2$$

$$-1, 4, -9, 16, -25, \dots$$

3
$$c_n =$$

$$-1, 5, 11, 17, 23, \dots$$

$$a_n = 2 \cdot \left(\frac{1}{4}\right)^{n-1}$$

$$2,\frac{1}{2},\frac{1}{8},\frac{1}{32},\frac{1}{128},\dots$$

2
$$b_n = (-1)^n n^2$$

$$-1, 4, -9, 16, -25, \dots$$

3
$$c_n = -1 + 6(n-1)$$

$$-1, 5, 11, 17, 23, \dots$$

Definition (Arithmetic sequence)

An arithmetic sequence is one in which successive terms differ by a constant number. This constant is called the difference of the arithmetic sequence.

Example (Which are arithmetic?)

```
1, 2, 3, 4, 5, ... is arithmetic with difference 1.
```

23, 16, 9, 2,
$$-5$$
, ... is arithmetic with difference -7 .

$$(9-8=1 \text{ but } 12-9=3.)$$

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,				
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$				
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,				
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$				
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_		
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$				
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_		
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$				
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$				
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$				
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$				
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$				
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes			
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes			
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3		
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3		
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u> 6	
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u>	
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u> 6	$\frac{1}{6} + \frac{1}{3}(n-1)$
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u> 6	$\frac{1}{6} + \frac{1}{3}(n-1)$
2, 2, 2, 2,				

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u> 6	$\frac{1}{6} + \frac{1}{3}(n-1)$
2, 2, 2, 2,	yes			

Sequence	Arithmetic?	Difference	First term	<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u>	$\frac{1}{6} + \frac{1}{3}(n-1)$
2, 2, 2, 2,	yes			

Sequence	Arithmetic?	Difference First term		<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u> 6	$\frac{1}{6} + \frac{1}{3}(n-1)$
2, 2, 2, 2,	yes	0		

Sequence	Arithmetic?	Difference First term		<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u> 6	$\frac{1}{6} + \frac{1}{3}(n-1)$
2, 2, 2, 2,	yes	0		

Sequence	Arithmetic?	Difference	Difference First term	
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u> 6	$\frac{1}{6} + \frac{1}{3}(n-1)$
2, 2, 2, 2,	yes	0	2	

Sequence	Arithmetic?	Difference First term		<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u> 6	$\frac{1}{6} + \frac{1}{3}(n-1)$
2, 2, 2, 2,	yes	0	2	

Sequence	Arithmetic?	Difference First term		<i>n</i> th term
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u> 6	$\frac{1}{6} + \frac{1}{3}(n-1)$
2, 2, 2, 2,	yes	0	2	2

Example (Which are arithmetic?)							
Sequence	Arithmetic?	Difference	First term	<i>n</i> th term			
1, -1, 1, -1,	no	_	1	$(-1)^{n+1}$			
$\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{3}{2}, \dots$	yes	<u>1</u> 3	<u>1</u> 6	$\frac{1}{6} + \frac{1}{3}(n-1)$			
2, 2, 2, 2,	yes	0	2	2+0(n-1)			

If an arithmetic sequence has difference d, then the nth term has formula

$$a_n=a_1+d(n-1),$$

where a_1 is the first term.

Math 141 Lecture 10 Spring 2015

Definition (Geometric sequence)

A geometric sequence is one in which each term is obtained by multiplying the previous one by the same constant. This constant is called the ratio of the geometric sequence.

Example (Which are geometric?)

2, 4, 8, 16, 32, ... is geometric with ratio 2.
1, -3, 9, -27, 81, ... is geometric with ratio -3.
-42, -14, -21, 31, -22, ... is not geometric.

$$(\frac{-14}{42} = \frac{1}{2} \text{ but } \frac{-21}{14} = \frac{3}{2}.)$$

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$					
$7, 3, -1, -5, \dots$					
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$					
$7,3,-1,-5,\dots$					
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_			
7, 3, -1, -5,					
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_			
7, 3, -1, -5,					
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3		
$7, 3, -1, -5, \dots$					
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3		
$7, 3, -1, -5, \dots$					
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u>	<u>2</u> 3	
7, 3, -1, -5,					
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	
7, 3, -1, -5,					
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	2 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7,3,-1,-5,\dots$					
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$					
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
7, 3, -1, -5,	arithmetic		_		
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
7, 3, -1, -5,	arithmetic		_		
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4			
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
7, 3, -1, -5,	arithmetic	-4	_		
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u>	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
7, 3, -1, -5,	arithmetic	-4	_	7	
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4	_	7	7-4(n-1)
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4	_	7	7-4(n-1)
4, 4, 4, 4,					
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both				
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both				
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0			
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0			
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u>	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1		
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1		
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
7, 3, -1, -5,	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
7, 3, -1, -5,	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$					
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric				
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_			
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$		
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
7, 3, -1, -5,	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$		
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$	π	
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$	π	
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u>	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$	π	$\pi(-\pi)^{n-1}$
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$	π	$\pi(-\pi)^{n-1}$
1, 1, 2, 2, 3, 3,					

