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1 Derivative non-const exponent
Problem 1. Differentiate
L xm®. (212500 + 5805 g uya® omeun
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Problem 2. Differentiate.
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2 The number e as a limit
Problem 3. Compute the limit.
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Problem 4. Find the limit.
2 xT xr
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Problem 5. 1. A sum is held under a yearly compound 2. Decide, without using a calculator, which is more prof-
interest of 1%. Make an approximation by hand (no itable: earning a yearly compound interest of 2% for
calculators allowed) by what factor will have the money 150 years or earning yearly simple interest of 11% for
increased after 200 years. Can you do the computation 150 years?

in your head?
Solution. Each year, the sum increases by a factor of (1 + ﬁ). Therefore in 200 years the sum will have increased by

(0 ™)

)200

equals (1+ 1)" for n =100

As a rough estimate for e we can take e =~ 2.7, and so e? ~ 2.72 = 7.29. Our sum will have increased approximately 7.3
times. A calculator computation shows that

1 200
1+— | = 7.316018
( + 100) ’

so our “in the head” estimate is fairly accurate. Notice that the calculator computation is on its own an approximation -
it was carried using double floating point precision arithmetics, which does introduce some minimal errors. Such round off
errors, of course, are also present in modern banking transactions, so we do not need to adjust for those.

Solution. Simple interest of 11% per 150 years a profit of

0.11 %150 = 15 + 1.5 = 16.5,



or altogether 17.5-fold increase of our initial sum. A 2% compound interest for 150 years yields a

(1+2)™ = (1+4)")

~ e3

3

-fold increase of our sum. To establish which of the two options yields more money, we need to compare e* to 17.5 (without
using a calculator). In the solution ofwe established that e? ~ 7.3, s0 €? ~ €-7.3 ~ 2.7-7.3 = 2.74+2:0.3+0.7-7+0.7-0.3 =
14 +0.64+4.940.21 = 19.71 =~ 19.7. We can say that the compound interest results in approximately 19.7-fold increase of
the initial sum, so the compound interest is more profitable. A calculator computation shows that

9 \ 190
14+ — ~ 19.499603
( + 100)

Our error of approximately 0.2 was not optimal, yet fairly accurate for an “in the head” computation.

Problem 6. 1,000,000 servers are handling Internet users. Suppose we distribute the computation load as follows. The
computation load distributing program directs every new user to a server chosen at random (one server is allowed to process
more than one user at a time). Suppose one server has defective hardware and crashes. We are testing the system by
simulating X Internet users.

o What is the chance we catch the defective server using 1 simulated user?
o Without using a calculator, estimate the chance we fail to catch the defective server using 1,000,000 simulated users.

o Using a calculator, estimate the chance we fail to catch the defective server using 100,000 simulated users. Write an
expression using e which approximates this chance. Evaluate the latter with a calculator. Are the two numbers close?

Remark. While such a simple system architecture would not be practical, it is not to be immediately dismissed as terrible.
For example, if we need to handle 2 million users per second, our load distributing mechanism might not be fast enough to
keep track of each server’s load. On the other hand, an inexpensive modern pc will easily generate 2 million random numbers
per second.

3 Inverse trigonometry

Problem 7. Let x € (0,1). Express the following using x and v/1 — z2.

1. sin(arcsin(z)). 5. sin(2 arccos(x)).
@ csomsun 2% — 1 og omsun

2. sin(2 arcsin(z)). 6. sin(3 arccos(z)).
% — 1/\zg wemsup z¥ —1/}e +Z'i(fm17 EI 2:;17; {2msuD

3. sin(3arcsin(z)). 7. cos(2arcsin(x)).

TE + Ty — uomsu
g 2% — T iemsun

4. sin(arccos(x)). 8. cos(3arccos(z)).

z® — 1\ mamsuv zg — @Y omsUD

Solution. Let y = arcsinxz. Then siny = x, and we can draw a right triangle with opposite side length z and
hypotenuse length 1 to find the other trigonometric ratios of y.

V1—a2



Then cosy = v1 — 22/1 = /1 — 22. Now we use the double angle formula to find sin(2 arcsin z).

sin(2 arcsin z) = sin(2y)

= 2sinycosy

=2zv1 — 22

Solution. Use the result of Problem This also requires the addition formula for sine:

sin(A + B) = sin A cos B + sin B cos A,

and the double angle formula for cosine:

cos(2y) = cos? y — sin? y.

sin(3 arcsin ) = sin(3y)
= sin(2y +y)
= sin(2y) cosy + siny cos(2y) Use addition formula
= (2sinycosy) cosy + siny(cos? y — sin® y) Use double angle formulas

= 2siny cos? y + sinycos?y — sin® y

= 3sinycos?y —sin®y

= 3siny(1 —sin’y) —sin®y
= 3z(1—2?) — a3

= 3z — 423,

The solution is complete. A careful look at the solution above reveals a strategy useful for problems similar to this one.

1.

Identify the inverse trigonometric expression- arcsinz,arccosx,arctanx,.... In the present problem that was y =
arcsin .

The problem is therefore a trigonometric function of y.

Using trig identities and algebra, rewrite the problem as a trigonometric expression involving only the trig function
that transforms y to x. In the present problem we rewrote everything using siny.

Use the fact that sin(arcsinz) = z, cos(arccosx) = x, ..., etc. to simplify.

Solution. We use the same strategy outlined in the end of the solution of Problem Set y = arccosz and so
cos(y) = x. Therefore:

sin(3y) = sin(2y +y)
= sin(2y) cosy + siny cos(2y)
= 2sinycosycosy +siny(2cos?y — 1)
= 2sinycos?y +siny(2cos?y — 1)

[
8

. cosy
= 4dcos?y —1

siny(4cos®y — 1) use siny T2
= V1-—22(42% - 1)

Problem 8. FEzxpress as the following as an algebraic expression of x. In other words, “get rid” of the trigonometric and
inverse trigonometric expressions.

1.

2.

2 1
cos?(arctan x). - Cos(arcsin ) *

. 2 " 4 -1
— sin“(arccot ). * 7 sin(arccos ) *

T4+1
L emsup — upmsun



Solution. [8:2 We follow the strategy outlined in the end of the solution of Problem [7.3] We set y = arccotz. Then we
need to express —sin® y via cot y. That is a matter of algebra:

Problem 9. Rewrite as a rational function of t.

— sin?(arccot x)

important technique for integrating).

1. cos(2arctant).

2. sin (2arctant).

3. tan (2arctant).

4. cot (2arctant).

5. csc(2arctant).

6. sec (2arctant).

—sin?y
s 2
sin” y
sin y + cos? y
1
" sin2 y+cos2 y
sin? y

_1 + cot?
1 Y

1422

Sety = arccot x

use sin®y + cos?y = 1

Substitute back coty =«

7. cos (2arccot t).

Sj L ssomsuv
8.

z% ~spmsup
9.

AL
10.

(1= 1) & comeun
11.

(% +9) & womsun
12.

z;% iomsun

Solution. Set z = arctant, and so tan z = t. Then

cos(2arctant) =

cos(2z)

cos(2z2)

COS

2 —sin? 2z
cos? z + sin22z
(cos? z — sin® 2)

1

_ cos? z
(sin? z + cos? 2) o

_ 1 —tan?z

T 1+4tan?z

142

1422

sin (2 arccot t).

tan (2 arccot t).

cot (2 arccot t).

csc (2arccot t).

sec (2 arccot t).

use double angle formulas
and 1 = sin® z 4 cos? z

divide top and bottom by cos? z

This problem will be later used to derive the Euler substitutions (an

[42MSUD

[42MSUD

[42MSUD

[4BMSUD

[42MSUD

[42mSUD



Solution. Set z = arctant, and so tan z = t. Then

cot(2arctant) = cot(2z)
cos(2z)

sin(2z)

cos? z — sin? 2

use double angle formulas

2sin 2£08 2
1 —tan“z

2tan z
sk

2
_ 11,
o2\t

Problem 10. Compute the derivative (derive the formula).

/ / —
2. (arccotx)’. gt o . .
T 5. Let arcsec denote the inverse of the secant function.
3. (arcsinz)’. A Compute (arcsecz)’. et

T T

Problem 11. 1. Leta+b#km, a#kr+7%5 and b # kn+ 5 for any k € Z (integers). Prove that

tana + tanb

_ =t b
1 —tanatanb an(a +b)

2. Let x and y be real. Prove that, for xy # 1, we have

z+y
arctan x + arctan y = arctan
1—2zy

if the left hand side lies between ( z E),

202
Solution. We start by recalling the formulas

cos(a+b) = cosacosb—sinasinb
sin(a +b) = sinacosb+sinbcosa

These formulas have been previously studied; alternatively they follow from Euler’s formula and the computation

cos(a+b) +isin(a+b) = @) = ¢iaei = (cosa + isina)(cosb 4 isin b)
= cosacosb—sinasind + i(sinacosb + sinbcos a)

Now is done via a straightforward computation:

tan(a + b) sin(a+b)  sinacosb+sinbcosa  (sinacosb+sinbcosa)——1—
anla = = =
cos(a+b) cosacosb—sinasinb  (cosacosb—sinasinb)_——— (1)

tana + tanb
1 —tanatanb

is a consequence of Let a = arctanz, b = arctany. Then becomes

tan(arctan x) + tan(arctany)  z+y

tan(arctan x + arctany) =

)

1 — tan(arctan z) tan(arctany) 1 —xzy

where we use the fact that tan(arctanw) = w for all w. We recall that arctan(tan z) = z whenever z € (=%, Z). Now take
arctan on both sides of the above equality to obtain

Tty
arctan x + arctany = arctan
1 -2y

4 Integration by parts

Problem 12. Evaluate the indefinite integral. Illustrate the steps of your solutions.
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. /xsina:da:.
2. /:ce_xdx.
/x%"”dx,

4. / zsin(—2z)dz.
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PTG — 32 g LomsUD

O + (zg—)urs % + (zg—)soo % LA2MSUD

5. /x2 cos(3x)dx
0+ (:Lg)ms £L — (zg)soo TZ + (zg)urs ? REE
Solution. (211
r sinxdr =
—_—
=d(—cosz)
Solution. [2.3
2% e®dz
~—
d(e®)
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(zg)s00 & — uomsun

o+ (zg)ms & 4 4

O + (zg)soo % + (zg)urs £ uomsun
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10. 3e%du.

O+ 229 — 52T + 4

22 g TE = P T MomSUD

—/xd(cosx) :—xcosx—l—/cosxdx:—xcosm—i—sinx—l—C’

= /JUQdez =2%e” — /e“’?mdm = 2%e” — /2xdem

= x2em—2xem+/2exdx—x e’ — 2xe” +2e* + C

Solution. 2.6

/xge_gxdx =

Integrate by parts

Integrate by parts

5626721 1’6721
2
x2e—2x 1‘6_21: —2z
2 2 4

Problem 13. FEvaluate the indefinite integral. Illustrate the steps of your solutions.

1. /x2 cos(2z)dx

o+ (.Lz)uls r_ (J:z)so.)x + (xg)urs L% uomsuD

2. /x%‘”dx, where a is a constant.

D D
o+ zva% —+ Zuawzz— — £T J42MSUD

zp°g

3. /xQe*‘”dx, where a s a constant.

D

D D
o+ zvfg% — Iuiaz% — Iniaazf— J42MSUD

—az\2
ax _|’_ e ax) .
——dz, where a is a constant.

& z _
. o+ <9$z + avg—2e-"7
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_ 8
’wz?’zmt—”) T

zgPg— ‘amsuD

20z —2gT 1"

1
. /de. (Hint: This problem does not require
cos?x

integration by parts. What is the derivative of tanz?)

O + = uey Lomsup

(Hint: This problem does not require

—1 and

6. /(tan2 x)dz.

integration by parts. We can use tan? x =
the previous problem. )

0052



7. /xtam2 xdz. (Hint: tan®?xdz = d(F(x)), where  16. /cosxemdx
F(x) is the answer from the preceding problem,).

O+ (zuts ;o + xsoo 2) % e

O+ |zsoo | up + zueyx 4+ %7 ‘uamsun
17. /sin(ln(ac))dx.
/e‘ﬁdx,

D+ gA_2T = ga_2T g womsup

o

O 4 ((zup)soo — (zupurs) & uomsuv

18. / cos(In(z))dz.
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o
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8
o
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Z .
ot § ot (g E s 5+ (= upus + (2 upsoo) &

10. /lfﬁdx (Hint: use substitution rule, don’t use in- 19 /lnxdm
x
tegration by parts)

o+ 7 — |zl ww wamsun
o+ c uomsuD
(erte) 20. /a:lnx dz.
11. /(arctan x)da. o4 T Il o ssamsuo
S mit)u[ — weiore o omsun
’ o1, [,

12. /(arcsin x)dx. Ve

O+ (g — zup)z g womsun

O+ gz — 1N + @ usore @ uomsuv

22. /(lnm)Qdﬂc.
13. /(arcsinx)2dx. (Hint:  Try substituting © =

O+ 2z + zurag — L(z U@ wamsun

siny.)
O + xg — x ursore g — 1 Nz + Z(ur UISOIAR) T [LIMSUD 23 /(ln x)de

1
14‘ / arctan < dx‘ O+ x9 — xurzg + z(:z up)zg — S(av: up)x uamsun
T
15 /sin re®da 24. /:172 cos® xdx. (This problem is related to Problem|13./
o eiu:_,’_e ix
D+ (2500 zo — wus 4o) T comeun as CoOsST = 2 )

Solution.

/xtan2 zdx = /a: (sec2 T — 1) dx use sec’xz — 1 =tan’z
= /x(secQ:r— l)dx
= f/a:dx + /xsec2 xdx use d(tanx) = sec? zdx
2
= -3 + /xd(tan x) integrate by parts
2
T
= -3 + xtanx — /tanxdx
5 .
- + rtanx — / Smmdx use sinzdx = —d(cosx)
2 cosx
x? d(cos x)
= ——+ztanz+ | ——— Set y = cosx
2 cos T
z2 1
= —3 +:z:tana:+/fdy
Y
2
- +aztanz +In|y| + C Substitute back y = cosx

%

= —% +ztanx + In|cosz| + C




Solution.
Vi =y

/e_‘/idac = /2ye_ydy Subst.: ﬁdx = dy
der = 2ydy
= /Zyd (—e¥) int. by parts

—2ye Y +2 [e¥dy
—2ye™V —2e7 Y+ C
= —2ze VT -2 VE 4O

Solution. Later, we shall study general methods for solving trigonometric integrals that will cover this example. Let
us however show one way to solve this integral by integration by parts.

/ cos? zdz=x cos® x — /asd(cos2 x)

=rcos’s — /x? cos z(— sinx)dx sin(2z) = 2sinx cos

:x0052x+/xsin(2ac)da:
— 2
:x0052x+/xd w

et o (20) [ (Zemra

in(2
:g (2cos® z — cos(2z)) + sin(22) 2

x —sin’z

+C cos(2x) = cos

in(2
=z (2cos® z — (cos® z — sin® z)) + w +C |cos?z +sinr =1

_x  sin(2x)

== C
2 4 +
Solution. [[3.11]
/arctan xdr = wzwarctanz — /xd(arctan x)
x
= t — d
x arctan x /x2+1 x
3d(z?)
= garctanz —
22 +1
/ 1d(z*+1)
= xarctanz — 5
] 2 +1
= zarctanz — 3 In(z? +1)+C
Solution. [3.13
/(arcsin r)’de = / (arcsin(siny))? d(sin y) Set = siny

= /y2 cosydy = /de(sin Y) Integrate by parts
= y’siny — / 2y sin ydy
= y’siny + /Zyd(cos Y) Integrate by parts
= y?siny + 2ycosy — 2/cosydy
= y?siny +2ycosy — 2siny + C ‘ Substitute y = arcsin x
= z(arcsinz)?

4+24/1 — 2% arcsinz — 2z + C

10



Solution. [[3.15]

sinze®dr = sinze® — [ ed(sinz) =sinze® — [ cosze®dx
S~~~ S~~~
=de® =de®

= sinze® —e"cosx + /e””d(cos x)

add [e”sinzdz

T 1 xT T o1
= e¥sinx —e*cosx — [ e*sinxdx .
f to both sides

2 / sinze®dr = sinze® —e*cosz
: xr 1 : xT xT
sinze®dr = 3 (sinze® — e” cos x)

Solution. [[3.17

sin(lnz)dz = xsin(lnz) — [ zd(sin(lnz)) int. by parts

= zsin(lnx)

= zxsin(l /x cos(Inz)) (Inz) dz

cos(lnz)d ‘ int. by parts

= zsin(lnz) — (m cos(lnz) — /md(cos(ln x)))
= zsin(lnz) — zcos(lnz) + [ z(—sin(lnz))(Inz) dz

= zsin(lnz) — z cos(Inz) — /sin(ln x)dz add [ sin(lnz)dz

to both sides
2 / sin(lnz)dx = zsin(Inz) —  cos(ln z)

/sin(ln z)dz = 5 (sin(lnx) — cos(lnx))

Solution. [[3.19]
/1nxdx:xlnac—/xd(lnx):xlnx—/%dx:xlnx—x—i—C

Solution. [[3.21]

lnx

\f

integrate by parts

/(ln:c)2d (V)
= (lnx)Qf—/Q\/Ed(lnx)

= Zﬁlnx—Z/gdx

= 2/zlnz—2 [ 2 2dz

= 2V/zlhz—4/z+C
= 2yz(lnz —2)+C

Problem 14. Compute /x"e”dx, where n is a non-negative integer.

