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Series

Example (A finite series)

1 + 2 + 3 + 4 + 5

is an example of a finite series. So is

−1− 2− 3− . . .− 10000.

Definition (Finite series, Infinite series)
A finite series is a series that ends. It is possible to write down all the
terms in a finite series. A series that is not finite is called an infinite
series.
Every finite series has a sum. Some infinite series have a sum, and
others do not.

Example (An infinite series)

1 + 1 + 1 + 1 + . . .

is an example of an infinite series. It has no sum.
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Series

Theorem (Sum of an arithmetic series)
The sum of a finite arithmetic series is the average of the first and last
terms, multiplied by the number of terms. That is,

a + (a + d) + (a + 2d) + · · ·+ (a + (n − 1)d) =
a + (a + (n − 1)d)

2
n.

The only infinite arithmetic series with a sum is the series of all 0.

Example (Sum of an arithmetic series)
Find the sum of the arithmetic series

5 + 10 + 15 + 20 + · · ·+ 100.

The series contains

20

terms. The average of the first and last terms is

5+100
2

.
Therefore the sum is

5+100

2 · =

20105 · 10 = 1050.
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Series

Definition (Arithmetic series)
An arithmetic series is a series whose terms are an arithmetic
sequence.

Example (Sum of a small arithmetic series)
The sum of the arithmetic series 7 + 4 + 1− 2− 5 is

5.

Example (Sum of a large arithmetic series)
Find the sum of the arithmetic series

7 + 4 + 1− 2− 5− · · · − 53− 56.

Let s denote the sum.
s = 7 + 4 + 1 − · · · − 56

+ s = − 56 − 53 − 50 − · · · + 7
2s = − 49 − 49 − 49 − · · · − 49

Therefore 2s = (−49)(

22

)

s = −49 · 22/2 = −539.
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Series

Definition (Geometric series)
A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)
Find the sum of the geometric series

a + ar + ar2 + ar3 + · · ·+ arM−1 =
M∑

n=1

arn−1.

Let s denote the sum.
s = a +ar +ar2 + · · · +arM−1

− rs = ar + ar2 + · · · + arn−1 + arM

s − rs = a− arM

s = a(1−rM)
1−r

Theorem (The sum of a finite geometric series)

The sum of the finite geometric series
∑M

n=1 arn−1 is a1−rM

1−r .
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Series

(12.2) Series

Definition (Series)
If we add the terms in an infinite sequence, we get an infinite series:

a1 + a2 + a3 + a4 + · · ·+ an + · · ·

We denote this sum by

∞∑
n=1

an or
∑

an
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Series

Example (Series notation)
The series

2 + 4 + 6 + 8 + . . .+ 124

can be written more concisely as
62∑

n=1

2 + 2(n − 1).

2 + 2(n − 1) is the nth term, and the sigma sign
∑

tell us to add all
these terms, starting from n = 1 and going up to n = 62. In this
notation n is called the index.

Example (More series notation)

Write
2
3
− 4

9
+

8
27
− 16

81
+

32
243
− 64

729
using series notation.

6

∑
n=1

2
3

(
− 2

3

)n−1
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Series

Example (A series)

1 + 2 + 3 + 4 + 5

is an example of a series.

Definition (Series, Sum)
A series is what you get if you add together the terms of a sequence.
The sum of a series is the number that results from adding up its
terms. Some series do not have a sum.

Example (A series with a sum)
The sum of the series 1 + 2 + 3 + 4 + 5 is

15.

Example (A series with no sum)
The series 1 + 2 + 3 + 4 + 5 + · · · has no sum.
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Series

Does it make sense to add infinitely many numbers?

Sometimes yes, sometimes no.
Consider the series

∑∞
n=1 n.

1 + 2 + 3 + 4 + 5 + · · ·+ n + · · ·

If we add the terms, we get the partial sums

1,3,6,10,15.

After the nth term, we get

n(n+1)
2 .

This goes to∞ as n gets bigger.
Now consider the series

∑∞
n=1

1
2n .

1
2
+

1
4
+

1
8
+

1
16

+
1

32
+ · · ·+ 1

2n + · · ·

If we add the terms, we get the partial sums

1
2 ,3

4 ,7
8 ,15

16 ,31
32 .

After the nth term, we get

1− 1
2n .