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
7, 3, -1, -5,	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$	π	$\pi(-\pi)^{n-1}$
1, 1, 2, 2, 3, 3,	neither	_			

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u>	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$	π	$\pi(-\pi)^{n-1}$
1, 1, 2, 2, 3, 3,	neither	_	_		

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$	π	$\pi(-\pi)^{n-1}$
1, 1, 2, 2, 3, 3,	neither	_	_	1	

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
$7, 3, -1, -5, \dots$	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$	π	$\pi(-\pi)^{n-1}$
1, 1, 2, 2, 3, 3,	neither	_	_	1	

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a _n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n$
7, 3, -1, -5,	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	4
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$	π	$\pi(-\pi)^{n-1}$
1, 1, 2, 2, 3, 3,	neither	_	_	1	$\lceil \frac{n}{2} \rceil$

Example (Arithmetic and	geometric)
-----------	----------------	------------

	Arithmetic/				
Sequence	geometric	Diff.	Ratio	a ₁	a_n
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	geometric	_	<u>2</u> 3	<u>2</u> 3	$\left(\frac{2}{3}\right)^n = \frac{2}{3} \left(\frac{2}{3}\right)^{n-1}$
7, 3, -1, -5,	arithmetic	-4		7	7-4(n-1)
4, 4, 4, 4,	both	0	1	4	$4=4(1)^{n-1}$
$\pi, -\pi^2, \pi^3, -\pi^4, \dots$	geometric	_	$-\pi$	π	$\pi(-\pi)^{n-1}$
1, 1, 2, 2, 3, 3,	neither	-	_	1	$\lceil \frac{n}{2} \rceil$

If a geometric sequence has ratio r, then the nth term has formula

$$a_n=a_1r^{n-1}.$$

where a_1 is the first term.

Math 141 Lecture 10 Spring 2015

Sequences

Definition (Sequence)

A sequence is a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

The number a_1 is called the first term, a_2 is called the second term, and in general a_n is the *n*th term.

We will always deal with infinite sequences, in which each term a_n has a successor a_{n+1} .

Notation:

The sequence $\{a_1, a_2, a_3, \ldots\}$ can also be written

$$\{a_n\}$$
 or $\{a_n\}_{n=1}^{\infty}$

Math 141 Lecture 10 Spring 2015

is an example of a sequence.

$$1, 2, 3, 4, 5, \dots$$

is an example of a sequence.

Definition (Sequence, Terms)

A sequence is a list of numbers written in a definite order. The individual numbers in the sequence are called the terms of the sequence.

$$1, 2, 3, 4, 5, \dots$$

is an example of a sequence.

Definition (Sequence, Terms)

A sequence is a list of numbers written in a definite order. The individual numbers in the sequence are called the terms of the sequence.

Example (More sequences)

$$1,$$
 $2,$ $4,$ $8,$ $16,$ $32,$... is a sequence. $-1,$ $1,$ $-1,$ $1,$ $-1,$ $1,$... is a sequence.

Math 141 Lecture 10 Spring 2015

$$1, 2, 3, 4, 5, \dots$$

is an example of a sequence.

Definition (Sequence, Terms)

A sequence is a list of numbers written in a definite order. The individual numbers in the sequence are called the terms of the sequence.

Example (More sequences)

$$-1,$$
 $1,$ $-1,$ $1,$ $-1,$ $1,$ \dots is a sequence

$$1, -1, 1, -1, 1, -1, \dots$$
 is a different sequence.

Math 141 Lecture 10 Spring 2015 Some sequences can by defined by giving a formula for the nth term a_n . This example expresses four different sequences in three different ways: first, by using the preceding notation; second, by giving a formula; and third, by writing out the terms of the sequence.

Example

$$\begin{cases}
\frac{n}{n+1}
\end{cases} \qquad a_n = \frac{n}{n+1} \qquad \begin{cases}
\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots \end{cases}$$

$$\begin{cases}
\frac{(-1)^n (n+1)}{3^n}
\end{cases} \qquad a_n = \frac{(-1)^n (n+1)}{3^n} \qquad \begin{cases}
\frac{-2}{3}, \frac{3}{9}, \frac{-4}{27}, \frac{5}{81}, \dots \end{cases}$$

$$\{\sqrt{n-3}\}_{n=3}^{\infty} \quad a_n = \sqrt{n-3}, n \ge 3 \quad \left\{0, 1, \sqrt{2}, \sqrt{3}, \dots\right\}$$

$$\{\cos \frac{n\pi}{6}\}_{n=0}^{\infty} \quad a_n = \cos \frac{n\pi}{6}, n \ge 0 \quad \left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \dots\right\}$$

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \ldots\right\}$$

$$\left\{0,\frac{1}{4},-\frac{2}{8},\frac{3}{16},-\frac{4}{32},\frac{5}{64},\ldots\right\}$$

$$a_1=0,\ a_2=\frac{1}{4},\ a_3=\,-\,\frac{2}{8},\ a_4=\frac{3}{16},\ a_5=\,-\,\frac{4}{32},\ a_6=\frac{5}{64},$$

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

• The numerators start at 0 and go up by one with each term.