Solution. [I4]

11



/x"ezdx = /x”dez

= " 1de
= z"" —n (2" te” — nl)x"zemdx)

= g"e® —nz" lze® +n(n71)/xnfzemdx

= ...(continue above process) ...

= z"" —na" " te® +n(n—1)z" %" +. ..
+( Dfn(n —1)(n—2)...(n—k+1)z"Fe®
+- (— ) nle® + C

_l’_

= C+Z )!x"*kex
k=0

5 Integration of rational functions

5.1 Building block integrals
Problem 15. Integrate. Illustrate the steps of your solution.

1 x
1. dz 8 [ 5 dao
z+1 202+ +1
O+ |1 + @| up usmsuv o+ (Ii/;v) wejore % _ ( + a‘% + Zm) up % L1pmSUD
z—1
2. / dx x
rz+1 9. 27dx
O+ |1+ @ urg — @ womsup 20+ +3
1 o+ (IS:Z{—\?) uejore &{\Z - (s‘ + 2+ ZEZ) “I% FARMSUD
5. [ da
(x+1) x
I+T . omeun 1 0‘ 2 T a dx
o+ L2~ uoms /xZ—x+3
4. T e o+ < 7 I) uegore LII}\ + e+ @ — gz w & omsun
/ (z + 1) b
o+ $ + |1 + 2| up womsun 1
1. [ ————da
5 1 d (x241)
. —5axr
(21‘ + 3)2 O+ (@) uesore & + Ii([ + zw) @ omsuv
b+ EEDT s .
i 12. / — _dz
6 [ % 4. (2 +z+1)
2.’1:2 +3 e I 6 € £
o+ (9 + zwz) up L csomsun (9 e E) eI EN g + I*(I Tt Zw) Tt I*<I ted zw> P romen
1 1
- Ry -
22243 (x2+1)
(1% > uejore ﬁ ILIMSUD O + () uejore % + 37(1 + Zm) 1% + If(t + Za:) m% :L2MSUD

Solution. [[5.8
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e R e ek
——dz= T
222 +z+1 2 (22 + 221 + 1)
_ T du complete square
/9 (z2+221 + L - L +1) in denominator
1 T
:i/ N2 - dz
(= + z? + 16
1 e i 1 1
=5 — 1 7d x+1 Set u=x+ 3
(z + %) * 15
=— —du
2 u® + 16
1( U 1/ 1 )
=— u— — U
2 u? + & 4) w2+ &
1[1 7
=—|zn({u+—=)- arctan Y + K
212 16 4] 7
16 16
1 1 1 7 4 1
:41n(x2—|—2x 2)—\1£arctan( 1:\/—; >+K
Solution. [15.12
1 1
/ ——dr = / sdw complete the square
(22 +2+1) ((z2+223+1)—1+1)

Setw:x—I—%

Il
~
8
+
=
~— p—
(V]
+
leo
~—
[\v}
o
RS
K
+
[\
N———

SIE

[ e
() s

The integral [ mdz was already studied; it was also given as an exercise in Problem [15.11] We leave the rest of the

problem to the reader.

Problem 16. Let a,b,c, A, B be real numbers. Suppose in addition a # 0 and b> — 4ac < 0. Integrate

/ Ar+ B
—dz
ax? +bx+c

The purpose of this exercise is to produce a formula in form ready for implementation in a computer algebra system.

Solution.

13



/ Az + B / Az + B
= J/‘
ar? +bx +c a(z? +2zL + €)

B Ax+ B du complete square

o a(x2—|—2x2 _~_472‘_ 4&_’_2) in denominator
1 A a a a a
@S (x4 5p)" + G
1 [Alz+L2 -2)+B b

:f/ ( 2a 22“) d(x—i—) Setu:x—i—%
o) v gy D 2

_1/Au+B—§jd St OB A

Ca u2+D b ¢ N
1 U 1

- / 5 du+C/u2+Ddu>
1 /A C U

= (=In(w?*+D —|—arctan<>>—|—K
a \ 2 ( ) VD VD
1 /A <2 b c)

=—|=—Inlz*+-a+ -
a \ 2 a a

+£ arctan vt % + K
VD vD '
The solution is complete. Question to the student: where do we use b? — 4ac < 07

Problem 17. Let a,b,c, A, B be real numbers and let n > 1 be an integer. Suppose in addition a # 0 and b*> — 4ac < 0. Let

1
I = / (22 + bz + Q)ndx

1. Express the integral
/ Az + B
o A, 1
(az? + bx + ¢)
via J(n).
2. Ezxpress J(n) recursively via J(n — 1)

The purpose of this exercise is to produce a formula in form ready for implementation in a computer algebra system.

Solut
/Oumnm? / Az + B

—dx
(az? + bz + )" a™ (22 42z + <)
B Az + B e complete square
) an (x2 + 2327 gTZ _ W + ) in denominator
:7/ 1’2—&— . mdz Set D = M
a ((1:+ %) 4 4acfb )
=~ — 5 )+ B
7/ x+2a 20)+ d m+i Set u =+ 2
x+ 2a +D) 2a @
Au+B 2a

1 1
= A/(u2+D)"du+C/(u2+D)"du>

A (v + D)l_n + CJ(n))

a™ \ 2(1 —n)
1 A 9 b A\

Solution. We use all notation and computations from the previous part of the problem. According to theory, in order
to solve that integral, we are supposed to integrate by parts the simpler integral

14



int. by parts

J(n—l):/ 1 n_ldx:/;n_ldu
ER— ()

U 1
S (u2+ D) /“ d ((u2 +D)"1>

2
___ v n71+2(n—1)/72“ Sdu ,
(u®> + D) (u? + D) In the above equality, we rearrange
U u?+D—D

Syt AT b w2+ Dy

4 1
@ +2(n—1)J (n—1) — 2D(n — 1) / e
N 2(n—1)J (n—1) = 2D(n—1)J (n)

terms to get that

2D(n—-1)J(n) = ————+@2n-3)J(n—1)

u
u? + D)

—~

1 U 2n — 3
S 1
J(n) D 2(n—1)(u2+p)”*1+2n—2‘](" )>
1 L m —
. Tt % 4 3 n—1)
D (271—2)(952—1—2:5—1—%) 2n—2

5.2 Complete algorithm: partial fractions
5.2.1 Quadratic term in the denominator

Problem 18. Integrate. Some of the examples require partial fraction decomposition and some do not. Illustrate the steps
of your solution.

1 T
1. —dx 8. ——dz
42 + 4z +1 322 1 —2
O+ (1 +2g) &~ womsuv oFlt+al wE+|E - | w Lk womsun
1
2. dx T
1— 22 9 5
3z 4+x+2
o+ |1+ = u[% + |1 — x| ur %— [LPMSUD
. o+ (&TZ + IW%Q wesore 890 — (£ 4w 4 o) w P womsu
3. dx
o 10 x
D+‘E/‘+z| (IIOJ+‘E/\_:E| up QL — omsun . 2 2 1
ar ar T4+ x+
¥
4 / z dx o+ (é%/;{z) wegore g B — (% +a28 4 an) w ¥ susmsun
C) Ax? 4o+
16
otlt+asl wt+ (1 +es)k womsun 11, - x dz
204+ x —1
z+1
4 9 €
L o u L usmeup
222 4+ x :)+‘I T
O+ lz| ur + |1 + zg| lq%— uomsuD )
12. dx
x T 2+x+1
42 +x+5 ot »
6N 8 ore - . o+ (%_'L) Lmqomg/\% uomsuD
o+ 4L§+r uejore 6L N S — (§ +zf + Zm) up § cuomsun
N
x 13 71 d
. x
7'/4332+x—5dm 222 + 5z +1
otlt—al w4 |k +a| a9 omeun ‘g + gl + o m AL ~ ’g + glx — 0| w AL wmeun

Solution. [18.11] The quadratic in the denominator has real roots and therefore can be factored using real numbers. We

15



therefore use partial fractions.

1
" 1
_dx = I A —|
/2x2+x—1 v /(lerl) z—3) v
3

= /(ac+1)dm+/(x—é§)dx

1 1
= gln\x+1|+éln

partial fractions, see below

r— =
2

Except for showing how the partial fraction decomposition was obtained, our solution is complete. We proceed to compute
the partial fraction decomposition used above.
We aim to decompose into partial fractions the following function (the denominator has been factored).
x x Ay Az

4z -1 (@t)(@e—1) z+41 22-1

After clearing denominators, we get the following equality.
=412z —-1)+ As(xz+1) . (2)

Next, we need to find values for A; and A, such that the equality above becomes an identity. We show two variants to do
that: the method of substitutions and the method of coefficient comparison.

Variant I. This variant relies on the fact that if substitute an arbitrary value for x in we get a relationship that
must be satisfied by the coefficients A; and A;. We immediately see that setting x = % (notice z = % is a root of the
denominator) will annihilate the term A; (22 — 1) and we can immediately solve for A;. Similarly, setting © = —1 (z = —1

is the other root of the denominator) annihilates the term As(z 4+ 1) and we can immediately solve for A;.

e Set x = % The equation becomes

1 1
- = A;-0+A4A5(=+1
5 1-0+ Ag (2 + >
1 3
- = 24
2 %2
A2 == g
e Set x = —1. The equation becomes
-1 = A1(2-(-1)=1)+A5-0
-1 = =34,
1
A2 - §
Therefore we have the partial fraction decomposition
x - A1 + A2
202+ -1 x4l 2z-1
_ 3 3
N mTl+2%—l
_ 3 6
r+1 + xr — %

Variant II. We show the most straightforward technique for finding a partial fraction decomposition - the method of
coefficient comparison. Although this technique is completely doable in practice by hand, it is often the most laborious for
a human. We note that techniques such as the one given in the preceding solution Variant are faster on many (but not all)
problems. The present technique is also arguably the easiest to implement on a computer. The computations below were
indeed carried out by a computer program written for the purpose.

After rearranging we get that the following polynomial must vanish. Here, by “vanish” we mean that the coefficients of
the powers of x must be equal to zero.

(A2 + 2A1 — 1)£E + (Ag — Al)

In other words, we need to solve the following system.

24; +A; =1
—A1 +A2 :0

16



System status Action
2/}41 Iiz - (1) Sel. pivot column 2. Eliminate non-pivot entries.
—A1 2 =
A +2 =1 . . . .
3 A2 1 Sel. pivot column 3. Eliminate non-pivot entries.
242 T 3
1
4 A B Final result.
2 3

5.2.2 Complete algorithm

Problem 19. Evaluate the indefinite integral. Illustrate all steps of your solution.

3+ 4
1. —d
/x2—|—4 .

z ) 4
o+(v+z¢)mz— (;)HLJJJLZ-%——

4

[ADMSUD

[42MSUD

242MSUD

[42MSUD

[A2MSUD

[A2MSUD

L2MSUD

2.
/2962—1
otwr+ (eprd — o) mgnl 4 (enr G+ o) mpnl-
/ —|—2x— dz
2z — g2 S gt olui o+t —=w}
4/ —|—3x— dz
oFlt—zluf +lv+elufy +ag— 28
/ ——dx
2.%'2+3:L‘—
otal — ol -o) ud o+ (§ta)wdE
e+ 1
6. d
/m—3 o™
D+Z:m-Hz—w\uls—\s:—w\ﬂlm
4
x
7- \/f x
(z+1)2(z+2)
T+@ e
o+ — g+ @l w9t + |1+ ¢l urg — oy — — &
14
1522 — 42 — 81
8./ S da
(x=3)(x+4)(z—-1)

[T — =l uis+ e —z| uig + |y — z—| urg

[ADMSUD

+2x — 13
4o — 4

/ x* + 1023 + 1822
dx

xt + 4a3 + 322 —

Check first that (x — 1)(x + 2)%(z + 1) = a* + 423 +

3x? — Az — 4.

Ot @+ |t+a|ug+ |1 — o ur+ g+ x| uig + ;_(z + *)g

e

( 4
o+ (z—
[

5
11, /de
3 —1

€ 4
ue3ore +(Z+Z')“I*—|Z+J¢|HI + ez - —
N =

o+gzl+|r— eo| wr ¥
ot gl tir—al w4 ‘I+J3+z:'~| g

e H

T4
Ao

4 6 6 6 €
O+ | T—— | uejoieg **'Z+zz'“1**|1+1| ul— = (T +2)—
N 4 14 ot T

324+ 22— 1
15. ——d
/<x71><x2+1> ’

o+zueqo.wg+(1+Zm)u1%+|{—z|ulz
|
14. dz
(22 +1)2

lefur = (14 gz) w & +

1—(I + o) =

[4DMSUD

[42MSUD

[42MSUD

— T ruPmsup

L4BMSUD

[42MSUD

Solution. [19.12| We are trying to integrate a rational function; we aim to decompose into partial fractions the following

function. .\
T

33‘4

x4 4+ 223 + 322 + 42+ 2 -

(@ +1)* (22 +2)

Since the numerator of the function is of degree greater than or equal to the denominator, we start the partial fraction

decomposition by polynomial division.

Remainder

—223  —32% —dz

-2




Divisor(s) Quotient(s)
ot 422 + 302 44z +2 | 1

Dividend
4

ztr 422% 4322 44z 42
223 —3x2 —dz -2

Therefore we have

xt . 2% — 322 — 4z — 2
244223 + 302 +40+2 o4+ 223 + 322 442+ 2
—2% — 3% — 4z — 2 _ 2% — 3% — 4z — 2
4+ 223 + 322+ 4 +2 (z+1)° (22 +2)
A]_ A2 A3+A4Z‘

@+ @riZ ! @t

We seek to find A;’s that turn the above expression into an identity. Just as in the solution of Problem we will use
the method of coefficient comparison (see the solution of Problem [19.13| for a shortcut method).
After clearing denominators, we get the following equality.

—22% — 322 —dr -2 = Ai(z+1)(2? +2)+ Az(2? +2)
+(A3 + Agz)(z +1)?
0 = (A4 + A1 —|— 2)5(,‘3

+(2A4 + Ag + Ay + A+ 3).1‘2
+(A4 + 2A3 + 2A1 + 4):17

+(Az + 245 + 24, + 2)
In order to turn the above into an identity we need to select A;’s such that the coefficients of all powers of x become zero.
In other words, we need to solve the following system.

Aq +A, =-2
Ay +Ay  +As +24, =-3
24, +2A3 +A4 =—4
2A1 424, +Aj3 =-2

This is a system of linear equations. There exists a standard method for solving system of linear equations called Gaussian
Elimination (also known as Row-Echelon Form Reduction Method). This method is very well suited for computer imple-
mentation. We illustrate it on this particular example; for a description of the method in full generality we direct the reader
to a standard course in Linear algebra.

System status Action
Ay +Ay =-2
A +Ar A 24y =3 Sel. pivot column 2. Eliminate non-pivot entries.
24, +2A3 +A4 =-4
2417 +2A, +As = -2
Ay +A4, =-2
As +As +Ay =-1

Sel. pivot column 3. Eliminate non-pivot entries.
2A3 —A4 =0

245 +As 244 =2

Ay +A4 =-2
A A A =-1
2 tAs 444 Sel. pivot column 4. Eliminate non-pivot entries.
245 —-Ay =0
—As3 —4A, =
Aq +Ay =-2
A 34, =-1
2 +?4 4 Sel. pivot column 5. Eliminate non-pivot entries.
Az -5 =0
—%A, =4

18



|3

Aq =
Ay =
As =

Ay

W=

Final result.

©|00 Ol

Therefore, the final partial fraction decomposition is the following.

x? _ 14 —223 — 322 —4x —2
o+ 223 + 322+ 4 +2 x4+21’3+3x2+4z+28 .
= 14+ 9 4 3 + § )
(x4+1)  (x+1)2 (2242)
Therefore we can integrate as follows.
- _10 1 8, 4
s ————dr = T+ —= 4+ 2+ 59 )dz
/($2+2)(9«"+1)2 /< (z+1) (z+1)* (22 +2)
/d 10 1 d +1 1 q
= x—— | ——de+ - [ ——=dz
9 ) (x+1) 3) (z+1)?
8 x
— | ——dx— = | ——dz
9 A 2 42 9) 22+2
= x—g(x—i—l)_ —jlog(x—i—l)

—3 log (x2 + 2) — g\/iarctan (?w) +C

Solution. This is a concise solution written in a form suitable for exam taking. We set up the partial fraction

decomposition as follows.
322+ 20— 1 A Bx+C

(x—1)(224+1) Tr-1 + 2241
Therefore 322 + 22 — 1 = A(z? +1) + (Bx + C)(z — 1).

e Weset z=1toget4d=2A,s0 A=2.
e Weset z=0toget —-1=A—-C,s0C =3.
e Finally, set x =2 to get 15 =5A+2B+ C,so B=1.

We can now compute the integral as follows.

2 z+3
/(x_1+2_|_>dx 2In(lz — 1) + 3 In(2® +1) + 3arctanz + K

Solution. This problem can be solved directly with a substitution shortcut, or by the standard method.
Variant I (standard method).

x® 9 x? .
/x3—1dx:/ (m +x31>dx Polyn. long div.
a3 z?
=— t. frac.
3 +/(x—l)(a:2—|—x+ part. frac
—xg+/ % 7x+ complete square
-3 x—1 x2—|—x+1 P d
P 2 +l = 1)2 48
=2 4= In|lz—1]+ < / ————2——da| Set v (:c—|—%) T
33 3) (w+1) 42 jdu = (z+3)de
_£3+11 |x—1|+ du
_33 3
1
:%—i—g |x—1|+§ln\u|+0
—90—3+1 |x—1|+11n\x2+x+1|+0
3 3 3
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Variant II (shortcut method).

