Math 141 Lecture 11

Greg Maloney

Todor Milev

University of Massachusetts Boston

Spring 2015

Outline

Example (A finite series)

$$1+2+3+4+5$$

is an example of a finite series. So is

$$-1-2-3-\ldots-10000$$
.

Definition (Finite series, Infinite series)

A finite series is a series that ends. It is possible to write down all the terms in a finite series. A series that is not finite is called an infinite series.

Every finite series has a sum. Some infinite series have a sum, and others do not.

Example (A finite series)

$$1+2+3+4+5$$

is an example of a finite series. So is

$$-1-2-3-\ldots-10000$$
.

Definition (Finite series, Infinite series)

A finite series is a series that ends. It is possible to write down all the terms in a finite series. A series that is not finite is called an infinite series.

Every finite series has a sum. Some infinite series have a sum, and others do not.

Example (An infinite series)

$$1+1+1+1+...$$

is an example of an infinite series. It has no sum.

The sum of a finite arithmetic series is the average of the first and last terms, multiplied by the number of terms. That is,

$$a + (a + d) + (a + 2d) + \cdots + (a + (n-1)d) = \frac{a + (a + (n-1)d)}{2}n.$$

The only infinite arithmetic series with a sum is the series of all 0.

The sum of a finite arithmetic series is the average of the first and last terms, multiplied by the number of terms. That is,

$$a + (a + d) + (a + 2d) + \cdots + (a + (n - 1)d) = \frac{a + (a + (n - 1)d)}{2}n.$$

The only infinite arithmetic series with a sum is the series of all 0.

Example (Sum of an arithmetic series)

Find the sum of the arithmetic series

$$5 + 10 + 15 + 20 + \cdots + 100$$
.

The sum of a finite arithmetic series is the average of the first and last terms, multiplied by the number of terms. That is,

$$a + (a + d) + (a + 2d) + \cdots + (a + (n - 1)d) = \frac{a + (a + (n - 1)d)}{2}n.$$

The only infinite arithmetic series with a sum is the series of all 0.

Example (Sum of an arithmetic series)

Find the sum of the arithmetic series

$$5 + 10 + 15 + 20 + \cdots + 100$$
.

The series contains terms.

The sum of a finite arithmetic series is the average of the first and last terms, multiplied by the number of terms. That is,

$$a + (a + d) + (a + 2d) + \cdots + (a + (n - 1)d) = \frac{a + (a + (n - 1)d)}{2}n.$$

The only infinite arithmetic series with a sum is the series of all 0.

Example (Sum of an arithmetic series)

Find the sum of the arithmetic series

$$5 + 10 + 15 + 20 + \cdots + 100$$
.

The series contains 20 terms.

The sum of a finite arithmetic series is the average of the first and last terms, multiplied by the number of terms. That is,

$$a + (a + d) + (a + 2d) + \cdots + (a + (n - 1)d) = \frac{a + (a + (n - 1)d)}{2}n.$$

The only infinite arithmetic series with a sum is the series of all 0.

Example (Sum of an arithmetic series)

Find the sum of the arithmetic series

$$5 + 10 + 15 + 20 + \cdots + 100$$
.

The series contains 20 terms. The average of the first and last terms is $\frac{5+100}{2}$.

The sum of a finite arithmetic series is the average of the first and last terms, multiplied by the number of terms. That is,

$$a + (a + d) + (a + 2d) + \cdots + (a + (n - 1)d) = \frac{a + (a + (n - 1)d)}{2}n.$$

The only infinite arithmetic series with a sum is the series of all 0.

Example (Sum of an arithmetic series)

Find the sum of the arithmetic series

$$5 + 10 + 15 + 20 + \cdots + 100$$
.

The series contains 20 terms. The average of the first and last terms is $\frac{5+100}{2}$.

Therefore the sum is $\frac{5+100}{2}$ · = 20105 · 10 = 1050.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

Let s denote the sum.

$$s = 7 + 4 + 1 - \cdots - 56$$

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

Let s denote the sum.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

Let s denote the sum.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

Therefore
$$2s = (-49)($$

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

Therefore
$$2s = (-49)(22)$$

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is 5.

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

Let s denote the sum.

Therefore
$$2s = (-49)(22)$$

 $s = -49 \cdot 22/2 = -539.$

A geometric series is a series whose terms are a geometric sequence.

A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)

Find the sum of the geometric series

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{M-1} = \sum_{n=1}^{M} ar^{n-1}.$$

A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)

Find the sum of the geometric series

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{M-1} = \sum_{n=1}^{M} ar^{n-1}.$$

A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)

Find the sum of the geometric series

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{M-1} = \sum_{n=1}^{M} ar^{n-1}.$$

the sum.

$$s = a + ar + ar^2 + \cdots + ar^{M-1}$$

A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)

Find the sum of the geometric series

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{M-1} = \sum_{n=1}^{M} ar^{n-1}.$$

Let s denote the sum.

$$s = a + ar + ar^2 + \cdots + ar^{M-1}$$

 $rs = ar + ar^2 + \cdots + ar^{n-1} + ar^M$

A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)

Find the sum of the geometric series

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{M-1} = \sum_{n=1}^{M} ar^{n-1}.$$

Let s denote the sum.

A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)

Find the sum of the geometric series

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{M-1} = \sum_{n=1}^{M} ar^{n-1}.$$

Let s denote the sum.