Math 141 Lecture 10 Spring 2015

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.

$$n-1$$

Math 141 Lecture 10 Spring 2015

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.
- The nth term has denominator

$$n-1$$

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.
- The nth term has denominator

$$n-1$$

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.
- The nth term has denominator

$$n-1$$

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.
- The nth term has denominator

$$n-1$$

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.
- The nth term has denominator

$$n-1$$

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.
- The nth term has denominator

$$n-1$$

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.
- The *n*th term has denominator 2^n .

$$\frac{n-1}{2^n}$$

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.
- The *n*th term has denominator 2^n .
- The signs of the terms alternate between positive and negative.

$$\frac{n-1}{2^n}$$

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.
- The nth term has denominator 2ⁿ.
- The signs of the terms alternate between positive and negative.
- We take this into account by multiplying by $(-1)^n$.

$$(-1)^n \frac{n-1}{2^n}$$

Find a formula for the general term a_n of the sequence

$$\left\{0, \frac{1}{4}, -\frac{2}{8}, \frac{3}{16}, -\frac{4}{32}, \frac{5}{64}, \dots\right\}$$

$$a_1 = 0, \ a_2 = \frac{1}{4}, \ a_3 = -\frac{2}{8}, \ a_4 = \frac{3}{16}, \ a_5 = -\frac{4}{32}, \ a_6 = \frac{5}{64},$$

- The numerators start at 0 and go up by one with each term.
- The *n*th term has numerator n-1.
- The denominators start at 2 and double with each term.
- The *n*th term has denominator 2^n .
- The signs of the terms alternate between positive and negative.
- We take this into account by multiplying by $(-1)^n$.

$$a_n=(-1)^n\frac{n-1}{2^n}$$

Example (Sequences without a simple formula)

① Consider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.

Example (Sequences without a simple formula)

- Consider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...

Example (Sequences without a simple formula)

- ① Consider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- **3** The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n > 3$

Example (Sequences without a simple formula)

- ① Consider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- **3** The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

The first few terms are

1, 1,

Example (Sequences without a simple formula)

- Oconsider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- **3** The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

The first few terms are

1, 1, 2,

Example (Sequences without a simple formula)

- Oconsider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- **3** The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

The first few terms are

1, 1, 2,

Example (Sequences without a simple formula)

- Oconsider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- **3** The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

Example (Sequences without a simple formula)

- Oconsider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- **3** The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

Example (Sequences without a simple formula)

- Oconsider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- 3 The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

Example (Sequences without a simple formula)

- Oconsider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- 3 The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

Example (Sequences without a simple formula)

- Oconsider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- **3** The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

Example (Sequences without a simple formula)

- Oconsider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- 3 The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

Example (Sequences without a simple formula)

- Oconsider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- **3** The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

Example (Sequences without a simple formula)

- ① Consider the sequence (p_n) , where p_n is the population of the world as of January 1 of year n. This has no simple formula.
- 2 Let a_n be the n^{th} digit of the number e. The first few terms of (a_n) : 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, ...
- **3** The Fibonacci sequence (f_n) is defined recursively by

$$f_1 = 1$$
 $f_2 = 1$ $f_n = f_{n-1} + f_{n-2}, n \ge 3$

The first few terms are

The Fibonacci sequence can be described by a formula, but not a simple one $\left(a_n = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n \right) \right)$.

- The sequence $\left\{\frac{n}{n+1}\right\}$ can be plotted on a number line or using Cartesian coordinates.
- From the pictures, the terms in the sequence appear to approach
 1 as n gets larger.

- The sequence $\left\{\frac{n}{n+1}\right\}$ can be plotted on a number line or using Cartesian coordinates.
- From the pictures, the terms in the sequence appear to approach
 1 as n gets larger.

•
$$1 - \frac{n}{n+1} =$$

- The sequence $\left\{\frac{n}{n+1}\right\}$ can be plotted on a number line or using Cartesian coordinates.
- From the pictures, the terms in the sequence appear to approach
 1 as n gets larger.

$$1 - \frac{n}{n+1} = \frac{1}{n+1}.$$

- The sequence $\left\{\frac{n}{n+1}\right\}$ can be plotted on a number line or using Cartesian coordinates.
- From the pictures, the terms in the sequence appear to approach
 1 as n gets larger.
- $\bullet 1 \frac{n}{n+1} = \frac{1}{n+1}.$
- This can be made arbitrarily small by choosing *n* large enough.