5
X
/mdx =

x —1
Set u=x%—-1

HW\)—‘W\F—‘\
= \\a

I
&cow‘ go.,w‘ &ww‘ wa‘ 8&, \\\

=
S
+

\

\ [N}

—_
o
8

1

The answers obtained in the two solution variants are of course equal since

Injz —1|+Injz* +z+ 1| =In|(z—1) (2> +z+1)| =In|2® — 1]

5.2.3 A large example illustrating the complete algorithm
Problem 20. Integrate
L dx

/mﬁ—x5+ x — 4a3 +13x2—7:r+—

2% —zt 4 323 — 322 + 2z — 2

Solution. 20
Step 1. The first step of our algorithm is to reduce the fraction so that numerator has smaller degree than the denominator.
This is done using polynomial long division as follows.

Variable name(s): =1 division steps total.

Remainder

3.4 _ .3 7.2 5 11

5T x + 1T ig + 1
Divisor(s) Quotient(s)

x5—x4+3x3—3x2+%x—2 T

Dividend

B 8 2P —1—%374 — 43 —|—12—3ac2 —%x —1—14—1

28—z 4+3z2* —328 —i—%xz —%m
3.4 _ .3 7.2  _5b I
5T €T + 1T ig + 1

In other words,

2% — 2% + Jat — 4ad + 1322 %x+%=(x5—z4+3x3 3224+ %92 — N

4 4
3,4 17 g2 84 U
+5 34 T+,
and therefore ‘ . _ !
26— 25+ Sat —4a® 4 g2 - Ip 4 UL . gt — g3 4 1g2 3y 4 UL
=z
2% —xt + 323 — 322 + 2z — 2 xb — x4 323 — 322 + J2 — 9

6xt — 423 + 1722 —5x+11

T s At 1 122° — 1222+ 920

Set
N(z) = 6x* — 42® + 1722 — 5z + 11

and
D(z) = 4a° — 42" +122° — 122" + 92 — 9

Step 2. (Split into partial fractions). Factor the denominator D(x) = 425 — 42* + 1223 — 1222 4+ 9z — 9.
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We recall from elementary algebra that there is a trick to find all rational roots of D(x) on condition D(x) has in-
teger coeflicients. It is well known that when % is a rational number, then +2 may be a root of the integer coefficient
polynomial D(z) only if p is a divisor of the constant term of D(z), and ¢ is a divisor of the leading coefficient of D(x).
Since in our case the leading coefficient is 4 and the constant term is -9, the only possible rational roots of D(z) are
:I:l,:I:3,:|:9,:t%,:t%,:|:%,j:i,:t%,:t% A rational number r is a root of D(z) if and only if substituting = r yields 0.
Direct check shows that, for example, D(—1) = —50. However, D(1) = 0 and therefore using polynomial division we
get that D(z) = (x — 1)(42* + 1222 + 9). We recognize that the second multiplicand is an exact square and therefore
D(z) = (z — 1)(222 + 3)%

So far we got

N(z) 6a* —4a® +172% — bx 4+ 11

D(z) (x —1)(222 4 3)2
In order to split ggi; into partial fractions, we need to find numbers A, B, C, D, E such that
6x4—4x3+17x2—5x+11_ A . Bz +C Dx+ F
(x —1)(22% 4 3)2 C(r—1)  (222+3) (222 +3)2

After clearing denominators, we see that this amounts to finding A, B, C, D, E such that
62t — 42% + 172% — 52 + 11 = A(22° +3)2 + (Bx + C) (222 + 3)(z — 1) + (Dz + E)(x — 1)
Plugging in x = 1 we see that 25 = 254 and so A = 1. We may plug back A = 1 and regroup to get
22 — 423 + 522 —5r + 2= (Bx + C) (22> + 3)(z — 1) + (Dz + E)(z — 1)
Dividing both sides by (z — 1) we get
223 —22° +3x — 2= (Bx +C)(22* +3) + Da + E

Regrouping we get

23(2-2B) +2*(-2-2C)+2(3—-3B - D)+ (-2-3C —E) =0
As x is an indeterminate, the above expression may vanish only if all coefficients in the preceding expression vanish. Therefore
we get the system

2-2B = 0
—2-C =0
3—3B-D = 0
—-2-3C-FE = 0

We may solve the above linear system using the standard algorithm for solving linear systems (the algorithm is called row
reduction and is also known as Gaussian elimination). The latter algorithm is studied in any standard the Linear algebra
course. Alternatively, we see from the first equations B = 1, C' = —1, and substituting in the remaining equations we see
D =0, F = 1. Finally, we check that

ab — 2%+ Jat —dad + Ba? — To+ I N 1 N z—1 N 1
=z
2% —zt + 323 — 322 + 2z — 2 (x—1)  (222+3) (2224 3)?

Step 3. (Find the integral of each partial fraction).

2
/xdx = x——&—C’

2
1
/ dz = Injlz—-1]+C
vt 1 1
[ih = [t ot
222+ 3 222 4+ 3 3) Fa%24+1

CoiE)
= /2$2+3dx—3/( 2m)2+1dm

2

3
_ 1/(1(2952+3’)dx_1/\/§
4 222 + 3 3 ( 2)2+1

§.’L'

1 2
= 1 In(222 + 3) — ? arctan (\/Ql‘) +C
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The last integral is

/(2x2l+3)2d$ B ;/< ”

V6 [ dy
18 ) (y2+1)2

The general form of the integral / is solved in the theoretical discussion by integration by parts. As a review of

_ 9
(> +1)?
the theory, we redo the computations directly.

d
C + arctany = / 5 L
ye+1
Y +/ 2%y y +/ 2(y* +1-1)dy
y?+1 (y2+1)2 y2+1 (y? +1)2
YL, dy dy
y?+1 (y? +1) (y? +1)

Transferring summands we get

dy 1 Y
/ W2 +12 2 (y2+1 +amtany> e

We recall that y = \/7 x and therefore
dz V6 %a: 2
[ e =5 | e e (57 ) | 0
x
( %x) +1

To get the final answer we need to collect all terms, to get a final answer:

1 x 5v6 2 1 ) 22
6(2x2—|—3> ~ 36 arctan (\/;m> +Zln(2x +3)+1H|$*1|+3+C

6 Trigonometric integrals
Problem 21. Integrate. The answer key has not been proofread, use with caution.

1. /sin(?;ac)cos(?:v)dx.

D + xsoo % — (zg)soo OI—I — lupmsup
2. /sinxcos(5x)dx.
O + (zp)s0o % + (29)so0 &L — uamsuv

3 / cos(3z) sin(22)dz.

O+ @soo & 4 (zg)soo 9 — omsun

4. /sin(5x) sin(3z)dx.

O + (zg)urs % — (xg)urs % [42MSUD

5. /cos(x)cos(3x)d:c.

o+ (zg)ws ¥ 4 (ap)us % upmsuD
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Problem 22. Integrate.

1. /sin2 x cos xzdx.

2. / sin? zdz.
3. / cos® zdzx.

O+ x guts % 1ADMSUD

o + (zg)us % — Z omsun

o+ =z Sugs % — X UIS [42MSUD
Problem 23. Integrate.
1. /sec xdzx.
(8)ms
D+ up = |z uey + xo9s | Uy uPMSUD
(3wt

2. /sec3 xzdz.
3. /tan3 zdz.

4. /sec2 ztan® zdz.

D + (|z uwey + xoos | uy + = uey x o9s) % f42MmSUD
O+ |zoos|up — @ juey % uomsuD

g .
O+ T ey Homsuv

Problem 24. Integrate.

1. /sin(5x) sin(2x)dzx.

L € T,
o+ ((IA)“!S - (zs)u!s) T s

2. /sinxcos(Qx)dx.

3. / sec 6d6.

4. /sec3 0dé.

€ _zs Z - omsw
o+ ((mg)soa T sos) T 14DMSUD
O + lguey + goos | up :usmsun

D + (zuey zoos + |goos + g uey | ur) % upmsuD
5. /tan 0do. 5 + | 08 | u] csmsun

6.1 Trigonometric integrals solved via general method x = 2 arctant

Problem 25. Integrate.

1
1 /7dx
3+ cosx

1
2 / ! 4
4+ cosx
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1
3 / ! @
3+sinx

urIOI® —— [UIMSUD

iz
T

2% <I+(%)umg

1
4. /de (Hint: this integral can be done simply with the substitution x = arctant.)
anx

< Q
O+ z— + (zsodg + x urs) uf Z F42MSUD
14 T

5 dx
‘ 2sinz —cosz + 5"
€ g Q
o4 ((, " (E) m) i) werore o uomsun
T 0 € N

Solution. We to use the standard rationalizing substitution © = 2 arctant, t = tan (%) We recall that from the double
angle formulas it follows that

cos?(arctant) — sin®*(2arctant) 1 — ¢

cos(2arctant) =

cos?(arctant) + sin?(arctant) 1+ 2
Therefore we can solve the integral as follows.
1 1
—dz = d (2arctant) Set x = 2arctant
3+ cosx 3 + cos(2arctant)
dt
1-¢2) (142
(3+455) 1+#)
2
= ——dt
/ 4 45 2t2
= ——dt
242

2
= garctan —t|+C
2
= garctan 2tan(§)>+0

Solution. This integral is of none of the forms that can be integrated quickly. Therefore we can solve it using the
standard rationalizing substitution z = 2arctant, ¢ = tan (%) This results in somewhat long computations and we invite
the reader to try it.

However, as proposed in the hint, the substitution z = arctan ¢t works much faster:

1 1
/7dx = / d (arctant) Substitute x = arctant
2+ tanz 2 + tan(arctant)
1 1
= dt art. fractions
/(2+t)(1+t2) P
1 _t 42
— 5 4 5 5 dt
1/<(t+2) 1(t2+1)) )
= fln|t—|—2|—Toln(t2+1)+garctant—|—0 t=tanz

1 2
= ¢lftane 42| - Sn(tan’z+ 1)+ zo + C

= —ln|tanx 42|+ gln|cosx| + ngrC

2
= —In|(tanx + 2) cosz| + 5x+C’

2
= 5ln|sim:z:—|—2cosgc| + gx—i-C.

Solution. 5.5

Set x = 2arctant. As studied, this substitution implies cosz = 1-t>

_ 2
T dr = dt. Therefore

ST = T4

2t
182
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2dt
(1+2) (252 - G2 +5)
dt
32 120+ 2
dt

Set x = 2arctant

/ dx
2sinx —cosx + 5

Il
— —_—

T )

3((t+3)+3)

Set
& w = \% (t+ %)
- 5 - %(St—i—l)
5 3 1 _
3((@ (t+ §)> +1) dw = Jzdt
dt = Ldw
_/ P dw
) D
:g arctanw + C
:? arctan %(St%-l) +C
:? arctan ? (Stan (g) + 1)) +C

7 Trigonometric and Euler substitutions

7.1 Transforming radicals of quadratics to the forms vu2 + 1, v/1 — u2, Vu? — 1

Problem 26. Find a linear substitution (via completing the square) to transform the radical to a multiple of an expression
of the form Vu? +1, Vu2 —1 or V1 — u2.

1. Va2 4o + 1.
2. V—2x2+x+ 1.
Solution.

1 1 1
vai+zrz+1 = \/:L'2—|—22m—|———|—1

4 4

where u = -2 (w—i—l):%x—l—g.

S
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Solution. 6.2

V=222 +x+1

Il
|
[N}
7 N
8
[\v]
|
N
K
|
NSRS
~_

Whereu:%(:zzf 1):%x7%.

7.2 Trig or Euler substitution, solutions use trig substitution

Problem 27. Compute the integral using a trigonometric substitution.

V9 — 2?

— lupmsuD

=6
Solution. R7.1]
Set = 3sind
9 — g2 3 2 0
/de = /@(%ose)de for 6 € [Z,0)U (0, %]
x? 9sin” 6 .
dx = 3 cos df
=9 \c.os9| cos 0d6 For § € [%,70) J (O’%}
sin? 0 we have| cos 8] = cos 0

= /cot2 040

= /(0502 6—1)do

= —cotd—-0+C

= _QT—xQ — arcsin (g) + C,

9 — a2

where we expressed cot § via sin 6 by considering the following triangle.

7.3 'Trig or Euler substitution, solutions use Euler substitution

7.4 Case 1: Va2 +1

Problem 28. Integrate
1. / \/mda:
2. / \/de
D4t grl el ¢ (15 F14 408 ) ay cuomsup
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3. /\/x2+x+1dx
o+(1+z(%+z>%/\( +r)%+((%+z)g/\%+t+z(%+w)%/\) tu%)%-‘wmm

4. /\/(ng + 2z + 1)dz

o+ ((1 +az+ 1+ (1 +zz)/\) Wit tm N +mz>%) T omsup

5. /\/(3302 + 2z +1)dx
o+ (H— dG+oEN (S +o)enk+ ((% +o)gr 148 +w)%/‘) u[%)g/\% “spmsuD
/27 +

:c+1
14 gz M+
(w—1+zw )HH—
4/\ 1A2MSUD
T—gN—2—T+gz/) uigh+
T—gNh+2—1+gz)) ughr—

Solution. R8Il
This problem can be solved both via the Euler substitution and by transforming to a trigonometric integral and solving

the trigonometric integral on its own. We present both variants.
Variant I. We recall the Euler substitution for v/x2 + 1 given in :

1
= = (=—t
2\t
2l = (14
o2\t
1/1
t = 224+1—z
Therefore
/\/(:c2+1)dx* /1 1th lJrl dt
B 4\t 2
1 1

I
\
I
/‘_\

-
w\ ‘
[ V)

t2
+21n|t|+2) +C

a2_b2:

1
2 42 +
2=t + 5l +C (a—b)(a+b)

I
| =
—

L L 1
= 2(t t) 2(t +1) +5Inft|+C

, =z V2T 1
=—xzvz2+1- ln ’\/ 24+ 1- x‘ ‘ See below
=52 241+ 5111( 2 +1 a:)+C
Our problem is solved.
A few comments are in order. In the above expression we would have obtained a perfectly good answer to the problem if

we plugged in t = v/22 + 1 — z into the fourth line, however our answer would look much more complicated. Indeed, had we
not used the formula a? —b? = (a—0b)(a+b) in the fourth line, the term ¢ =2 —¢2 would be equal to m —(Va? +1-x)%

In turn, the term m — (V22 +1 — x)? can be simplified to 4xv/22 + 1 as follows. We note that the computations
below are included here illustrate some of the algebraic issues arising when dealing with integrals of radicals.
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1
e (V2241 —1)?

(Vaz+1—2x)?
B (VaZ + 1+ 1)
(V2 +1—x)2(V22 +1+1)2
—(V22 +1—1x)?
241 2
_ (Va2 +1+x) iy /7x2+1—1:)2
(Va2 +1)* —a?)
=1
=dz\/x?+1
Of course, the above computations are unnecessary if we use the formula a? — b*> = (a — b)(a + b) as done in the original
solution.
We note that in the last transformation we transformed In |\/ 2 +1-— x’ to In (\/ 2 +1— x) because the quantity va2 + 1—x
is always positive. The proof of that fact we leave for the reader’s exercise.
Finally, we note that as a last simplification to our solution, we used the transformation In|t| = In (\/992 +1-— :c) =
—In|| = —1In (V22 + 1 + z). This is seen as follows.
1

Injtf] = —Iln

rationalize

- 1<¢T11_)

T e
B (\/x2+1—x) (\/3324—1—}—33)
— vri+l+xo

2 +1— 22
= —ln( x2+1—|—x)
Variant II. In this variant we transform to a trigonometric integral and solve it using ad-hoc methods. We recall

that if we decided to solve the trigonometric integral using the standard substitution § = 2 arctant, we would arrive at one
of the Euler substitutions.

Set
/\/xQ—I—ldx:/\/tan29—|—1d(tan9) x = tanf
0e(-5.%)
= sec*f sec secf >0
Vsec20sec? 0d0 ]
= /sec3 6deo Problem [23.2
1
:5(tan95ec€—|—ln\sec€+tan9|)+C’ T
secl =2 +1
tanf = x

DN =

(x\/:cQ-l—l-i-ln( x2+1+x))+c
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Solution. 284

/mdx:/ﬂ ((“;)ui)dx

:?/\J<4(x+;>2+l>dx
?/W;dmu)

:\{f/\/(uz + 1)du

1
SAGUIGOE
/t3+2t1+t)dt

t2 t?
——+21
< 5+ n|t|—|—2)—|—C’

uvu? + +ln( +u))+C

(22 +1)/(2z +1)2 + 1

\§®§5ﬁa

(=]

ﬂﬁﬂﬁm

/N N

+In (\/m+2x+l)) +C.