This gets closer and closer to 1. We write
∑∞

n=1
1
2n = 1.
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Definition (Partial Sum, Convergent, Divergent, Sum)
Given a series

∑∞
i=1 ai = a1 + a2 + a3 + · · · , let sn denote the nth

partial sum:

sn =
n∑

i=1

ai = a1 + a2 + · · ·+ an

If the sequence {sn} is convergent and limn→∞ sn = s, then we say
that the series

∑∞
i=1 ai is convergent, and we write

∞∑
i=1

ai = s.

In this case, we call s the sum of the series.
If the sequence {sn} is divergent, then we say that the series

∑∞
i=1 ai

is divergent.
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Example
An important example is the geometric series

a + ar + ar2 + ar3 + · · ·+ arn−1 + · · · =
∞∑

n=1

arn−1, a 6= 0

If r = 1, then sn = a + a + · · ·+ a = na→ ±∞.
Since limn→∞ sn doesn’t exist, the series is divergent when r = 1.
If r 6= 1, then

sn = a +ar +ar2 + · · · +arn−1

− rsn = ar + ar2 + · · · + arn−1 + arn

sn − rsn = a− arn

sn = a(1−rn)
1−r

If −1 < r < 1, then rn → 0, so the geometric series is convergent
and its sum is a/(1− r).
If r > 1 or r ≤ −1, then rn is divergent, so

∑∞
n=1 arn−1 diverges.
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This theorem summarizes the results of the previous example.

Theorem (Convergence of Geometric Series)
The geometric series

∞∑
n=1

arn−1 = a + ar + ar2 + · · ·

is convergent if |r | < 1 and its sum is

∞∑
n=1

arn−1 =
a

1− r
.

If |r | ≥ 1, the series is divergent.
a is called the first term and r is called the common ratio.

Math 141 Lecture 11 Spring 2015



Series

Example
Find the sum of the geometric series

−2 +
6
5
− 18

25
+

54
125
− · · ·

The first term is a =

−2.

The common ratio is r =

−3
5 .

Therefore the sum is

∞∑
n=1

(−2)
(
−3

5

)n−1

=
(−2)

1−
(
−3

5

)
= − 2

8
5

= − 5
4
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Example

Write the number 2.317 = 2.3171717 . . . as a quotient of integers.

2.3171717 . . . = 2.3 +
17
103 +

17
105 +

17
107 + · · ·

After the first term, we have a geometric series.
a =

17
103

and r =

1
102 .

2.3171717 . . . = 2.3 +

17
103

1−

1
102

= 2.3 +

17
1000

99
100

=
23
10

+
17

990
=

1147
495
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Series

Example

Show that the series
∑∞

n=1
1

n(n+1) is convergent and find its sum.

Is this a geometric series?

No.

Use partial fractions:

an =
1

n(n + 1)

=
1
n
− 1

n + 1

sn =
n∑

i=1

1
i(i + 1)

=
n∑

i=1

(
1
i
− 1

i + 1

)
=

(
1− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+ · · ·+

(
1
n
− 1

n + 1

)
= 1− 1

n + 1

Therefore
∞∑

i=1

1
i(i + 1)

= lim
n→∞

sn

= lim
n→∞

(
1− 1

n + 1

)
= 1
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Series

Example

Show that the harmonic series
∞∑

n=1

1
n
= 1 +

1
2
+

1
3
+

1
4
+ · · · diverges.

s1 = 1
s2 = 1 + 1

2
s4 = 1 + 1

2 + 1
3 + 1

4 > 1 + 1
2 + 1

4 + 1
4 = 1 + 2

2
s8 = 1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

6 + 1
7 + 1

8
> 1 + 1

2 + 1
4 + 1

4 + 1
8 + 1

8 + 1
8 + 1

8
= 1 + 1

2

+ 1
2 + 1

2 = 1 + 3
2

s16 = 1 + 1
2 +

(1
3 + 1

4

)
+
(1

5 + · · ·+ 1
8

)
+
(1

9 + · · ·+ 1
16

)
> 1 + 1

2 +
(1

4 + 1
4

)
+
(1

8 + · · ·+ 1
8

)
+
( 1

16 + · · ·+ 1
16

)
= 1 + 1

2

+ 1
2 + 1

2 + 1
2 = 1 + 4

2

...
s2n > 1 + n

2
Therefore s2n →∞ as n→∞, so {sn} is divergent, so the harmonic
series is divergent.
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