- The sequence $\left\{\frac{n}{n+1}\right\}$ can be plotted on a number line or using Cartesian coordinates.
- From the pictures, the terms in the sequence appear to approach
 1 as n gets larger.
- $1 \frac{n}{n+1} = \frac{1}{n+1}.$
- This can be made arbitrarily small by choosing *n* large enough.
- We express this by writing $\lim_{n\to\infty} \frac{n}{n+1} = 1$.

Definition (Limit of a Sequence)

A sequence $\{a_n\}$ has the limit L, and we write

$$\lim_{n\to\infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

if we can make a_n as close to L as we like by taking n large enough.

Definition (Convergent)

A sequence that has a limit is called convergent. A sequence that has no limit is called divergent.

If you compare the definition of the limit of a sequence with the definition of the infinite limit of a function, you'll see that the only difference between

$$\lim_{n\to\infty} a_n = L$$
 and $\lim_{x\to\infty} f(x) = L$

is that *n* is required to be an integer.

If you compare the definition of the limit of a sequence with the definition of the infinite limit of a function, you'll see that the only difference between

$$\lim_{n\to\infty} a_n = L$$
 and $\lim_{x\to\infty} f(x) = L$

is that *n* is required to be an integer.

If you compare the definition of the limit of a sequence with the definition of the infinite limit of a function, you'll see that the only difference between

$$\lim_{n\to\infty} a_n = L$$
 and $\lim_{x\to\infty} f(x) = L$

is that *n* is required to be an integer.

Theorem

If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ for all integers n, then $\lim_{n\to\infty} a_n = L$.

Find
$$\lim_{n\to\infty}\frac{n}{n+1}$$
.

Find $\lim_{n\to\infty} \frac{n}{n+1}$.

$$\lim_{n\to\infty}\frac{n}{n+1}$$

Find $\lim_{n\to\infty} \frac{n}{n+1}$.

$$\lim_{n\to\infty}\frac{n}{n+1}\cdot\frac{\frac{1}{n}}{\frac{1}{n}}$$

Find $\lim_{n\to\infty} \frac{n}{n+1}$.

$$\lim_{n\to\infty}\frac{n}{n+1}\cdot\frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n\to\infty}\frac{1}{1+\frac{1}{n}}$$

Find $\lim_{n\to\infty} \frac{n}{n+1}$.

$$\lim_{n \to \infty} \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}}$$

Find $\lim_{n\to\infty} \frac{n}{n+1}$.

$$\lim_{n \to \infty} \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}}$$

$$= \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}}$$

$$= \frac{1}{1+0}$$

Find $\lim_{n\to\infty} \frac{n}{n+1}$.

$$\lim_{n \to \infty} \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}}$$

$$= \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}}$$

$$= \frac{1}{1+0}$$

$$= 1$$

Just like for functions, there is a notion of sequences tending to infinity: If a_n grows large as n becomes large, we write $\lim_{n\to\infty}a_n=\infty$.

Just like for functions, there is a notion of sequences tending to infinity: If a_n grows large as n becomes large, we write $\lim_{n\to\infty} a_n = \infty$. You can probably guess what $\lim_{n\to\infty} a_n = -\infty$ means.

The Limit Laws from section 2.3 also hold for sequences: If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then

- $\lim_{n\to\infty}(a_n-b_n)=\lim_{n\to\infty}a_n-\lim_{n\to\infty}b_n$
- $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$
- $\lim_{n\to\infty}(a_nb_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$

The Squeeze Theorem also works for sequences:

Theorem (The Squeeze Theorem for Sequences)

If $a_n \le b_n \le c_n$ for $n \ge n_0$ and $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$, then $\lim_{n \to \infty} b_n = L$.

The Squeeze Theorem also works for sequences:

Theorem (The Squeeze Theorem for Sequences)

If
$$a_n \le b_n \le c_n$$
 for $n \ge n_0$ and $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$, then $\lim_{n \to \infty} b_n = L$.

Corollary

If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.

Calculate $\lim_{n\to\infty} \frac{\ln n}{n}$.

• Both $\ln n$ and n go to ∞ as n gets bigger.

Calculate $\lim_{n\to\infty} \frac{\ln n}{n}$.

- Both $\ln n$ and n go to ∞ as n gets bigger.
- We can't use L'Hospital's Rule directly, because L'Hospital's Rule is for functions.