Solution. 286l

29

complete square

Set u=2x-+1
Euler subst.:
u=3(¢-1),
t>0
du=—1(%+1)dt
VuZ+1=1(3+1¢)

t=vu’+1—u

simplify as
in Problem 28]



/
2
1+t 1,

= ——— | = (=t —=1)dt
() sy

L1+ (-t72-1)
= = dt

2 . 1—2t2—|—2t
1 t* 42t +1 .
:2/Wdt2 pol. long div.
1 2t° + 3t 4+ 1 .
25/ 1+t2(t2—2t—1)) dt part. fractions
1 2v/2 —22 2 -1
:7/ 1+ V2 + V2 +o+ dt
2 t—vV2-1 t+v2-1 t t

:f\/iln‘t+\/§fl‘+\f21n’t—\/§fl‘

+%t‘1+ln|t|+§t+0 ‘t:\/m—x
=—v2In \/ﬁ*l“i’ﬁ*l

V2 (Va2 +1-—2-Vv2-1

+ln<\/3627+1—x)

+% (m_x)*% x2+1—%$+0 ;?;;l?f;erms
=—V2In \/m—x—k\/i—l

+v21n \/ﬁ—x—\@—l

—l—ln(\/xzi—kl—x)

+Va2+1+C
Problem 29. Let b?> — 4ac < 0 and a > 0 be (real) numbers. Show that
2vDa <2ma+b)2+1+21a+b 1 2
. 1 2vDa 5 (2za+bd) 2xa+b
JV/(az? + bz + c)dz = /aD | 51n N + 1 (2\/%‘&) +11,
dac — b?
here D = ———.
where e

7.5 Case 2: V1 — 22

Problem 30. Integrate

1. /\/1—x2dm

[42MSUD

IS

) /\/2—x2dx
. /\/—x2+x+1dx

./\/Q—x—dex
NS )
5./¥dx

1+2x
2
6./7”1:”@

Co

BN

24x

Solution. 301l
Variant I. This integral is possibly fastest to solve directly using a trig substitution. In the next variant of the solution
we show the Euler substitution.
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/mdx -

/ md(cos 0)
/ Vsin? (— sin 0)dd

— [ sin®6do
[ 1 —cos(20)

2
0 N sin5129) Lo

de

\]

+ = +cC

Q 2sin 6 cos 0
2

arccos
——
. e
arcsimx X : x +K

Set x = cosf,6 € [0, 7]
6 €[0,7] = sinf >0

Sm2g:J:g§§Q

x=cos 0
f=arccos x
sin f=sin (arccos x)

VT2

derivative of arcsin x is minus the derivative of arccos x.
Variant II. We show how to do this integral via the Euler substitution x = cos(2 arctant).

/ de

= / V1 — cos? 6d(cos 6)

B / 2t 1—1¢2

B 1+62 \1+¢2
2

.- Vi
T+t2 \ (1+12)

—4t

—t n 2t
2+1 0 (12 41)°
—arctant +C

1
= —5 1—5524—7

—arctant + C

2
—arctant + C

V1 — 22
2
V1 — 22

1 2
21— g2 ]
! (t2+1 )

Set

% arccos r=arctant
_ 142
142
_ 2

1412

/1 _ 2___2t
- o=

x
-1

Integral rational
function
we skip details

1
~3 arccosz + C

1
+ Qarcsinx—i—[(,

where for the last equality we recall that the

x=cos(2arctant)

where for the very last equality we used

the fact that the derivatives of arcsinx and arccos x are negatives of one another.

Variant III. We show how to do this integral geometrically, provided already know the area of a sector of circle. Of
course, here we assume we have already derived the formula for an area of a circle. We warn the reader that if we did use an
integral to derive the formula for sector area, it is possible we are making a circular reasoning argument. The danger is of
course not real we did the integral purely algebraically in the preceding solution variants. In this way, the present solution
Variant is simply a geometric interpretation of the problem.

By the Fundamental Theorem of Calculus, the indefinite integral measures up to a constant the area locked under the
graph of v/1 — 2. This graph is a part of a circle. Therefore, up to a constant, [ V1 — t2d¢ equals fow V1 —t2dt. In turn
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" /1 — t2dt is given by the area highlighted in the picture below.
0

—

length (PAQ) length (P Q) arcsin x

Area(4) = 5 T = 22 =
N
Area(B) = Area(AOPQ) = %

Area(A) 4 Area(B)

/ V1 —t2de
0

arcsinz  xv1 — 22
= +
2 2
=
VI e = arcsin N xV1— a2 e
2 2
Solution. [30.5/In this problem solution we use the standard Euler substitution 2 = cos(2arctant). We recall from (§) that
1—t?
= 2arctant) = —
x cos(2arctant) e
arccos(z) = 2arctant
4t
dr = ———=dt
v (1+12)?
2t
VvV1—22 = sin(2arctant) = o e
;- V 1— a2
B r+1
1— a2 4t — 1=t
/;——fﬂmz/} | Set & = 1572
1+ (1+12) Use f-las above
t2
o
(141¢2)

1+t2 -1
14 1¢2)
1 1
S ——
L+t2 (1412)

1 t
=—4 | arctant — 3 <arctant + 1+t2)> +C

t
=—2 | arctant — 7 t2) +C
V1— 22 1
——9 [ arctan | Y22 ) — —\1—-22)+C
1+ 2
=—2arctant + 1 —-224+C ‘ Use f-las above

=—arccosz +V1—-22+C
=arcsinz + V1 —22 + K

We have included the last equality to remind the student that derivatives of arcsin(z) and arccos = are negatives of one
another.

7.6 Case 3: Va2 -1

Problem 31. Integrate

1. /\/332 — 1dx
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2. /\/J:Q—de
3. /\/2x2+xfldx
4. /\/x2+x—1dx

7.7 Theory through problems (Optional material)

7.8 Case 1: vVz2+1

7.8.1 x=coth

Problem 32. 1. Ezpress x,dz and vz? 4+ 1 via 0 and dO for the trigonometric substitution x = cotd, 6 € (0, 7).

2. Express x,dx and vVx? 4+ 1 via t and dt for the Euler substitution x = cot(2arctant), t > 0. Express t via x.

Solution. [32.1] The trigonometric substitution x = cot 6 is given by

2 +1

The differential dz can be expressed via df from x = cot§. The substitution = = cot # can be now summarized as:

= Vecot?0+1
cos? 9

sin® 0

B cos2 6 + sin? 0
N © sin?0
when 0 € (0,7) we have

B sin2 0 sinf > 0 and so Vsin®§ = sin ¢

r = cotf
1
Vat+1l = Smg—cscﬂ
dé
dz = — 9 —csc? 0do
sin
f = arccotx

Solution. We recall that the substitution § = 2 arctan ¢t transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution § = 2 arctant after the substitution x = cot 6:

T

We can furthermore compute

Va?+1

cot 6 use 8 = 2arctant

cos(2 1 — tan?
cot (2arctant) use cot2z = (22) _ n?z

sin(2z)  2tanz
1 — tan?(arctant)

2 tan(arctant)
1—1t2

(i)

2 2
1 1 1
¥+t E-|—t :¥+tbecauset>0
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The differential dz can via dz as follows.
1/1 1/1
= —_ [R— —_ — — P 1
w=a(3(5-1)) =z (7 1)
1
n + t) to get that

t=vVat+l—z

The Euler substitution & = cot § = cot(arctan 2¢) can be now summarized as:

1/1 .
r = —|--—
2\t
1/1
241 = | =+t
e + 3 t+
1/1
d = ——(=+1)dt
T 2<t2+>

~
Il
am
—+
—_
I
8

Problem 33. Let the variables © and t be related via vV/x2 +1 =z + t.
1. Express x via t.
2. Express vVx2 + 1 via t alone.

3. FEzxpress dx via t and dt.

Solution. B3l
24+1 = o+t ‘ square both sides
224+1 = 2242zt + 12
-2t = t2-1
1/1 :
r = =(--
2\t
Solution. B3.2

Use Problem to get:

Vii+l=x+t=

N —
7N
| =
\

~
~
+

~

Il

| =

7.8.2 x=tand

Problem 34. 1. Ezpress x,dx and vVx? + 1 via 6 and df for the trigonometric substitution v = tanf, 6 € (—%, g)

2. Express x,dx and vVx? + 1 via t and dt for the Euler substitution x = tan(2arctant), t € (—1,1). Express t via x.

Solution. [34.1] The trigonometric substitution z = tan# is given by

Vaz+l = tan? 9—!—

B sin? 9
cos? 9
] sin? 0 4 cos2 0
© cos20
_ when 6 € (—g, g) we have
C032 0 cosf > 0 and so vcos2 0 = cosf
- cols 9 secd
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The differential dz can be expressed via df from z = tan . The substitution z = tan # can be now summarized as:

r = tanf
1
2 4+1 = =sec@
cog é9
_ a2
dl‘ = m = SecC 9d9
0 = arctanz

Solution. [34:2) We recall that the substitution § = 2 arctan ¢ transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution § = 2 arctant after the substitution x = tan6:

r = tanf use 0 = 2arctant
sin(2z)  2tanz
cos(2z) 1 —tan®z

= tan (2arctant) use: tan2z =

2 tan(arctant)

1 — tan?(arctant)
2t

1—¢2
We can furthermore compute

2 2t
From /22 +1=—-1+ T and * = —— we can express t via x:

I1+va2+1\1—-va2+1

T 1\/x2+1>
z(1—+va2+1)

1—22-1
V411
x

The differential do can expressed via dt from x = 1+ e . The Euler substitution 2 = tan § = tan(2arctant) can now be

-1
summarized as follows. o
YT IR
2
2241 = —-14 —"——
—t2 (6)
2(1+¢t2
Qo= 2084
(1—¢2)?
. V2 +1-1
T
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Problem 35. Let the variables x and t be related via va* +1= § — 1.
1. Ezpress x via t.
2. Ezpress Vx? + 1 via t alone.

3. Fxpress dx via t and dt.

7.9 Case 2: V1 —22

7.9.1 x=cosf
Problem 36. 1. Express x,dz and \/1 — 22 via 6 and d6 for the trigonometric substitution = = cosf, 0 € [0, ).
2. Express x,dz and v/1 — 22 via t and dt for the Euler substitution & = cos(2arctant), t > 0. Ezpress t via x.
Solution. The trigonometric substitution x = cos @ is given by
ey Ny

hen 0 € [0, h
_ gy when [0, 7] we have

sinf > 0 and so Vsin? 6§ = sin 0
= sinf

The differential dz can be expressed via df from x = cosf. The substitution x = cosf can be now summarized as:

r = cosf
—224+1 = sinf
dr = —sinfdf
# = arccosz

Solution. We recall that the substitution § = 2 arctan ¢t transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution 2 arctant after the substitution x = cos:

x = cosf use § = 2arctant

1 — tan®

= cos(2arctant) use cos(2z) = #
1+ tan* 2

1 —tan?(arctant)

1+ tan®(arctant)

14

o142

We can furthermore compute
1—12\?
—211 = _
T+ (1 n t2>

1
(1+412)2 — (1 —2)2
(1+12)? (7)

4¢2
— — V4t2 = 2t because t > 0
(1+12)2

1—2

The differential dz can be computed from = = 7 e

Finally, we can express t via x with a little algebra:



T Ty
1+tHe = 1-¢°
tx+1) = 1—2

.2 1—=2

14
1—

t = x here we use t > 0

1+ =z

P Vi—x/1+x

N Vi+ax/1+4+x

. vV—z?+1

o x+1

The Euler substitution z = cos(2arctant) can be now summarized as:

1
1P
2211 =
1-+tit
der = —mdt
. —x2 41
z+1

Problem 37. Let the variables x and t be related via v—2? + 1= (1 — x)t.

1. Express x via t.

2. Express /—x2 + 1 via t alone.

3. Fxpress dx via t and dt.

Solution. B7.1]
—22+1 = (1—2a)t square both sides
1-2)1+2) = (1—x)%? divide by (1 — z)
1+ = (1—2a)?
r(1+t?) = t2-1
2 —1 2
r = =1-
2 +1 2 +1
Solution. 37.21

Use Problem to get

2t 2t
Vealil=(1-a)t=(1-(1-2"))t=-"-
vl=01-2 ( ( t2+1>> 21
7.9.2 x =sind
Problem 38. 1. Ezpress x,dx and /1 — 22 via 6 and dO for the trigonometric substitution v = sin6, 6 € [—g, g]
2. Express x,dx and v/1 — x? via t and dt for the Euler substitution x = sin(2arctant), t € [—1,1]. Expresst via x.
Solution. The trigonometric substitution x = sin 6 is given by

vV—z24+1 = 1 —sin%6

_ J=a7 when 6 € [-%, %] we have
cos* 6 cos@ > 0 and so vcos? 6 = cosf

= cosf
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The differential dz can be expressed via df from x = sinf. The substitution x = sin # can be now summarized as:

T sin 6
—22+1 = sinf
dz = cos6df
§ = arcsinx

Solution. [38:2) We recall that the substitution § = 2 arctan ¢ transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution 2 arctant after the substitution = = sin 6:

T

We can furthermore compute

-2 41

The differential dz can be computed from x =

—r? 41

- IR

sin 6 use 8 = 2arctant
2tan z
sin(2 arctant) use sin(2z) = ————5—
1+ tan® z

2 tan(arctant)

1 + tan?(arctant)
2t

14 ¢2

(1

V(1 —12)2 =1 —t* because |t| < 1

14 1¢2
2—(1+1%)
1412

1+

1+1¢2

%. Finally, we can express ¢ via x with a little algebra:

_ 2t
use £ = 7z

+1 to both sides

(1+vV=22+1)(1—
1—v-22+41

T

The Euler substitution z = sin(2arctant) can be now summarized as:

R
YT 1t
—I2+1 = —1+m
de = 2(1t2>dt
(1+2)?
.- 1—+v—22+1

T

Problem 39. Let the variables x and t be related via v/ —x2 +1 =1 — xt.
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1. Ezpress x via t.

2. Express /—x2% + 1 via t alone.

3. Fxpress dx via t and dt.

7.10 Case 3: Va2 -1

7.10.1 x =sech

Problem 40. 1. Express x,dx and v/x22 — 1 via 0 and d6 for the trigonometric substitution x = cscf, 6 € [0, g] U [7r, 37”)

2. Express x,dz and V1 — 22 via t and dt for the Euler substitution x = sec(2arctant), t € (—oo, —1) U [1,0). Expresst
via T.

Solution. The trigonometric substitution x = sec @ is given by

1
2.1 = 20— 1= —1
T sec p—cy
_ sin? 6 _ Vian20 when 0 € 0 € [0, g) U [777 37”) we have
o cos20 an tan® > 0 and so Vtan? 6 = tané
= tané

The differential dz can be expressed via df from x = sec . The substitution x = secf can be now summarized as:

1
= 0 =
x sec p—r
22 -1 = tand
dr = 2% 49 — sechtands
cos? 0
0 = seclz

Solution. [40.2) We recall that the substitution § = 2 arctan ¢ transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution 2 arctant after the substitution x = sec6:

1
cos 6
1 1 —tan? 2
= — use cos(2z) = ————5—
cos(2arctant) 1+ tan® z
1 + tan?(arctant)

1 — tan?(arctant)
1412

1—1¢2

2
= —1 _
+1—t2

r = secl= use 0 = 2arctant

We can furthermore compute

142\°

x2—-1 = <1—t2> -1
(1+12)2 — (1 —¢2)?

(1 - t2)2 (10)
_ 4t2 t and 1 — ¢? have the same
N (1—1t2)2 sign for ¢t € (—o0, —1) U [0, 1)

2t

1—¢2

I
Q
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The differential dz can be computed from x = }f’zz Finally, we can express ¢ via x with a little algebra:

1412
xr = —
1—¢2
1—tz = 1+
1+2)t? = z—-1
2 xz—1
ozl
—1
;= Ve r>1 because when x < —1,
B —1 e have t € (—o0,—1
Vzi-1
. ;_12 x>1
-yl p<—1
The Euler substitution & = sec(2arctant) can be now summarized as:
1412
r = —
1 5tt2
21 —
' Cg
dr = ——=dt
* (1—1¢2)?
;o x?—1
z+1

Problem 41. Let the variables x and t be related via vz? —1 = (x + 1)t.
1. Ezpress x via t.

2. Express /x2 — 1 via t alone.

3. Fxpress dx via t and dt.

Solution. {11l

2—-1 = (x+ 1)t square both sides

(z—1)(x+1) = (z+1)%2 divide by (x +1)

r—1 = (z+1)#
z(1—1t?) 1+t
_o e L2
T oioe T 1—1¢2

Solution. {12

We use Problem to get

7.10.2 x =cscl
Problem 42. 1. Ezxpress x,dx and /1 — 2 via 6 and dO for the trigonometric substitution x = cscf, 6 € [O, g] U [7r, ‘%’T)

2. Express x,dx and 1 — x? via t and dt for the Euler substitution x = csc(2arctant), t € (—oo, —1)U[0,1). Express t
via .

Solution. The trigonometric substitution = csc 6 is given by

1
ol _ 0.5) Ufr. )
cos? 6 when 6 € 6 € [0,Z) U |7, 2X) we have
= t2 6 T2 72
sin® 0 cot@ > 0 and so Vcot? 6§ = tand
cot 0
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The differential dz can be expressed via df from x = csc . The substitution x = csc can be now summarized as:

r = cscb
22 -1 = cotf
dez = —C.Oiszi)de = — csc 6 cot 6dO
si
0 = Csc'{lx

Solution. [42:2)We recall that the substitution § = 2 arctan ¢ transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution 2 arctant after the substitution x = csc6:

1

r = cscl= use 8 = 2arctant

2tan z

= —- T use SIH(QZ) = m

sin(2 arctant)
1 + tan?(arctant)

2 tan(arctant)
1+t

2
_ L +t
o2\t
We can furthermore compute

1+2\?
2 -1 = <+ )1
2

5 0 when ¢t € (—o0,—1) U [0,1)

2
171
= —(=—-¢
2\t

The differential dz can be computed from x = % (% — t). Finally, we can express ¢ via x with a little algebra:

)
o] _ 1—t¢
2t
5 2 — (1+1t?) 1+1¢2
?-1 = ——= use r =
2t 2t
5 1
-1 = - -z
1 t
;= vai-1+z
. 1 _ 1 (—vVa2 —1+zx)
Vaz—1+z (Va?2—-1+42z)(—vVa?—1+zx)
t = z—va2-1
The Euler substitution z = cos(2 arctant) can be now summarized as:
L l-i-t
r = -|-
2\t
_$2+1 — 1 1_
2\t
1/1
dz = 2<t2+1)dt
t = z—vVaz-1
Problem 43. Let the variables x and t be related via /22 —1 = 1 — x.

t
1. Express x via t.

2. Express Vx2 — 1 via t alone.
3. FEzxpress dx via t and dt.
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8 L’Hospital’s rule

Problem 44. Compute the limits. The answer key has

sinx

lim
x—0 I

li v

im ———.
=0 In(1 + x)

.’1,‘2

1i

1‘2

lim ——.
250 sinzIn(l + x)

. sin? z
lim —————.
=0 (In(1 + z))

cosr —1

"2 sinzIn(l +z)

ri%(t*ln(l+x).

Problem 45. Find the limit.

. sinx —x
7. lm ——.
z—0 arcsinz —
. sin(mwx)lnx
2. lim (rz)

Solution. The limit is of the form “%”

Solution. [45.3 Solution I.

a1 cos(mz) +1°

sin (7)) Inx
m e\
z—1 cos(mx) + 1

lim ——
z—0 arctanx —

(sin (7z) Inz)’

2—1 (cos(mz) + 1)’

rz—1

im

rz—1

lim

z—1

(m cos (mz) Inz + sin (rz)

1 :4omsun

1 :uamsun

[A2MSUD

N

[A2MSUD

-

[42MSUD

—

— luPmSuD

e

[ADMSUD

— luamsun

ok

)

(—msin(mz))

(mcos (7z) Inz + sin (7x)

)

(—msin(mz))’

2

7.

10.

11.

lim

arctanz — x

not been fully proofread, use with caution.

g _
z—0 1,‘3 T
. arcsinx —x
lim ——. 9
x—0 {E?’ T
. 1
lim - —. z
s—>1x—1 Inx T
. cos(nx) — cos(mzx)
hm 5 . z
z—0 x T
) . arcsinx —x — %1]3
(Optional) lim — . or
z—0 sin” x €
. sinx —x
. lim

sin (mx)1n () + 27 cos (mz) x

z—0 arctanx — x

lim xsin

r—0o0

—1

—sin (7z) x

)

so we are allowed to use L’Hospital’s rule.

type “%”, L’Hospital’s rule

-2

(=2 cos(mz))

—7?sin () In(1) 4 27 cos (7) — sin ()

2
us

(—m2 cos(m))

sinx —x

42

L’Hospital rule

L’Hospital rule again

e

]

[42MSUD

[42MSUD

[42MSUD

[42MSUD

[42MSUD

[42MSUD

[42MSUD



Solution II.

3 5
i sinz — 2 _ (x—%—i—%— ")_95 ) ) .
lim —— = lim 5 = use the Maclaurin series of sin, arctan
z—0 arctanz — x =0 (p—2Z 42 ) g
, 3 5
~ fim %+ z® (é — .. ) The expressions in parenthesis
z—0 _% 45 g% — . ) are continous functions in x
1 2
e=0 —2 422 (L —...)
1
_ s +0
1
z+0
3
1
2
Solution. @54 e
I - (2) T (2) indeterminate form
R U e vt 1 Use L’Hospital’s rule
2 2
cos (£) (—=%
T—00 -2z
i
= lim 2cos 7)
T—00 2
= 2
Problem 46. FEvaluate the limit, or show that it does not exist.
2 1
1. lim ——— w2, lim xtan (-
20 1 —coszT Z damsup 700 x
3. lim zV®
z—0t

9 Improper Integrals

Problem 47. Determine whether the integral is
been proofread, use with caution.

Jusbioauoo

1 :domsun

T ‘dpmsun

convergent or divergent. Motivate your answer. The answer key has not

JUa6420U0D 1UIMSUD

Juabioauoo

[42MSUD

[ADMSUD

Juabisarp

Juabioarp

[A2MSUD

Juabisarp

[ADMSUD

[42MSUD

43

7. dx.

0
1
(2 — 32:)1-00000001

1
8 /233—1

-2

D=

dx.

o

9. /ef‘o’zdz.

-5

5

10. / 2%dzx.

— 00

oo

11. / 23dz.

— 00

oo

12. / ze~ % dg.

—00

Juabioauos uomsun

quobioarp uomsun

Juabioauos

[42MSUD

quabianuoo

[4DMSUD

quabioap

[42MSUD

JUuabL20100 L2MSUD



13. / \/Eefﬁdx.
0

oo
14. /sin2 zdz.
0
5

1
15. —dx.
/x2+x—2 o
0

o

1
16. —d
/x2+sc+1 o
0

Jusbioauon

Juabisarp

Jusbusarp

Jusbioauoo

[42MSUD

242MSUD

[42mSUD

[42MSUD

T
17. —dx.
7 /xQ—x—ldx

2

oo

1
18. —da.
/xz—x—l .

0

oo

2
x

19. —dz.

/x4+2 .

— 00

Juabioauod ripmsun

Jusbioarp uomsun

Juab120100 tapMmSUD

Solution. The integrand is a rational function and therefore we can solve this problem by finding the indefinite
integral and then computing the limit. We would need to start by factoring z* + 2 into irreducible quadratic factors - that

ot 2= (x2+\4/§x+\/§) (:172—\‘7@174—\[2)

The problem asks us only to establish the convergence of the integral; it does not ask us to compute its actual numerical
value. Therefore we can give a much simpler solution. The function is even and therefore it suffices to establish whether

is already quite laborious:

oo

2
/ L dzis convergent
zt 42 '

0
We have that

o0

Y Qe =
/x4—|—2 v

0

1

. . 2
is continuous so [
0

3 T
The function )

_a®
442

oo
expression. Therefore the convergence of our integral is governed by the convergence of [

1

e

0

2
x x
—d —d
xt +2 x+/x4—|—2 o

2

o0

1

integral is convergent, we use the comparison theorem as follows.

oo

2
z

—d

/x4+2 .

1

2

In this way we showed /1 xfi—&—de <1

oo (E2
get that ———dx is convergent.
1 .'1/'4 + 2

1
= lim1l--
t—00 t
=1
Theref i
erefore, as ———
’ x4+ 2

we have that z* +2 > z*

2

and therefore 7
xr* 4+

8

dx integrates to a number, which does not affect the convergence of the above

dz. To establish that that

> 0 is positive, we can apply the comparison theorem to

Solution. |47.13|It is possible to show that this integral is convergent by using the comparison theorem. However, we shall
use direct integration instead. First, we solve the indefinite integral:
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2¢/zd
/\/;Ee_ﬁdx = /\/Ee_ﬁ%/j; use dy/x = 2“%

= /\/:Ee"/"; (2v/zdV/z) Set vz =u

= 2/u267“du

— / u?d (e“)) integrate by parts

= oo fena)

I
o

= 2 —u26_“—|—/2ue_"du>
= 2| —ule v — /2ude“> integrate by parts again
= 2| —u?e " —2ue " + /26_“du

= 2 (—uQe*“ — 2ue " — 267“) +C
2 (—ar:e_‘/E —2/ze VF — 26_\/5) +C

Therefore
/\/gfe_\/%dm = tlim 2 [—xe‘ﬁ —2/ze VF — 26_\/5}
—00 0

= 4+ tlim 4 (fte*‘/{ — Ve Vi e*‘/g) ‘ Set u = v/t
—00

= 4—4 lim (u267“ +ue " + e*“)

= 4—4 lim % use L’Hospital’s rule for limit, see below
U—00 e

and the integral converges to 4. In the above computation we used the following limit computation

2 1 2 1
lim wrutlo lim ut Apply L’Hospital’s rule
U—00 el U—00 el
= lim —
u—o00 et
= 0 .

Problem 48. Determine whether the integral is convergent or divergent. Motivate your answer. The answer key has not
been proofread, use with caution.

3
_Z . / z ln z dx . Ju2bu201p UIMSUD 5' / X ln :de . Jusbisauos omsup
100 0
(o] 1 1
1 e
2. D) dx Juab420100 rudMSUD 6' de' quabu201p (UDMSUD
z(lnx) z
100 0
1 e
ez
7 / —dz
. P} . JU2b12000 umsUD
0
o ]
L | 8. /Sin x2dx (This problem is more difficult and may re-
nx
4' / T dx' Quabi20u09 L2MSUD 0 .
o quire knowledge of sequences to solve). rustiioauos omsun

Problem 49. Determine if the integral is convergent or divergent. If convergent, compute its value.
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2 oo L
x
. d .
1. / o 1d.fL' g cuomsup 4 / zlnz €z Juabioarp st pubapur Y} -0O LAAMSUD
1 100
1 1
1
2. / 2% Inxdz - J— 5. / xlnxdx Juobuoatp $1 (oubopus oy 00— riomsup
0 0
00 vz 001 —ac
VT ¢ zlnz Fushiomp o3 iboyus oyt :
0 100
Solution. {9.2 X X
3
/xQ Inxdx = /lnxd (g) Integrate by parts
0 0 )
r..3 3
= xlnx] —/x—d(lnx)
0 3
1
x5 ! x2
E nx]o / 3 x
0
x> 231"
= —1 _ —
E nx 5],
1 1 31
= ghl—c-— (111%x mo)
r—r
1 23 nz
= —— — lim
% :v~>01 3
= —— —lim % Use L’Hospital’s rule
9 x—0 =3
S I SR TN il
I J i B Ry Rt
1
)
Solution. E9.3|
(oo} 7\/5 [ee]
e
/ dr = 2 e ﬁd\/f
T
0 \/> =0
- [
=0
= lim —2e V® — (—26 ﬁ)
t—o00
= 2
Solution. E9.4]
Tl 71
dz = —d(l
/xlnx o / Inz (Inz)
100 =100
oo
= / d(In(lnx))
=100
= [hl(hm)]%o

The integral diverges to co.

lim In(ln¢) — In(In 100)

t—o0

oo

46



Solution. [49.6]

oo oo

/ 1+e® / 1
dx >
zlnz zlnz

100 100

Therefore by the comparison test, our integral diverges to co.

Problem [F9.4]
dz = o0

Problem 50. Determine if the integral is convergent or divergent. If it is convergent, compute the value of the integral.

oo

2
x
1. ——d
/x3+1 .
1

oo

1
.| ——d
2 /x2+1x

1
7 4
| e
6

10 Sequences

10.1 Understanding sequence notation

*s264201p (DLBUL DY) -OO lUIMSUD

K

[42MSUD

*§264201p (DLBJUL Y} -OO lLIMSUD

Problem 51. Give a simple sequence formula that matches the pattern below.

1111
1. 1, -,= 2=, ).
(73’57779’ )

1=Y2 — up :uomsuv
T
1 1 1 1 1
A TR T T T ik
5 2571257 6257 3125
I_u(%f) — = Up omsup
4 1 2
3. _572’_7,2,_76737’.“
5°25° 1257625
Ifu(%i) g— = Up uamsup

Problem 52. List the first 5 elements of the sequence.

1 3
1. a’TL+1:§ a'n"'ai ,a; = 1.
n

2. Gp =0pn_1+apn_2,a1 =1, as =1.

1 _
3. an = Man_l, ag = 1.
n

Problem 53. List the first 4 elements of the sequence.

(% ‘gt ‘I,) = (S0 VD €0 To ‘Iv) wuamsuv

(¥2 <9< p) = (20 Fp €0 To Tn) womsun

3. a, = cos(mn).

10.2 Convergence

4. (4,7,10,13,16,19,...)

1+ ug = Up usmsun

(%) w(1—) = Yo usmsup

6. (0,—1,0,1,0,—1,0,1,0,—1,0,1,...)

(%) 505 = wp ciomsup
4. Qp =Qp_1+2n+1, ag = 1.
1
. QAp ‘= —Ap—1, A1 = 1.
n
(11— “T1T—) = (90 ¥» ‘€p ‘Tp * In) wuomsun

(22 T°T) = (%0 ‘¥ €p ‘Tp < Ip) ruomsuv

Problem 54. Determine if the sequence is convergent or divergent. If convergent, find the limit of the sequence.
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1. a, =n.
2. a, =2".
3. a, = 1.0001".
4. an, = 0.999999",
5. an=n—vVn+1vn+2
6 an:m—n.

n

Inn
7 an:T\/ﬁ.

1
8. an,=—.

n

1
9. a, = —.

n!

uabua01p 1UdMSUD = —
rusBap 10. ay, : ustionsp. caomsuo

Jusbusarp uomsun 11. a, = cosn.

Jusbioarp ruomsuv 1
12. a, = cos <>

quobioarp uomsun

Problem 55. Find the limit of the sequence or prove that the sequence is divergent.

n 2n
1. a, = )
= ()

n!
2. ap = —.
n’ﬂ

11 Series

11.1 Some explicit series summations

11.1.1 Geometric series

Problem 56. Ezxpress the infinite decimal number as a rational number.

1. 1.6 = 1.6666. ..

ol

2.1.3=13333...

Problem 57. Ezxpress the infinite decimal number as a rational number.

1. 1.19 = 1.191919.. ..

Problem 58. Ezpress the sum of the series as a rational number.

> on 4 5n
2. ;71()”

Solution. (&1l

>

n

1

2" 4 3"
5n

Up 00 4—Uwy] Guabioauod (amsun n 1= e ST uohionuor wuomsun
n
Up OO 4—Uwy] Guobionuod amsun n+1
13. an = n . 2 = Up 004Uy Juobiloauod :Lamsun
Up OO— U] ‘Quabiaauod (uamsun n
2n+1
14~ Gn = n . Jusbioarp ‘iomsun
Up OO 4—Uwr] quabianuod fdmSUD
2n
n+1
Up OO0 4—Uwy| Guabioauod ‘amsun
n
16 n+1
Up OO4—Uwar] ‘puabusauod uamsun - On = 2TL : 0 = Up OO Uy Quabiaauod iLamsun
2= U U qusbizauos usmsuv
0 = wo %" Yusbisauco ruomsup
3. 2.16 = 2.16161616.. ..
% uamsu 176[63 uamsu
4. 2014.2014 = 2014.2014201420142014 . ..
% uamsun % uamsup
8 e 2 009 =0.0909090909 ... e
3.
o 5" — 3"
>
n=1
Y emsun
L R— o
el 3n+1 + 7n—1
> "
n=1
% LuamsuD % uamsu
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25 - 2626

n=1 n=1 n=1

Use geometric series sum f-la:

2= (2)" 3= /3\" ® .1
= = z 2 2 o= 7
5 <5) +52<5) ,;0 t=r

provided |r| <1

2 1 +3 1
T 5(1-2) "5(1-23
B 173( 5) ( 5)
6
Solution. (8.2
o 2" + 5" — (1 1 o
nZ:o 10" = 2(5”—1—2") use Yoo " =1, for |r| <1
1
- 11771
IR
4
Solution. (84
[ele] 3n+1+7n—1 [e'e] 3n 1 7n
A g 3" 17T
nZ::l 21n ;(2ln+721n)
= 3 = Z z
MOREME)
3 N 1 ! 1 S 1 " (o) n 1
() S (5) | memmer =
n=0 n=0
_ 3 1 .1 1
T(1-1) 21(1-3)
_ 4
T

11.1.2 Telescoping series

Problem 59. Use partial fractions to split the summand of each sum into two. Sum the telescoping series (a sum is

“telescoping” if it can be broken into summands so that consecutive terms cancel). The answer key has not been proofread,
use with caution.

oo

—6
1. _— . csoms
ngo 97712 + 37”L -2 Z amsup
oo
3
2. nz:;) n2 —3n+2 . ¢ remsup

o0
1
3. E In (1 — 2) . (Hint: Use the properties of the logarithm to aim for a telescoping series).
n
n=2

g u[ — [2msun
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Solution.

> 3 - 3 3
7;3 s = 7;3 (n S 1) use partial fractions, see below
- 1 1
= 3 _—
> (s ami)

I
w
RS

—

|
N |
~_
7N
| =

|
W
~_

+
N
Wl

|
| =
~__

+

In the above we used the partial fraction decomposition of . This decomposition is computed as follows.

n2—3n+2
3 _ 3
n2—-3n+2 (n—1)(n-2)
We need to find A;’s so that we have the following equality of rational functions. After clearing denominators, we get the
following equality.

3:A1(n—2)—|—A2(n—1)

After rearranging we get that the following polynomial must vanish. Here, by “vanish” we mean that the coefficients of the

powers of x must be equal to zero.
(A2 + Al)’fl + (7142 - 2A1 - 3)

In other words, we need to solve the following system.

24, —Ay =3
Aq +A4, =0

System status Action
—2A; —-Ay =3 . o . .
A A, =0 Selected pivot column 2. Eliminated the non-zero entries in the pivot column.
Al _‘_@ __3
A2 32 Selected pivot column 3. Eliminated the non-zero entries in the pivot column.
2 — 2
A, =3 Final result.

Therefore, the final partial fraction decomposition is the following.

3. _ 3 3
n2—3n+2 (n—1) (n—2)

Solution. (9.3
Su(-8) = £ (L)

> n—1 n+1

S (2)

= Y (In(n—1)—2In(n) +In(n + 1))

= (n1 - 21024 Lir®) + (I 2247 + Ler)
+ (lr3=24r7 + 1a5) + <. ..