- Both $\ln n$ and n go to ∞ as n gets bigger.
- We can't use L'Hospital's Rule directly, because L'Hospital's Rule is for functions.
- Define $f(x) = \frac{\ln x}{x}$. Now use L'Hospital's Rule:

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} ---$$

- Both $\ln n$ and n go to ∞ as n gets bigger.
- We can't use L'Hospital's Rule directly, because L'Hospital's Rule is for functions.
- Define $f(x) = \frac{\ln x}{x}$. Now use L'Hospital's Rule:

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} ---$$

- Both $\ln n$ and n go to ∞ as n gets bigger.
- We can't use L'Hospital's Rule directly, because L'Hospital's Rule is for functions.
- Define $f(x) = \frac{\ln x}{x}$. Now use L'Hospital's Rule:

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{x}$$

- Both $\ln n$ and n go to ∞ as n gets bigger.
- We can't use L'Hospital's Rule directly, because L'Hospital's Rule is for functions.
- Define $f(x) = \frac{\ln x}{x}$. Now use L'Hospital's Rule:

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{x}$$

- Both $\ln n$ and n go to ∞ as n gets bigger.
- We can't use L'Hospital's Rule directly, because L'Hospital's Rule is for functions.
- Define $f(x) = \frac{\ln x}{x}$. Now use L'Hospital's Rule:

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1}$$

- Both $\ln n$ and n go to ∞ as n gets bigger.
- We can't use L'Hospital's Rule directly, because L'Hospital's Rule is for functions.
- Define $f(x) = \frac{\ln x}{x}$. Now use L'Hospital's Rule:

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0$$

Calculate $\lim_{n\to\infty} \frac{\ln n}{n}$.

- Both $\ln n$ and n go to ∞ as n gets bigger.
- We can't use L'Hospital's Rule directly, because L'Hospital's Rule is for functions.
- Define $f(x) = \frac{\ln x}{x}$. Now use L'Hospital's Rule:

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0$$

Therefore

$$\lim_{n\to\infty}\frac{\ln n}{n}=\lim_{x\to\infty}f(x)=0$$

Is the sequence $a_n = (-1)^n$ convergent or divergent?

Is the sequence $a_n = (-1)^n$ convergent or divergent?

The terms oscillate between
 1 and 1 infinitely many times.

Is the sequence $a_n = (-1)^n$ convergent or divergent?

- The terms oscillate between
 1 and 1 infinitely many times.
- Therefore the sequence doesn't approach any number.

Is the sequence $a_n = (-1)^n$ convergent or divergent?

- The terms oscillate between
 1 and 1 infinitely many times.
- Therefore the sequence doesn't approach any number.
- $\{a_n\}$ is divergent.

Is $a_n = \frac{(-1)^n}{n}$ convergent or divergent?

Is $a_n = \frac{(-1)^n}{n}$ convergent or divergent?

$$\lim_{n\to\infty}\left|\frac{(-1)^n}{n}\right|=$$

Is $a_n = \frac{(-1)^n}{n}$ convergent or divergent?

$$\lim_{n\to\infty}\left|\frac{(-1)^n}{n}\right|=\lim_{n\to\infty}\frac{1}{n}=$$

Is $a_n = \frac{(-1)^n}{n}$ convergent or divergent?

$$\lim_{n\to\infty}\left|\frac{(-1)^n}{n}\right|=\lim_{n\to\infty}\frac{1}{n}=0$$

Math 141 Lecture 10 Spring 2015

Is $a_n = \frac{(-1)^n}{n}$ convergent or divergent?

$$\lim_{n\to\infty}\left|\frac{(-1)^n}{n}\right|=\lim_{n\to\infty}\frac{1}{n}=0$$

Therefore, by the corollary to the Squeeze Theorem,

$$\lim_{n\to\infty}\frac{(-1)^n}{n}=0$$

Is $a_n = \frac{(-1)^n}{n}$ convergent or divergent?

$$\lim_{n\to\infty}\left|\frac{(-1)^n}{n}\right|=\lim_{n\to\infty}\frac{1}{n}=0$$

Therefore, by the corollary to the Squeeze Theorem,

$$\lim_{n\to\infty}\frac{(-1)^n}{n}=0$$

Therefore $\left\{\frac{(-1)^n}{n}\right\}$ is convergent.

Math 141 Lecture 10 Spring 2015

Theorem

If $\lim_{n\to\infty} a_n = L$ and the function f is continuous at L, then

$$\lim_{n\to\infty}f(a_n)=f(L)$$

Find $\lim_{n\to\infty}\sin(\pi/n)$.

Find $\lim_{n\to\infty}\cos(\pi/n)$.

 $\lim_{n\to\infty}\sin(\pi/n)$

Find $\lim_{n\to\infty} \sin(\pi/n)$. Sine is continuous at 0. Find $\lim_{n\to\infty}\cos(\pi/n)$.