= 1Ln;o(—ln271nn+ln(n+1))

= lim (—1n2+ln<n+1>)
n—oo n

= —In2 .
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Problem 60. Use partial fractions to sum the telescoping series (a sum is “telescoping” if it can be broken into summands
so that consecutive terms cancel).

3.
1 ‘42msuv 1— :domsup
> 2z + 1
2 Zx4+2x3—x2—2x o +2
=2 . 4 Z m %7 uamsu

£ wamsuv =1

11.2 Series convergence tests
11.2.1 Basic tests

Problem 61. Find whether the series is convergent or divergent using an appropriate test.

1. i(fl)" lnn.

Solution. lim (—1)"Inn does not exist and therefore the sum is not convergent.
n— oo

Solution. For n > 2, we have that Inn is a positive increasing function and therefore ﬁ is a decreasing positive

function. Furthermore lim o = 0. Therefore the series is convergent by the alternating series test.
n—oo Inn

11.2.2 Integral test

Problem 62. Determine whether the following improper integral is convergent or divergent, and evaluate it if convergent

>~ 1
/ dx.
10 a’,‘lnl‘

o0
Is the series Z convergent?
10

nlnn

Solution. [62

oo 1 t
/ dz = lim dx
10 zhnz t—oo [1g xInzx

= lim id(ln x)

t—o0 19 Inx

= lim /md(ln(lnw))

t—o00

= Jim [In(lnz)[;=;,
lim (In(lnt¢) — In(In 10))
t—o0

= 00,

therefore the integral is divergent (and diverges to +00).
The function ﬁ is decreasing, as for = > 10, it is the quotient of 1 by increasing positive functions. ﬁ tends to 0

1
nlnn

oo
as ¢ — 0o, and therefore the integral criterion implies that > is divergent.
10

Problem 63. Use integral test, the comparison test or the limit comparison test to determine whether the series is convergent
or divergent. Justify your answer.

DIt 22 g

n=1

Juabuoap uamsu Ju2b12000 umsUD

o1



ad 1

s Z (2n+1)In(n)

n=2

5. Determine all values of p, q r for which the series

(oo}

Jusbuoap uomsup 1
n;() nP(Inn)4(In(lnn))"

- 1
4 7;2 (2n +1)(In(n))?"

18 convergent.

Jusbioauos ruomsun

Problem 64. Use integral test, the comparison test or the limit comparison test to determine whether the series is convergent
or divergent. Justify your answer. The answer key has not been proofread, use with caution.

= 1
—Z- 7;2 m 1597 D4baqur 25N UDD GYUIBUPAU0D (UIMSUD
— 1
S
3n5 _|_ n 9597 UOSIUDAULOD U] IST UDD QU BL2AU0D (UDMSUD
n=1

11.2.3 Root, ratio tests

Problem 65. Determine the interval of convergence for the series. You may use either the ratio test or the root test, or
any other method that works.

o) 0 o x2n+1
1. — . -1 —
25 42 0

@ g0 40f 26430100 uamSUD [1°7—) 5 |@| tof sobionuoo wiomsun *

1
(2):5", where we recall that the binomial coefficient
n

2. i(n +1)a"
n=0

N
1

T > || 4of sobusauoo ruamsun

LS

) stands for g¢=1...(g=n+1)

o0 n
3 z n!
’ n (1°¢1—] 2 || 4of sabusau0o ru2msup
n=1

3

1 1—) D @ uof sabudauod usmsun

Problem 66. Establish whether the series is convergent or divergent. Use the ratio or root tests. Show all your work. The
answer key has not been proofread, use with caution.

oo
1 (—1)"n?3™"
. 1597 013D YN pavMIOfIybIDLS GUDBIIAUCD FUPMSUD
n=0
oo n
n+1
2. § in 1597 1004 YPM pavmaofpybivas PUobIIAUD FUPMSUD
n=1
o0 n
3 dn +1
. E n 1597 1004 ypm pavmiofpybivsys ‘Guabioarp :uEmSUD
n=1
oo
n
Z n
4' 4”77,' 1597 01304 SN QUDBLIAU0D LIMSUD
n=1 ’
o0
n
5 5o )
n! 1527 01304 25N ‘QUIbL2ALP L2MSUD
n=1

Solution. [66.1] We proceed with the ratio test; the alternating series test works too, however that approach is a lot less
straightforward and we leave it to the reader.
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exists and is

Let the n'™ term of the series be a,, = (—1)"n237". The ratio test states that if the limit lim,, ‘ag“

less than 1, then the series is convergent, and if the limit exists and is greater than 1, then then the series is divergent.

_1 n+lo—m—1 1 2
lim Gnt1) _ lim (=03 (n+1)
n—00 | Ap n—oo (—1)”3*7’112
1 1\°
= lim |- (14—
n—oo | 3 n

_ 1

= 3<l1
Therefore the series is convergent by the ratio test.
Solution. |66.5| The series can quickly be shown to be divergent by showing that lim (4;’,)n = 00. Nonetheless we will use

n—oo °

the ratio test, as it provides insight to what happens when we replace the constant 4 with another constant. In order to

establish the divergence of
n

= (4n
Zl(n!> |

we shall use the ratio test. We recall that the ratio test states that if lim
n—oo @y,

series is divergent and if L < 1 the series is convergent (if L = 1 the test is inconclusive).
We compute:

Ap4-1

exists and is equal to L, then if L > 1 the

n+1,

im 2L~ gim {n+ )" 0t

n—oo  a, n— 00 (n + 1)!(4n)”
_ oy (dn +4)(dn + 4)"

n=oo | (n+1)(4n)"

<lim 4”+4) <lim <”+1> >:4e>1 ,
n—oo N+ 1 n—00 n

Problem 67. Except for x = te, use the ratio test to determine all real values of x for which

and therefore the series is divergent.

s !
IR

n
n=0

is convergent. You are expected to use in your solution the fact that

lim (1—|— f) =e”
n

x—0

11.3 Problems collection, all techniques

Problem 68. Determine if the series converges or diverges. Present a detailed motivation for your answer.

00
n
(2n+1)
1' Z n2n 1597 7004 ‘s26420U0D :LIMSUD
n=1
00 1
2. s s1pduion ‘§96190U00 uPMSUD
Z 2 7597 UOSLID:
nvn 1
n=1 +
00
n
3 Z (-1)"vn
1597 $21425 HULIDULIYD ‘$264201U00 (UIMSUD
n+95
n=1
00 2
3n°+4
4' Z 10n2 + 1 0 07 puay J0uU Op spuDPWWNS ‘SILLIALP 1LIMSUD
n=1
00
(n!)®
5. Z (Tl + 1)] 00 07 puay spuvwans ‘fPa1DULIND 459) 01DL ‘§a6U20IP UIMSUD
n=1 :
0o 1
6. Z 6”2 2597 UOSIUDAULOD ‘$26420U0D (UDMSUD
n=1
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12 Power series, Taylor and Maclaurin series

12.1 Interval of convergence

Problem 69. Determine the interval of convergence for the following power series.

o~ (z—2)"
1. 2:: 3\/7T (€ 1] > = uamsup

o0
10" 2™
2 = (9585 ] 5 2 comn
n=1
o0
(z—3)"
n
3. nz:%(_l) om+1 . [¥‘g) D © :uomsup

Solution. [69.1] We apply the Ratio Test to get that lim
n—oo

An 41
An

= |z — 2|. Therefore the power series converges at least on

oo
the interval (1,3). When x = 3, the series becomes ngl 3\/%’ which diverges - this can be seen, for example, by comparing

S n
to the p-series % When z = 1, the series becomes Y 3(\;;)7“, which converges by the Alternating Series Test. Our final
n=1

answer x € [1,3).

Problem 70. Determine the interval of convergence for the following power series. The answer key has not been proofread,
use with caution.

o0
10" (z — 1)"
1' Z T [t1'16°0] >  :uomsun
o0
)’IL
2 Z Qn —+ 1 [0‘c—) > = wusmsup

12.2 Taylor, Maclaurin series

. . . 3
Problem 71. 1. Find the Maclaurin series for re®
u o=u
1+ug oo
. . . 3
2. Use your series to find the Maclaurin series of/scem dz.
“suorgounyf
fupquowags ypm pagpiborur 9q 3,und
abour oyp ogou
ju(g + ug) O=% N
< +0

ctug®? o

Problem 72. Find the Maclaurin series of the function. The answer key has not been proofread, use with caution.

_1
1. 513"
o
) iy B (o () B+ &) o
1
2
- =7
o=u
W@ (T 4 w) % =4 gTh 4 prg f Tg T uomsun
3 1
© (1—x)8
o=u
’Mm7(5+u)z([+u) e :('*‘+Z_uz([—u)u+.-»+zz[+m9+z)% rupmsun
—2x
4. xe T,

1=u o=u
T _ulp_u(1-) X = ZTyuTu(1—) X womsuv
uPp—ulyi—u €S T+u®ulu =

Problem 73. Compute the Maclaurin series of the function. Please post on piazza if you discover errors in the answer key.
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6.

T
er.
ju 0=
R Z L1amsuD
u® oo
2x
e .
= o :omsup
x
wTul 5o e
2
T
e’ .
ju 0=u
= 19 ‘LIMSUD
ug® = @
a2
—3x
e
u o=u
[ — = 5 iuomsuv
K= e
ugTufu(l—) (s
2 2z
xrTe
w 0=u
- = g2 omsup
z+u®ul oo
sin x.

1
3—x
o=u
1+H4E 2 somsun
u® )
1
3 -2z
2 o=u
Lo TEE T omsuo
u@ oo
1
1422
o=u
uzzu(I*) Z ‘LomsuD
=
1
1 — 222
o=u
ug®ut K emsup
oo
1
2 -1
o=u
wg® X = womsuv
=
1 1
2 2
z—1 x+1
EX s suws comsuv
1
(1—x2)?
o=u
W@+ w) T aamsun
=
1
(1—2x)3
4 o=u 0=u o
u“”(Hu) X = wsetwtw X oo
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10.

11.

9.

10.

11.

12.

13.

1.

15.

16.

17.

: 0=u
M) (VR = s caomeun
T+uz® e
COSX.
i(uz) W(15) Z = 500 uomsuD
ug® 0
sin(2x).
. 2 o=u
Mu(tﬂ = (zg)uts omsun
1+uz®1+ugd e
cos(2x).
(1 0=u
@u 2u(1=) X = (zg)sos womsuv
cos?(z).
i(ug) =L E
‘7[7uzzu(17) X +-= © 800 uomsup
ug hed B
rsinx.

i(1 + ug) o=
Y G X =rwse usmeuw
e+ug® o

Problem 74. Compute the Maclaurin series of the function. Please post on piazza if you see errors in the answer key.

In(1+ x).
u I=u
7 I+u(1*) g 1A2MSUD
u
In(1l — x).
u [=U
- — 142MSUD
u® oo
In(1 — 3z).
u 0o=u
P g —  uomsup
usu
In(1 — 322).
u I=u
—  uomsup
ug®u€ oo
In(3 — 22?%).
u e I=u
uz‘” u(g) g — gu[ J2msun
xIn(3 — 222).
I=u
- (E) z — gulxT uPmSuUD
T+ug® NG pevsy
arctan x.
. 0=
_ IR omeun
14ug®u(l—) S
arctan(2zx).
T+ ug o=u
Y JAIMSUD
T+ug®14uglu(l—) =
arctan (2;52) )
o=u
. + e Z J42MSUD

gtup®i+ugfull=) S

Solution. [74.13] We solve this problem by using algebraic manipulations and substitutions to reduce it to the already



studied power series expansion of In(1 — y)

In (3 — 2x2)

Problem 75. Compute the Maclaurin series of

where n > 1 is an integer.

Solution. [7A] We have that

S y"
In3 — =
2

In3 — i (;)”
n=1

Substitute back y = %J;Q
.2?2"

n

d 1 (1—=z) 1
c??x(llx> ) (cllix)21 (1—a) ] (1;x>2
() -4 ()3 - o
o (22) = (aam) =290y = aoay

i () - poe
dik—? (1ix) - % ((1(k—x)2’3£1) - éf—;))"'“

We can now compute Maclaurin series as follows:

1
MC((I—J:)k> = Me ((k—l)!dxk—l
1 dk71
T (k- 1)l dak !
T (k- 1)l dak T

n=0

S n ) n—k+1
T
— (k -1

n
oo

D

m=—k+1
= (mAk—-1\ ,,
k-1 )"

Problem 76. Compute the Maclaurin series of

m=0

where ¢ € R is an arbitrary real number.

Mc (
> )
n=0

= ﬁ <Zn(n— 1)...(n— k+2)xnk+1>

11—z

m+k—1\ .,
k-1 )"

n(n—1)...(n—k+1)

Recall (Z) = .

Setn—k+1=m

first kK — 2 summands are zero
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Solution. [76/Since g does not have to be an integer, we cannot directly relate its power series to the power series of 1-— +w or
its derivatives. We therefore compute the Maclaurin series directly using their definition.
L+ = g +a)

iz (L+2)) = qlg— DA +2)?

ar (L+2)) = qlg=1)(¢—2)...(¢g—n+1)(1+z)T"
Therefore - (14 x)9 Jomo =a(@—=1)(¢=2)...(¢=n+1)(1+0)7" =q(qg—1)(¢g—2)...(¢—n+1). Therefore

. — 1 d" . n
Mc ((1+2)7) = Z o dan (L+2)1) 0
=0 (12)

L SN2 gt D) ()
o nz:% n! ;(TL)

For the last equality we recall the definition of binomial coefficient ( ) = w and that it allows for ¢ to be an
arbitrary complex number . The above formula is a generalization of the Newton blnormal formula.

Problem 77. Compute the Maclaurin series of the function.

1. V1+zx. ) ;
— 2
#(2) %" somoun Vi-a?
RS - 7 3
uzz(%,>u(T )z ‘uamsuD
1
’ Ttz 4. arcsin x.
ul’(%ui) D:Zcu [LamsUD %(%ui) (=) iu e

Solution. [77.1| This problem follows directly from the formula (1 +z)? = Y (%)z™.

Me (VI+ ) =M ((1+2)) = i(i)

n=0

Solution. [77.2] This problem can be solved by computing the derivative of the preceding problem. However, it is easier to
simply apply the generalized Newton Binomial formula.

Me ((1+2)7) = i (f)x”

n=0

Solution. This problem is solved by replacing = with —22 in Problem To avoid the possible confusion, we carry
out the substitution by introducing an intermediate variable y.

Mec ((1—372)7%) = Mc ((1—|—y)_%) Set y = —22
= i (_j)y” Substitute back y = —a2
n=0
oo 1
_ (71)71 (2>$2n
2,

Solution. [77.4f We have that - (arcsln x) = ﬁ, and the Maclaurin series of ﬁ were computed in Problem W
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The power series of arcsin z are therefore obtained via integration.

%Mc(arcsinm) = Mec cﬂv(arcsimx)>
1
- f)
= 7;)(1)”(”2 2"
> _1
Mc (arcsinz) = /(;(—1)” n2)3;2n> dz

Problem 78. Find the Taylor series of the function at the indicated point.

1. 5 ata=-1.

x2

use Problem

7.3

C = 0 since arcsin0 =10

2. ln(\/x272x+2) ata=1.

o=u
LJatRa+w) =+ (T @)e+ (T+2)g + 1 womsun
>

ug I=u

_ (1—) 142MSUD
ug(t — o) T 2

3. Write the Taylor series of the function Inx around a = 2.

Solution. [[8.2]

n(Ve?—25432) —

1

N =
=

I
M| —
gL

1

I
M8

n=1

(z—1)*>+1)
(=1)

(_1)n+1 (

4 T

=u
w(@—2) K+ gup omsup
5o

14u(T—)

use In(l14+y)= > (—1)"“7’%7 ly| <1

n=1
n+1 ((.’L’ - 1)2)n
n
T — 1)2n
2n

Although the problem does not ask us to do this, we will determine the interval of convergence of the series for exercise.

If we use the fact that In(1 +y) = > (—1)”“% holds for —1 < y < 1, it follows immediately that the above equality

holds for 0 < (z —1)? < 1, which holds for z € [0,2]. Let us however compute the interval of convergence without using the

aforementioned fact.

Let a,, be the n'” term of our series, i.e., let

We use the ratio test:
Ap+1
an

lim

n—oo

a, = (_1)n+1 ($ — 1)2n

2n
_1\n+2 _ 2n+2
lim (=)= (x—1) 2n
n—00 (2n + 2) (=1)ntl(x — 1)
lim (x — 1)? o
n—00 n-+1
(z—1)°

By the ratio test, the series is divergent for (z — 1)? > 1, i.e., for |z — 1| > 1, and convergent for (z — 1)? < 1, i.e., for
|z — 1| < 1. The ratio test is inconclusive at only two points: z —1 =1, i.e, 2 =2 and 2 — 1 = —1, i.e., z = 0. At both

2n

o0
2
points the series becomes Z(—l)"“— and the series is convergent at both points by the alternating series test.

n=1

58



Solution. [78:3] This solution is similar to the solution of [T8:2] but we have written it in a concise fashion suitable for test
taking.
Denote Taylor series at a by T, and recall that the Maclaurin series of are just Ty, the Taylor series at 0.

T(lnz) = Tz(ln((x—2)+22))
- T ln(2<x; +1>>>
— T(m2+hn (1+x;2>) To(ln(1 + 1)) = nzl( oy
"“(m ?)