 $\lim_{n\to\infty} \sin(\pi/n)$ $= \sin\left(\lim_{n\to\infty} (\pi/n)\right)$

Find $\lim_{n\to\infty}\sin(\pi/n)$.

Find $\lim_{n\to\infty}\cos(\pi/n)$.

Sine is continuous at 0.

$$\lim_{n \to \infty} \sin(\pi/n)$$

$$= \sin\left(\lim_{n \to \infty} (\pi/n)\right)$$

$$= \sin$$

Find $\lim_{n\to\infty} \sin(\pi/n)$. Sine is continuous at 0. Find $\lim_{n\to\infty}\cos(\pi/n)$.

$$\lim_{n \to \infty} \sin(\pi/n)$$

$$= \sin\left(\lim_{n \to \infty} (\pi/n)\right)$$

$$= \sin 0$$

Find $\lim_{n\to\infty} \sin(\pi/n)$. Sine is continuous at 0. Find $\lim_{n\to\infty}\cos(\pi/n)$.

 $\lim_{n \to \infty} \sin(\pi/n)$ $= \sin\left(\lim_{n \to \infty} (\pi/n)\right)$ $= \sin 0$ = 0

Find $\lim_{n\to\infty} \sin(\pi/n)$. Sine is continuous at 0.

$$\lim_{n \to \infty} \sin(\pi/n)$$

$$= \sin\left(\lim_{n \to \infty} (\pi/n)\right)$$

$$= \sin 0$$

$$= 0$$

Find $\lim_{n\to\infty}\cos(\pi/n)$. Cosine is continuous at 0.

$$\lim_{n \to \infty} \cos(\pi/n)$$

$$= \cos\left(\lim_{n \to \infty} (\pi/n)\right)$$

Find $\lim_{n\to\infty} \sin(\pi/n)$. Sine is continuous at 0.

$$\lim_{n \to \infty} \sin(\pi/n)$$

$$= \sin\left(\lim_{n \to \infty} (\pi/n)\right)$$

$$= \sin 0$$

$$= 0$$

Find $\lim_{n\to\infty}\cos(\pi/n)$. Cosine is continuous at 0.

$$\lim_{n \to \infty} \cos(\pi/n)$$

$$= \cos\left(\lim_{n \to \infty} (\pi/n)\right)$$

$$= \cos$$

Find $\lim_{n\to\infty} \sin(\pi/n)$. Sine is continuous at 0.

$$\lim_{n \to \infty} \sin(\pi/n)$$

$$= \sin\left(\lim_{n \to \infty} (\pi/n)\right)$$

$$= \sin 0$$

$$= 0$$

Find $\lim_{n\to\infty}\cos(\pi/n)$. Cosine is continuous at 0.

$$\lim_{n \to \infty} \cos(\pi/n)$$

$$= \cos\left(\lim_{n \to \infty} (\pi/n)\right)$$

$$= \cos 0$$

Find $\lim_{n\to\infty} \sin(\pi/n)$. Sine is continuous at 0.

 $\lim_{n \to \infty} \sin(\pi/n)$ $= \sin\left(\lim_{n \to \infty} (\pi/n)\right)$ $= \sin 0$ = 0

Find $\lim_{n\to\infty}\cos(\pi/n)$. Cosine is continuous at 0. $\lim_{n\to\infty}\cos(\pi/n)$

$$\lim_{n \to \infty} \cos(\pi/n)$$

$$= \cos\left(\lim_{n \to \infty} (\pi/n)\right)$$

$$= \cos 0$$

$$= 1$$

Discuss the convergence of the sequence $a_n = \frac{n!}{n^n}$, where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

• Both the top and the bottom go to infinity as $n \to \infty$.

Discuss the convergence of the sequence $a_n = \frac{n!}{n^n}$, where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

- Both the top and the bottom go to infinity as $n \to \infty$.
- We can't use L'Hospital's Rule, because we have no function corresponding to n! (x! isn't defined if x isn't an integer).

Math 141 Lecture 10 Spring 2015

- Both the top and the bottom go to infinity as $n \to \infty$.
- We can't use L'Hospital's Rule, because we have no function corresponding to n! (x! isn't defined if x isn't an integer).

$$a_1 = 1$$
 $a_2 = \frac{1 \cdot 2}{2 \cdot 2}$ $a_3 = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$

- Both the top and the bottom go to infinity as $n \to \infty$.
- We can't use L'Hospital's Rule, because we have no function corresponding to n! (x! isn't defined if x isn't an integer).

$$a_1 = 1$$
 $a_2 = \frac{1 \cdot 2}{2 \cdot 2}$ $a_3 = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$

$$a_n = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot n \cdot n \cdot \dots \cdot n}$$

- Both the top and the bottom go to infinity as $n \to \infty$.
- We can't use L'Hospital's Rule, because we have no function corresponding to n! (x! isn't defined if x isn't an integer).

$$a_{1} = 1 a_{2} = \frac{1 \cdot 2}{2 \cdot 2} a_{3} = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$$

$$a_{n} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot n \cdot \dots \cdot n}$$

$$= \frac{1}{n} \left(\frac{2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n} \right)$$

Discuss the convergence of the sequence $a_n = \frac{n!}{n^n}$, where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

- Both the top and the bottom go to infinity as $n \to \infty$.
- We can't use L'Hospital's Rule, because we have no function corresponding to n! (x! isn't defined if x isn't an integer).

$$a_{1} = 1 a_{2} = \frac{1 \cdot 2}{2 \cdot 2} a_{3} = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$$

$$a_{n} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot n \cdot \dots \cdot n}$$

$$= \frac{1}{n} \left(\frac{2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n} \right)$$

• $\frac{2}{n} \leq 1$,

- Both the top and the bottom go to infinity as $n \to \infty$.
- We can't use L'Hospital's Rule, because we have no function corresponding to n! (x! isn't defined if x isn't an integer).

$$a_{1} = 1 a_{2} = \frac{1 \cdot 2}{2 \cdot 2} a_{3} = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$$

$$a_{n} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot n \cdot \dots \cdot n}$$

$$= \frac{1}{n} \left(\frac{2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n} \right)$$

•
$$\frac{2}{n} \leq 1, \frac{3}{n} \leq 1,$$

- Both the top and the bottom go to infinity as $n \to \infty$.
- We can't use L'Hospital's Rule, because we have no function corresponding to n! (x! isn't defined if x isn't an integer).

$$a_{1} = 1 a_{2} = \frac{1 \cdot 2}{2 \cdot 2} a_{3} = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$$

$$a_{n} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot n \cdot \dots \cdot n}$$

$$= \frac{1}{n} \left(\frac{2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n} \right)$$

•
$$\frac{2}{n} \le 1, \frac{3}{n} \le 1, \frac{4}{n} \le 1, \dots$$

- Both the top and the bottom go to infinity as $n \to \infty$.
- We can't use L'Hospital's Rule, because we have no function corresponding to n! (x! isn't defined if x isn't an integer).

$$a_{1} = 1 a_{2} = \frac{1 \cdot 2}{2 \cdot 2} a_{3} = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$$

$$a_{n} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot n \cdot \dots \cdot n}$$

$$= \frac{1}{n} \left(\frac{2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot n \cdot \dots \cdot n} \right)$$

•
$$\frac{2}{n} \le 1, \frac{3}{n} \le 1, \frac{4}{n} \le 1, \dots, \frac{n}{n} \le 1.$$

Discuss the convergence of the sequence $a_n = \frac{n!}{n^n}$, where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

- Both the top and the bottom go to infinity as $n \to \infty$.
- We can't use L'Hospital's Rule, because we have no function corresponding to n! (x! isn't defined if x isn't an integer).

$$a_{1} = 1 a_{2} = \frac{1 \cdot 2}{2 \cdot 2} a_{3} = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$$

$$a_{n} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot n \cdot \dots \cdot n}$$

$$= \frac{1}{n} \left(\frac{2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n} \right)$$

• $\frac{2}{n} \le 1$, $\frac{3}{n} \le 1$, $\frac{4}{n} \le 1$,... $\frac{n}{n} \le 1$. Therefore $0 \le a_n \le \frac{1}{n}$.

Discuss the convergence of the sequence $a_n = \frac{n!}{n^n}$, where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

- Both the top and the bottom go to infinity as $n \to \infty$.
- We can't use L'Hospital's Rule, because we have no function corresponding to n! (x! isn't defined if x isn't an integer).

$$a_1 = 1$$
 $a_2 = \frac{1 \cdot 2}{2 \cdot 2}$ $a_3 = \frac{1 \cdot 2 \cdot 3}{3 \cdot 3 \cdot 3}$

$$a_n = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot n \cdot \dots \cdot n}$$
$$= \frac{1}{n} \left(\frac{2 \cdot 3 \cdot 4 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n} \right)$$

- $\frac{2}{n} \le 1, \frac{3}{n} \le 1, \frac{4}{n} \le 1, \dots, \frac{n}{n} \le 1$. Therefore $0 \le a_n \le \frac{1}{n}$.
- Since $\frac{1}{n} \to 0$ as $n \to \infty$, by the Squeeze Theorem $a_n \to 0$ as $n \to \infty$.

Math 141 Lecture 10 Spring 2015

For what values of r is the sequence $\{r^n\}$ convergent?