= ln2+z
= ln2+z (z—2)"

Problem 79. Find the Taylor series around the indicated point. The answer key has not been proofread, use with caution.

l — o=u
1. > at a =1. W =), (1) :og =t (I—) = (1) + (1 — @) — 1 emsup

1 — o=u
2. 22 ata=1. WI—2) ) +u) K =+ (T =27 — (T —2)g + (1 — 2)g — T womsuv

oo

12.3 Example of differentiable function not equal to its Maclaurin series
Problem 80. Let f(x) be defined as

(@) ::{ e w7 if >0

0 otherwise.

1. Prove that if R(x) is an arbitrary rational function,

lim R(z)e 32 =0
x—0
x>0

2. Prove that f(x) is differentiable at 0 and f'(0) =0

3. Prove that the Maclaurin series of f(x) are 0 (but f(x) is clearly a non-zero function).

13 Complex numbers

Problem 81. Carry out the operations. For some of the problems you may want to review the Newton Binomial formula.

N2 N\ —2
1. (54 3i)°. 3. (54 3i) R
91 + 20g ‘42msun % e 89419 B 6 (]‘ + Z)S ‘
4. (1+14)3. v e
5+ 3i (+9) T
S wrvE 2 — g omeun 7. (141i)75
I S O CRRE R~

Solution. [81.6] By the Newton Binomial formula, we have that
(1+4)° =1+5i +10i® +10i® +5i* +i° =1 —-10+5+4(5 — 10+ 1) = —4 — 44,

Solution. [BI.7] Using the preceding example, we have that

1 1 4t 4 444 11
144)-5 — _ _ - =4
) = A~ TI—6 - (AT ) 32 g8

Problem 82. Plot the number z on the complex plane (you may use one drawing only for all the numbers). Find all real
numbers ¢ and p for which z = e, Your answer may contain expressions of the form arcsinzx, arccosx, arctanx, Inz,
only if x is a real number.
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1. z=1+14V/3. 5 z=—-1—1i.

. ‘(uﬂtz+%)?+zu19 =7 eme
2. z=—-2— 3. 6,z:*/§4+i,
EE ‘(J“[ZJr(%)IIEQO~IE)?+(gI)u1 ge = = wmsw
3. z=1—1iV3. 7 — i
z3 ‘(Mtz-*-%—)?-%—zmg T 7 omewy
boz=14i. 8. z=3+4i.
e ‘(wter%)erz w §7 7 F emee

Solution. [82.]]
Solution I. We have that

VA=l

Z

ZBH‘(

|z|=\/5=\/(1+i\/§) (1—i\/§)=\/12+\/§2=\/1=2

Recall that ePT% = eP(cos ¢ + isin @) and therefore

|zlcosp  Rez 1

R P
. z|sinp Im z V3
sin = = = —
7 E EE
i 3
tang = sinp V3
cos ¢ 3

: — V3) _
Therefore ¢ is of the form ¢ = arctan (T) =

cos (3 + (2k + 1)m) = —%. On the other hand, sin

—~

2

==+ 2km, forall k € Z

w| 3

(Recall that Z denotes the integers).

= z :LPMmSuUD

K ‘(uqz+%g)@+zu1 %J

2 =

n

Sy ¢ ‘uPmSUD
(xaz+9)etgur—

2 = z :uomsup

Z3 J(w(er%f)f

= z :PMmsuD

ua’z+(%)!1wgolﬂ)?+9 ‘119

% + km. However ¢ cannot be of the form Z + (2k + 1)7 because
T +2km) = ¥3 and cos (% + 2km) = 4). Therefore

As studied in class e” = |z| = 2, and therefore p = In(e”) = In |z| = In 2. Therefore we get the answer

1+ i3 = e 2+i(5+2kr)

for all k£ € Z. To finish the task we need to plot the number z.
Im 2

oz =1+iV3

Z

B

-2 L 3i
Solution II. We draw the number z as above. We compute that sinp =
that

Im 2z _ /3
lz2[ = 27

14 ivV/3 = e 1HiVBI+i(§+2km) _ In2+i(5+2kn)

60
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Solution.
We draw the number as indicated on the figure. We compute that sinp = —\/%, cosp = —\/%, tany = % By the

convention of our course, arctan ¢ € (=%, %). Therefore ¢ = (arctan (2) + «) + 2k for all k € Z. Finally, we get

—9_3; = eln \7273i|+i((arctan(%)+7r)+2k:7r) _ eln \/ﬁ+i((arctan(%)+w)+2kﬂ')
6% In 13+i((arctan(%)+ﬂ')+2kﬂ')

Problem 83. Find all complex solutions of the equation. The answer key has not been proofread. Use with caution.

1. 23 =i
[amsuD
2]
21— (%7 urs @ + %7) soo
7+§ (% urs v + %);oo our
anoa wiof uvjod % + ﬁ % + ﬁ—
wp
< 1
3 _
2. 2" = -y suomsun
F| (B (5 §
P | (B (20)0) §
Fo g | () ot (24) ) §
anyoa w.iof uvjod
3. 2t =-16
*(suonpurquiod unof v u1) g N F gNTF rdamsun
4. 23 =27
e rghe — & aghy + & someu
5.28=1

‘(samoa g v303) TF ‘2F ‘(suoypurquioo unof 1v) 1% F Lq: L42MSUD
Z TA

Solution. Let z = |z|(cos § + isinf) be the polar form of |z| for which 6 € (—,7]. We have |z|®> = |i| = 1. Therefore
|z| = 1.

We can write i in polar form as i = cos (g) + ¢ sin (g) Therefore

2 = use de Moivre’s formula
|2]3 (cos(36) + isin(30)) = cos (%) +isin (%) use |z| =1
when sines and cosines
cos(36) +isin(30) = cos (%) +isin (%) coincide the angles differ
by even multiple of 7
30 = 5 +2km, k — integer
0 = Z+Ek¥ o€ (—mn]=k=-1,0, or 1
o = Ssrlo

To find out the values of z in non-polar form, we simply plot the numbers z = (cos@ + i¢sinf). The three complex
solutions lie on a circle of radius 1; the numbers form an equilateral triangle, as shown on the picture. To find the actual
values for these complex numbers, we use known values of the trigonometric functions. Our final answer is as follows.

Im

polar form | value
cos (3T) +isin (31) | —¥3 1

6
: cos (%) +isin (§) @—&—%
cos (—g + i sin —g) —1

61
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Solution. [83.2

Let z = |z|(cosf + isin6) be the polar form of |z| for which § € (—m,m]. We have |z|* = || = £. Since |2| is a positive
1 1
real number it follows that |z| = i/; =3

1
We can write —é in polar form as —% =3 (cos (—g) + ¢ sin (—g)) Therefore
B = use de Moivre’s formula
|2]3 (cos(36) +isin(30)) = & (cos (—%) +isin(—%)) use [z| = &
when sines and cosines
cos(30) +isin(30) = cos(—%) +isin(—3) coincide the angles differ
by even multiple of 7
30 = -3+ 2km, k — integer
9 = —Z+k¥ 0 € (—mn]=k=-1,0, orl
0 = —F,—§ org .

To find out the values of z in non-polar form, we simply plot the numbers z = %(cos 0 +isin@). The three complex solutions
lie on a circle of radius %; the numbers form an equilateral triangle, as shown on the picture. To find the actual values for

these complex numbers, we use known values of the trigonometric functions. Our final answer is as follows.

Problem 84. Ezxpress the number in polar form and compute the indicated power. The answer key has not been proofread,

use with caution.

1. z=+/3+1, find 2°.

an = ((8) s+ (3)s00) g = o= (L) msr+ (£) s00) g = 1+ gA = = cuomeuo

2. 2=+/3i — 1, find 2'0.

2ENTIS +elg— = (15 + %—) o1 = 017 ‘((F) mse + (5%

3. z=—1—1, find 2*'.

) s00) g = = womsuv

IPTOT + VEOT = % ‘((u%) uts 4+ (JL%) soo);/\ = z uomsun

Problem 85. The de Moivre follows directly from Euler’s formula and states that (cos(na) +isin(na)) = (cos a4 i sin ar)™.

Ezpand the indicated expression and use it to express cos(na) and sin(na) via cosa and sin .

You may want to use the Newton binomial formulas (derived, say, via Pascal’s triangle). The formulas you may want

to use are:
(a+b)? = a®+2ab+0?
(a+0b)* = a®+3a%b+ 3ab® + b3
(a+b)* = a*+4a3b+ 6a%b? + 4ab® + b*

1. Ezpand (cosa +isina)?. Express cos(2a) and sin(2a) via cosa and sin .

S0 80DV UIS g

0 Ul — 0 _S0D
c [4

2. Ezpand (cosa + isina)3. Ezpress cos(3a) and sin(3a) via cosa and sin a.

0 S0P D WIS g + O guIs —
0 _UIS0S0dg — O

00
14 4

€

3. Expand (cosa + isina)?. Ezpress cos(4a) and sin(4a) via cosa and sin .

0 SO0 (UISH — D (SO0 O UISF
o Ul — o _uIs© _S000 — © S0
v g8 5909 i3

14 Curves

(og)uts
(og)soo

(og)ms
(og)soo

(op)urs
(op)so0o

Problem 86. Match the graphs of the parametric equations x = f(t), y = g(t) with the graph of the parametric

x = f(t)
y = g()

62
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14.1 Curves in polar coordinates

Problem 87. Match the graph of the curve to its graph in polar coordinates and to its polar parametric equations.

1. r=1+sin(8) + cos(9)

.r=20,0 € [-m, 7]

. r =cos(30),0 € [0, 27].
. =1v0,0 € [0,10n].

S2YIDUL 1 U2MSUD

. r=2+sin(56).

\,\

/\/
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Problem 88.

1. Sketch the curve given in polar coordinates by v = 2sin@. What kind of a figure is this curve? Find an equation
satisfied by the curve in the (x,y)-coordinates.

2. Sketch the curve given in polar coordinates by r = 4cosf. What kind of a figure is this curve? Find an equation
satisfied by the curve in the (x,y)-coordinates.

3. Sketch the curve given in polar coordinates by r = 2secl. What kind of a figure is this curve? Find an equation
satisfied by the curve in the (x,y)-coordinates.

T = T U] 2Y] SL 20UND Y] AIMSUD
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4. Sketch the curve given in polar coordinates by r = 2csc. What kind of a figure is this curve? Find an equation
satisfied by the curve in the (x,y)-coordinates.

5. Sketch the curve given in polar coordinates by r = 2 sec (9 + %) What kind of a figure is this curve? Find an equation
satisfied by the curve in the (x,y)-coordinates. GAT — @ = 1 sun oyp o1 srumd oy susmeup

6. Sketch the curve given in polar coordinates by r = 2 csc (9 + %) What kind of a figure is this curve? Find an equation
satisfied by the curve in the (x,y)-coordinates.

Solution. Recall from trigonometry that if we draw a unit circle as shown below, sec§ is given by the signed distance
as indicated on the figure. Therefore it is clear that the curve given in polar coordinates by y = secf is the vertical line
passing through x = 1. Analogous considerations can be made for a circle of radius 2, from where it follows that y = 2sec
is the vertical line passing through x = 2.

Alternatively, we can find an equation in the (z,y)-coordinates of the cuve by the direct computation:

x=17rcos =2sechcost =2

/

sec 6,

[
N

Solution. R85

Approach I. Adding an angle « to the angle polar coordinate of a point corresponds to rotating that point counterclockwise

at an angle « about the origin. Therefore a point P with polar coordinates P (2 sec (6‘ + %) ,9) is obtained by rotating at

an angle —7% the point ) with polar coordinates @ (2 sec (9 + %) , 0+ %) The point P lies on the curve with equation

r = 2sec (9 + %) and the point @ lies on the curve with equation r = 2sec6 - the latter curve is the curve from problem

Thus the curve in the current problem is obtained by rotating the curve from at an angle of —7. As the curve
s

in Problem [88.3]is the vertical line 2 = 2, the curve in the present problem is also a line. Rotation at an angle of —% of a
vertical line yields a line with slope 1. When 6 =0, x = % = 2v/2, y = 0 and the curve passes through (2v/2,0). We know

2
the slope of a line and a point through which it passes; therefore the (z,y)-coordinates of our curve satisfy
Y=z — 22

Approach II. We compute

r = rcosf = m multiply by cos (%) = g
. 2sin 6 . o 3
y = rsinf= cos(6 1 %) multiply by —sin (§) = —%2

add the above

B e (1) : _ o
zcos (5) —ysin (F) 2 cos (01 T) use cos(a + 3) = cosacos 3 — sin asin 3
g(ﬂc—y) _ 2cos(9+i§_2

Yy = l’—2\/§7

and therefore our curve is the line given by the equation above.

14.2 Curve tangents

Problem 89. Find the values of the parameter t for which the curve has horizontal and vertical tangents.
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Ly=t?—t+1l,z=t2+t-1 3. x = cos(t), y = sin(3t)

/

2. x=t3—t2—t+1,y=1t2—t—1. 4. x =cos(t) +sin(t) , y = sin(t).

Problem 90. Show that the parametric curve has multiple tangents at the point and find their slopes.

1. ¢ = cost, y = 2sin(2t), two tangents at (z,y) = (0,0). 3. & = cost,y = sin(3t), find the two points at which the
curve has double tangent and find the slopes of both

pairs of tangents.

4ox=t3—t2—t+1,y=1t>—t—1, find a point where
the curve has double tangent and find the slopes of the
tangents.

2. x = costsin(3t), y = sin(t)sin(3t), siz tangents at v

(z,y) = (0,0).

14.3 Curve lengths

Problem 91. Plot the curve. Set up an integral that expresses its length. Find the length of the curve.
1. y=+/z,z€[1,2].
2. y=2% z€ll,2.

I
+3

tell,2
: [1,2]

<
—~
~+
=
|
DO o [

4.z =t—2t andyzgt% fromt=1tot=4.

Solution. The length of the parametric curve is given by

= () ()
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We have that

de 1
dt 2Vt
Qv g
ddg 12
=) = =—-=+4
(&) = %%
dy 1 4
- = 4172 = —
By -eln
dz dy 1 1
<dt> <d> _4t+2\/¥+4_<2x/i+2)

%\/{f + 2 is positive and \/ \f t+ 2 % . So the integral becomes

L_z<é/+-) t= Vit j (24+8) —(1+2) =7

Problem 92. Set up an integral that expresses the length of the curve and find the length of the curve.

x(t) = e +et
1. ~ p g otel.3
SRR —
xz(t) = sint+ cost
2 y(t) = sint— cost ¢ €[0,7]
4
/
'
!
<
\ //
\
N\
\\
S~
)Lé/\ JA2MSUD

14.4 Area under curve

Problem 93. Give a geometric definition of the cycloid curve using a circle of radius 1. Using that definition, derive
equations for the cycloid curve. Find area locked between one “arch” of the cycloid curve and the x axis.

14.5 Area locked by curve

Problem 94. 1. The curve given in polar coordinates by r = 1+ sin 20 is plotted below by computer. Find the area lying

outside of this curve and inside of the circle z® + y* = 1. T o — o omsu

66



2. The curve given in polar coordinates by r = cos(20) is plotted below by computer. Find the area lying inside the curve

and outside of the circle 2 + y* = %,

% + 2 uomsup
3. Below is a computer generated plot of the curve r = sin(26). Find the area locked inside one petal of the curve and

outside of the circle x* + y* = ~.

Yab. 4
CAD

Solution. A computer generated plot of the two curves is included below. The circle 22 4 2 = 1 has one-to-one polar
representation given by r = 1,0 € [0, 27). Except the origin, which is traversed four times by the curve r = 1 + sin(26), the
second curve is in a one-to-one correspondence with points in the r, 8-plane given by the equation r = 1+sin(26), 6 € [0, 27).
Since the two curves do not meet in the origin, we may conclude that the two curves may intersect only when their values
for r and 6 coincide. Therefore we have an intersection when

1+sin(20) =
sin(26) =
§ =

O O =

,2,m, 2| because 6 € [0, 2n)

Therefore the two curves meet in the points (0,1)(—1,0) and (0, —1), (1,0).

Denote the investigated region by A. From the computer-generated plot, it is clear that when a point has polar coordinates
0 €[5, mU [57”, 27], r € [1+sin(20),1] it lies in A. Furthermore, the points 7, 6 lying in the above intervals are in one-to-one
correspondence with the points in A.

Suppose we have a curve r = f(6),0 € [a,b] for which no two points lie on the same ray from the origin. Recall from
theory that the area swept by that curve is given by

b
1
/ SP 00

Therefore the area a of A is computed via the integrals

2

[NE]

™

T 2
1 1
a = /— 12— [1+5sin(20) do + / = (1 — (1 +sin(20))*) d | use the symmetry of A
2 t\/ N—_——— 2
B outer curve inner curve 37"'
= / (12 — (1 +sin(26))?) do = / (—2sin(20) — sin*(26)) d¢ use sin? z = 17#5(22«)
3

(—2 sin(20) — % + ;cos(4e)> df = {005(29) - %9 - ésin(éw)

[ME]

Il
[NORNE
|
N
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Solution. A computer generated plot of the figure is included below. The circle 2% + y? = }1 is centered at 0 and of
radius % and therefore can be parametrized in polar coordinates via r = %, 6 € [0, 27].
Points with polar coordinates (r1,6;) and (rq,02) coincide if one of the three holds:

oy =ry#0and 0, =05+ 2km, k€ Z,
ey =—ry#0and 6y =02+ 2k + 1)m, k € Z,
e 1 =19 =0 and @ is arbitrary.

To find the intersection points of the two curves we have to explore each of the cases above. The third case is not possible
as the circle does not pass through the origin. Suppose we are in the first case. Then the value of r (as a function of ) is
equal for the two curves. Thus the two curves intersect if

r=cos(20) = 3
20 = +£%+2kn where k € Z
0 = L5 +kn where k € Z
0 = 5. % +57T, —11% +m, =g t+2m all other values discarded as 6 € [0, 27]
o= f

This gives us only four intersection points, and the computer-generated plot shows eight. Therefore the second case must
yield new intersection points: the two curves intersect also when

r=cos(20) = -1
20 = i%” + 2km where k € Z
0 = 5 +kn where k € Z
0 = 3,5 —|—27r, _?“ +m 5+ 27 all other values are discarded as 6 € [0, 27|
0 = LEET

From the computer-generated plot below, we can see that the area we are looking for is 4 times the area locked between the

two curves for § € [ZX, Z|. Therefore the area we are looking for is given by

<c052(29) — (%>2> de

4

x
/ 1
2

jus
6

We leave the above integral to the reader.

Solution. The circle 2% + y?> = 1 is centered at 0 and of radius % and therefore can be parametrized in polar

1
coordinates via r = 3,6 € [0,2m).
Points with polar coordinates (r1,601) and (72, 603) coincide if one of the three holds:

e ry=ry#*0and 0, =05+ 2kn, k€ Z,
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er;=-ro#0and 0 =0+ (2k+ 1)1,k € Z,
e 1 =719 =0 and @ is arbitrary.

To find the intersection points of the two curves we have to explore each of the cases above. The third case is not possible
as the circle does not pass through the origin. Suppose we are in the first case. Then the value of r (as a function of 6) is
equal for the two curves. Thus the two curves intersect if

r=sin(20) = 1
20 = & T 2kmor %’r + 2km where k € Z
0 = %—l—lmor% where k € Z
9 — = 13r 5m 17x other values discarded as
= 12120120 12 9 € [0,27]

This gives us only four intersection points, and the computer-generated plot shows eight. Therefore the second case must
yield 4 new intersection points. However, from the figure we see there are only two intersection points that participate in
the boundary of our area, and both of those were found above. Therefore we shall not find the remaining 4 intersections.

Both the areas locked by the petal and the area locked by the section of the circle are found by the formula for the area
locked by a polar curve. Subtracting the two we get that the area we are looking for is:

— 57
97 2

men = L smzen - (1)) a0
rea = 2Sln 2

0=—13
=%
1 1—cos(46) 1
= = - )de
2 ( 2 4)
=% 5m
_ 1[1, _sin(0) =1
2|4 8 oo x
1 \/g 12
= u"™T T

Problem 95. The answer key has not been proofread, use with caution.

1. Sketch the graph of the curve given in polar coordinates by r = 3sin(20) and find the area of one petal.

yor9ys - « 8 . iome
% YOPRYS 2AUND ‘T UOMSUD

2. Sketch the graph of the curve given in polar coordinates by r = 4 4+ 3sinf and find the area enclosed by the curve.

14
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15 A Bit of Differential Equations

15.1 Separable Differential equations
15.1.1 The Mixing Problem

Problem 96. A tank contains 30 kg of salt dissolved in 10000 liters of water and salt solution. Brine that contains 0.05 kg
of salt per liter enters the tank at a rate of 10 liters per minute. The solution is kept thoroughly mized and drains from the
tank at the same rate (10 liters per minute). Determine how much salt remains in the tank after 45 minutes.

6489°0¢ & 00z _20LY — 00§ “omsun

(0]
00g _
SOlu‘:iOIl- . Let
y(t) Salt in tlle tallk aftel t IIll‘IlllteS (I.Il kg)

We are given y(0) = 30kg, the initial amount of salt. We are looking to find y(45), the amount of salt after 45 minutes. We

have that d
dit/ = (rate in) — (rate out)
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The rate of salt entering the tank is constant:
(rate in) = 0.05kg/L - 10L/min = 0.5kg/min

As the solution is thoroughly mixed, at any time the concentration of salt in the tank is

Y
———kg/L.
100009/
Therefore the rate of salt going out of the tank is

(rate out) = Tg()()kg/L * 10L/min = ﬁk‘g/min

Therefore the differential equation for the amount of salt in the tank is

dy Yy

— = 05 - —

dt ~—~ 1000
(rate in) ~—~—

(rate out)

There are two variants for remainder of the solution. Variant I uses indefinite integration and is slightly informal, but is
easier to learn and remember. Variant II is rigorous, but more challenging understand and write up. Both solutions are
acceptable for full credit in a Calculus exam. Variant I is recommended when taking exams and Variant II is recommended
when writing scientific texts.

Variant 1
d
e -
élt 1000
dy 500 —y
t 1000
1000 & = 1 Use indefinite integration
4 g
Y
—dt = dt
/ 500 — y dt /
——
dy
1000
dy = t+C
/ 500 —y 7 +
—1000 d(500 — = t4+C
[ 50— = i+
The constant from
—1000In (500 —y| = t+C the second integral
is accounted by the constant C
t+C
In |500 — = ——
| d 1000
) Since 500 — y(0) = 500 — 30 = 470 > 0
[500 —y| = e 1000
we can drop the absolute values
500—y = et
_t*C __c_
y = 500 — e~ 1000 Set D = e~ 1000
y = 500— De 0w
To find the constant D, we observe that
30 = y(0) =500 — De~ 1000 = 500 — D

D = 470

Therefore ,
y(t) = 500 — 470e ™ 1000

and the final answer is -
y(45) = 500 — 470e™ 1000 == 50.68

with measurement unit kg.
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Variant II. To find y(45), we integrate from t = 0 to ¢ = 45:

45 . q 45
/ 000 —ydt = / dt
500 —y dt
+20 ~—~— t=0
) d(y(t)
1000
= 4 -
/ s d(y(t)) 5 set z = y(t)
z= y(45) 1
1 d - = 4
000 500 — ;000 = 2) ’
2=y(0)=30
~10001n [500 — (7 ;) = 45
—1000 (In |500 — y(45)]
—1In|500 —30)) = 45
470 45
Nl—"—"—"—"~| = 500
500 — y(45) 1000
470 45
L see below
500 — y(45) 1000
470 as
-~ = ¢Tooo
500 — y(45)
500 — y(45) = 470e™ 200
y(45) = 500 — 470¢" 70

~ 500 — 470 - 0.955997
~ 50.681184

470 470
where we have used that ————— > 0. The fact that ————— > 0 can be seen as follows. As 500 — y(0) = 470 > 0

500 — y(1) 500 — y(1)
and y(t) is continuous, in order to have 500 — y(¢) < 0 there must exist some x; for which y(z;) = 500. However this is
470

impossible since z = In

500 — y(z) |
As the unit of measurement is kg, the final answer to the problem is =~ 50.68kg salt.

Problem 97. Mixing problem. A tank contains 1000 kg of salt dissolved in 10000 liters of water. Brine that contains 0.05
kg of salt per liter of water enters the tank at a rate of 30 liters per minute. The solution is kept thoroughly mized and drains
from the tank at the same rate (30 liters per minute).

1. Determine how much salt remains in the tank after an hour. The answer key has not been proofread, use with caution.

5y19°L16 ~ g1'0—°00¢ + 00g ‘womsuv

2. Determine how much time will be needed in order to have the concentration of salt in the tank reach 0.0501kg/liter.
The answer key has not been proofread, use with caution.

SUMOYEG FE ~ ULWHFG TLOT ~ 008 UL OO%I [L2MSUD

15.1.2 General Separable Problems

Problem 98.
dy

dz

1. Find all solutions of the differential equation above.

=y -1 . (13)

2. Find a solution for which y(0) = —32.

Solution. There are two variants for solving this problem. The first variant uses indefinite integration and is slightly
informal, but easier to apply and remember. The second variant is more rigorous but more difficult to write up. Both
solutions are acceptable for full credit in a Calculus exam. Variant I is recommended when taking exams and Variant II is
recommended when writing scientific texts.

Variant I
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i y? -1 Suppose y2 —1#0
x
d
ﬁ =1
y -1
1 d
/y2_1£dz = /da:
=dy
/7
= z+C
21
1 Y
2 2
— dy = C
/(y—l y+1) Y v
1 y—1
—In|Z—| = C
2nerl T+
-1
lnL_H = 2t+20
Yy
y—1 _ o22+2C
y+1
y;i —  fe2zt2C
Yy
y—1 = 224y 4 1)
y(l :F 62I+2C) — 1 Zt 62$+20
1i€2$+20
y = 1 e2e+2C
1+ 2C 2z
y = 1:,:€Te2 Set D = 4¢e2¢
e~ es®
_ 1+ De?*
vy = 1 — De?=

The above solution works on condition that y? — 1 # 0. So the only case not covered is that of y?> — 1 = 0, which yields the
two solutions y = +1.
Our final answer is

1+ De?*

y(l‘) - 1— Dezz

where D is an arbitrary real number. Notice that in the above answer, by allowing D = 0, we have covered the case y(x) = 1.

14+De?®
1—De2®

or ylx) =1,

Finally, we note that if we let D — oo, the solution y(z) =
x before we let D — 00).
Variant IT

Case 1. Suppose there exists a number zo such that (y(zg))? — 1 # 0. Since y is a differentiable function of z, it is also

tends to the solution y(z) = —1 (here we fix a value of
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continuous. Therefore for some ¢ sufficiently close to xg, all numbers z in the interval between ¢ and zq satisfy y(z)% —1 # 0.

dy
dx
= 1
y?—1
p— d r=t
1
/ - dﬁdx = / dr | can integrate as y(z)%2 — 1 #0
Yy — i
=m0 ~—~— T=xzq

/_ W) et ey

(y()? — 1 w=co
=xo
z=y(t)
dz
21 =0
z=y(zo)
z=y(t) 1 1
22 )dz = (-
(z —1  z+ 1) ‘ o
z=y(z0) 0
1 2—1]Z—y (w0)—1
= = t—ux SetC’zchO—lny'w’O 1‘
2 z+1 2=y (a0) y(xo)+
t)—1
| y(®) 2t - C relabel dummy variable ¢ to x
y(t) +1
1
In y(@) = 2z—-C
y(z) +1
Set
D=¢"¢
By the assumption of our case, (y(z0))? — 1 # 0, so there are two remaining cases: (y(z0))? —1 > 0 and (y(z0))? — 1 < 0.
-1 -1
Case 1.1. Suppose % > 0. As the function y(z) is differentiable, it is also continuous. Therefore & > 0 for
y(zo) +1 y(x) +1
all  near xg. Then we can remove the absolute values in the equality above to get that for all = close to xy we have that
-1
In & = 22-C exponentiate, recall D = e~ ¢
y(z) +1
y(x) B 1 — DeQz
y(z) +1
y(x) —1 = De**(y(z)+1)
y(z) (1—De**) = De* +1
(x) = 1+ De?*
Y 1— De2*
y(z) —1 (z) -1

= De?® for all z. As D > 0, this implies that =——~——
y(z) +1 P y(z)+1
considerations above are valid for all z, rather than only for those x near zy. Therefore our first case yields the solution

The solution y(z) given above satisfies > 0. Therefore the

14 De*

-1
Case 1.2. Suppose M < 0. Then for all x near zy we get In

-1 1—
& =In ﬂ and, similarly to Case 1, we
y(x) + +1

y(wo) 1 ()11 y(@)
get
1- y(m) o2®
ylz)+1 b
1-y(x) = De*(y(z)+1)
y(z) (14 De**) = 1— De**
1 — De?®
V@) = T pes
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Since D is a positive constant, we conclude in a fashion analogous to Case 1 that y(z) < 0 for all .

Case 2. Suppose (y(z0))? — 1 = 0. Then y(z¢) = £1. Clearly the constant functions y(x) = %1 are two solutions: if we

can plug back y = +1 in the original equation we get that % = 0 and y is a constant function of . From the preceding

y(z)—1 y(z)—1
y(z)+1 y(z)+1
to zero for all values of z. Therefore the present case yields only two solutions, the constant functions y(z) = £1.

Our final answer is

two cases we know that if is defined and not equal to zero for some value of x, then

is defined and not equal

14 De?®
1 — De?
where D is an arbitrary real number. Notice that in the above answer, we have combined Cases 1.1, 1.2 and the case
y(x) = 1: by allowing D to be negative we included Case 1.2 and by allowing D to be zero we included the case y(z) = 1.
Finally, we note that if we let D — oo, the solution y(z) = %fgi;: tends to the solution y(x) = —1 (for all values of x).

Solution plots.

We may plot solutions for a few values of D as follows. We overlay the solutions on top of the direction field of

the differential equation. The picture tells us a lot about the properties of the solutions of the differential equations.

y(x) or y(z)=-1,

The direction field % =421

L
A O
N
[
A R S =
SSS LA S

1+62w 1 2x
1—e2®
T SAANNNANES NN N
2NN X
. A
= [
Fh
L
P
Fhh

From the computer generated picture above, we may visually estimate that y(z) = %jri‘izz: intersects the z-axis at
0, —%) Furthermore, we may check directly that for

(z) = 1 — 4e?®
Y = T g
we have y(0) = ﬁ—g = —3 and that is a solution to our problem (this however does not prove the solution is unique).
Alternatively, let us give an algebraic solution. As we are given that y(0) = —2 and so
3 1—-De*% 1-D
5 1+ De 14+ D
~2(1+D) = 1-D
2
2p - 8
) 5
D = 4



which is our final answer.
Problem 99. 1. Find the general solution to the differential equation

dy 2
— =y“ -4 .
dz y

d
Below is a computer-generated plot of the direction field d—y = y? — 4, you may use it to get a feeling for what your
x
answer should look like.
The direction field g—g =y2 -4

A
ety
N
VAV A VA B A A A A A A
_%_ _________
AU U U U NN U T U O U U U W R
LY W U W W W W\ w0 U W W W W O WA
SEEERRRVERERRENS
4\4\*3\4\2\4\1\\\\\’%\5?\’%
Y W U R W U W A N U W U O W A
ANER U U U N U W N W U O U R R
_______ AP
VAV YAV SV YA A A A A
A AR S A A A
e et
o i A A

2. Find a solution of the above equation for which y(0) = —g,

Problem 100. 1. Solve the initial-value differential equation y' = y*(1 + x), y(0) = 3.

2. Solve the initial-value differential equation problem
y =xe ¥ | y(4) = 0.

Below is a computer-generated plot of the corresponding direction field, you may use it to get a feeling for what your
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The direction field g—g =y
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answer should look like.
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Below is a computer-generated plot of the corresponding direction field, you may use it to get a feeling for what your

3. Solve the initial-value differential equation problem



answer should look like.

. . d
5 + The dzrectzonﬁeldﬁ:y’:%
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3 ~——————
%
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14\ —————m—rm e —
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-1 4 /—\\\\\\\\\\\\\\
/—\\\\\\\\\\\\\\
S ————— e e e e e e e e — — ——
_3 a4 S e —— e — e — —— — ——
T e ————— e ——— e — — — e — —
_4 —k/ ~~~~~~~~~~~~~~~
v+ g(up N = (2)h omsuv
Solution. [[00.1 4
o= vt
x
—g = (1+4z)dz
d
% = /(1+x)dx
Y
1 x2
-— = z+5+4+C
31/ 2
_ 1 B 3
YT TE LTI T3 62
Problem 101. 1. Solve the initial-value differential equation problem
’ . 1
y =xztany y(0) = arcsin [ — | ~ 0.376728.
e

2 @ | wisoxe = (2)f wuomsun
o

2. Solve the same differential equation with initial condition y(0) = m + arcsin (—1) R 2.764865.

e

2

Below is a computer-generated plot of corresponding direction field, you may use it to get a feeling for what your answer

7



should look like.

The direction field & =y’ = rtany
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Solution. [[0I.1] and

/y = xtany
L = x
tang{
(CO'S vy _ T Integrate from 0
sin y
t=x x
t
sin(y(t))
ttfo t=0
cos(y(t)) x?
d - Set z = y(t
sin(y(t)) ((®) 2 oz =v(t)
= (2)
z=y(z
/ CoS 2 z?
—dz = —
sin z 2
z=y(0)
z=y(z)
/ d(sinz) aﬁ
sin z 2
z=y(0) )
. x
[Insinzllyq = z
In|siny| — In|sin(y(0))| = %
In|siny] = % In | sin(y(0))|
Ising| = e% tnlsin@O)]
w2 31 21
siny| - ¢ +nlsin(arcsin(1))| for problem [101.1]
— 2 . .
e%+1n|sm(7r+arcsm(%))| for problem
22
[siny| = T ()
. 22 y(0) > 0 for both problems
|siny| = e therefore siny(0) > 0
2
siny = ez 1

From the elementary properties of the trigonometric functions, we know that siny = sin & implies that either
e y =« + 2kw, where k is an arbitrary integer or
e y = (2k + 1) — a, where k is an arbitrary integer.

In other words, if we are given siny, we know y up to a choice of sign and a choice of an integer k. For our problem, this
means that

12
2km + arcsin (67*1> k — integer
y=1{ or
12
(2k 4+ 1)m — arcsin (e?_l) k — integer

For problem [101.1} the only choice for k and sign which fits the initial condition y(0) = arcsin (l) is

e
z? 1
y = arcsin (e 2 ) ,

which is our final answer.
For problem [101.2] the only choice for k and sign which fits the initial condition y(0) = 7 + arcsin (—1) = 7 — arcsin ()

€
is
e
y =m — arcsin (e2 ,

which is our final answer.
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