Math 141 Lecture 10 Spring 2015

For what values of r is the sequence $\{r^n\}$ convergent?

$$\lim_{x \to \infty} r^x = \begin{cases} & \text{if} \quad r > 1\\ & \text{if} \quad 0 < r < 1 \end{cases}$$

For what values of r is the sequence $\{r^n\}$ convergent?

$$\lim_{x \to \infty} r^x = \begin{cases} & \text{if} \quad r > 1 \\ & \text{if} \quad 0 < r < 1 \end{cases}$$

For what values of r is the sequence $\{r^n\}$ convergent?

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1 \\ & \text{if} \quad 0 < r < 1 \end{cases}$$

For what values of r is the sequence $\{r^n\}$ convergent?

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1 \\ & \text{if} \quad 0 < r < 1 \end{cases}$$

For what values of r is the sequence $\{r^n\}$ convergent?

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1 \\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

$$\lim_{n \to \infty} r^n = \begin{cases} & \text{if } r > 1 \\ & \text{if } 0 < r < 1 \end{cases}$$

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if} \quad r > 1\\ & \text{if} \quad 0 < r < 1 \end{cases}$$

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if} \quad r > 1\\ & \text{if} \quad 0 < r < 1 \end{cases}$$

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Therefore

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Also, $\lim_{n\to\infty} 1^n =$ and $\lim_{n\to\infty} 0^n =$.

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Therefore

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Also, $\lim_{n\to\infty} 1^n = 1$ and $\lim_{n\to\infty} 0^n = ...$

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Therefore

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Also, $\lim_{n\to\infty} 1^n = 1$ and $\lim_{n\to\infty} 0^n = ...$

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Therefore

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Also, $\lim_{n\to\infty} 1^n = 1$ and $\lim_{n\to\infty} 0^n = 0$.

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Therefore

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Also, $\lim_{n\to\infty} 1^n = 1$ and $\lim_{n\to\infty} 0^n = 0$.

If
$$-1 < r < 0$$
, then $0 < |r| < 1$, and

$$\lim_{n\to\infty}|r^n|=\lim_{n\to\infty}|r|^n=0$$

Therefore $\lim_{n\to\infty} r^n = 0$.

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Therefore

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Also, $\lim_{n\to\infty} 1^n = 1$ and $\lim_{n\to\infty} 0^n = 0$.

If
$$-1 < r < 0$$
, then $0 < |r| < 1$, and
$$\lim_{n \to \infty} |r^n| = \lim_{n \to \infty} |r|^n = 0$$

Therefore $\lim_{n\to\infty} r^n = 0$.

If $r \le -1$, then r^n diverges.

For what values of r is the sequence $\{r^n\}$ convergent?

Consider the exponential function $y = r^x$.

$$\lim_{x \to \infty} r^x = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Therefore

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if} \quad r > 1\\ 0 & \text{if} \quad 0 < r < 1 \end{cases}$$

Also, $\lim_{n\to\infty} 1^n = 1$ and $\lim_{n\to\infty} 0^n = 0$.

If
$$-1 < r < 0$$
, then $0 < |r| < 1$, and
$$\lim_{n \to \infty} |r^n| = \lim_{n \to \infty} |r|^n = 0$$

Therefore $\lim_{n\to\infty} r^n = 0$.

If $r \le -1$, then r^n diverges. In particular, $(-1)^n$ diverges.

This theorem summarizes the results of the previous example.

Theorem (Convergence of Geometric Sequences)

The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent otherwise.

$$\lim_{n \to \infty} r^n = \left\{ \begin{array}{ll} 0 & \text{if} & -1 < r < 1 \\ 1 & \text{if} & r = 1 \end{array} \right.$$

Definition (Increasing and Decreasing)

A sequence $\{a_n\}$ is called increasing if $a_n < a_{n+1}$ for all $n \ge 1$. In other words, $\{a_n\}$ is increasing if $a_1 < a_2 < a_3 < \cdots$.

A sequence $\{a_n\}$ is called decreasing if $a_n > a_{n+1}$ for all $n \ge 1$. In other words, $\{a_n\}$ is decreasing if $a_1 > a_2 > a_3 > \cdots$.

A sequence is called monotonic if it is either increasing or decreasing.

The sequence $\left\{\frac{1}{2n+1}\right\}$ is decreasing because

$$a_n = \frac{1}{2n+1}$$
 $a_{n+1} = \frac{1}{2(n+1)+1} = \frac{1}{2n+3}$

and

$$\frac{1}{2n+1} > \frac{1}{2n+3}$$

because the denominator of the latter is bigger.

Definition (Bounded Sequence)

A sequence $\{a_n\}$ is called bounded above if there exists a number M such that

$$a_n < M$$
 for all $n \ge 1$.

It is called bounded below if there exists a number M such that

$$a_n > M$$
 for all $n \ge 1$.

A bounded sequence is a sequence that is bounded below and above.

Math 141 Lecture 10 Spring 2015

Theorem (Monotonic Sequence Theorem)

Every bounded, monotonic sequence is convergent.