A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)

Find the sum of the geometric series

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{M-1} = \sum_{n=1}^{M} ar^{n-1}.$$

Let s denote the sum.

$$s = a + ar + ar^{2} + \cdots + ar^{M-1}$$

$$- rs = ar + ar^{2} + \cdots + ar^{n-1} + ar^{M}$$

$$s - rs = a - ar^{M}$$

A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)

Find the sum of the geometric series

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{M-1} = \sum_{n=1}^{M} ar^{n-1}.$$

Let s denote the sum.

Definition (Geometric series)

A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)

Find the sum of the geometric series

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{M-1} = \sum_{n=1}^{M} ar^{n-1}.$$

Let s denote the sum.

s =
$$a + ar + ar^2 + \cdots + ar^{M-1}$$

 $- rs = ar + ar^2 + \cdots + ar^{n-1} + ar^M$
 $s - rs = a - ar^M$
 $s = \frac{a(1-r^M)}{1-r}$

Theorem (The sum of a finite geometric series)

The sum of the finite geometric series $\sum_{n=1}^{M} ar^{n-1}$ is $a^{\frac{1-r^M}{1-r}}$.

(12.2) Series

Definition (Series)

If we add the terms in an infinite sequence, we get an infinite series:

$$a_1 + a_2 + a_3 + a_4 + \cdots + a_n + \cdots$$

We denote this sum by

$$\sum_{n=1}^{\infty} a_n \qquad \text{or} \qquad \sum a_n$$

The series

$$2+4+6+8+\ldots+124$$

can be written more concisely as

$$\sum_{n=1}^{62} 2 + 2(n-1).$$

2+2(n-1) is the *n*th term, and the sigma sign \sum tell us to add all these terms, starting from n=1 and going up to n=62. In this notation n is called the index.

The series

$$2+4+6+8+\ldots+124$$

can be written more concisely as

$$\sum_{n=1}^{62} 2 + 2(n-1).$$

2 + 2(n - 1) is the *n*th term, and the sigma sign \sum tell us to add all these terms, starting from n = 1 and going up to n = 62. In this notation n is called the index.

Example (More series notation)

Write
$$\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \frac{16}{81} + \frac{32}{243} - \frac{64}{729}$$
 using series notation.

The series

$$2+4+6+8+\ldots+124$$

can be written more concisely as

$$\sum_{n=1}^{62} 2 + 2(n-1).$$

2 + 2(n - 1) is the *n*th term, and the sigma sign \sum tell us to add all these terms, starting from n = 1 and going up to n = 62. In this notation n is called the index.

Example (More series notation)

Write
$$\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \frac{16}{81} + \frac{32}{243} - \frac{64}{729}$$
 using series notation.

$$\sum_{n=1}^{\infty}$$

The series

$$2+4+6+8+\ldots+124$$

can be written more concisely as

$$\sum_{n=1}^{62} 2 + 2(n-1).$$

2 + 2(n-1) is the *n*th term, and the sigma sign \sum tell us to add all these terms, starting from n = 1 and going up to n = 62. In this notation n is called the index.

Example (More series notation)

Write
$$\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \frac{16}{81} + \frac{32}{243} - \frac{64}{729}$$
 using series notation.

$$\sum_{n=1}^{6}$$

The series

$$2+4+6+8+\ldots+124$$

can be written more concisely as

$$\sum_{n=1}^{62} 2 + 2(n-1).$$

2 + 2(n - 1) is the *n*th term, and the sigma sign \sum tell us to add all these terms, starting from n = 1 and going up to n = 62. In this notation n is called the index.

Example (More series notation)

Write
$$\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \frac{16}{81} + \frac{32}{243} - \frac{64}{729}$$
 using series notation.

$$\sum_{n=1}^{6} \frac{2}{3} \left(-\frac{2}{3} \right)^{n-1}$$

$$1+2+3+4+5$$

is an example of a series.

$$1+2+3+4+5$$

is an example of a series.

Definition (Series, Sum)

A series is what you get if you add together the terms of a sequence. The sum of a series is the number that results from adding up its terms. Some series do not have a sum.

$$1+2+3+4+5$$

is an example of a series.

Definition (Series, Sum)

A series is what you get if you add together the terms of a sequence. The sum of a series is the number that results from adding up its terms. Some series do not have a sum.

Example (A series with a sum)

The sum of the series 1+2+3+4+5 is

$$1+2+3+4+5$$

is an example of a series.

Definition (Series, Sum)

A series is what you get if you add together the terms of a sequence. The sum of a series is the number that results from adding up its terms. Some series do not have a sum.

Example (A series with a sum)

The sum of the series 1 + 2 + 3 + 4 + 5 is 15.

$$1+2+3+4+5$$

is an example of a series.

Definition (Series, Sum)

A series is what you get if you add together the terms of a sequence. The sum of a series is the number that results from adding up its terms. Some series do not have a sum.

Example (A series with a sum)

The sum of the series 1 + 2 + 3 + 4 + 5 is 15.

Example (A series with no sum)

The series $1+2+3+4+5+\cdots$ has no sum.

• Does it make sense to add infinitely many numbers?

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

• If we add the terms, we get the partial sums

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1+2+3+4+5+\cdots+n+\cdots$$

• If we add the terms, we get the partial sums 1,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

• If we add the terms, we get the partial sums 1,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

• If we add the terms, we get the partial sums 1,3,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

• If we add the terms, we get the partial sums 1,3,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

• If we add the terms, we get the partial sums 1,3,6,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

• If we add the terms, we get the partial sums 1,3,6,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

• If we add the terms, we get the partial sums 1,3,6,10,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1+2+3+4+5+\cdots+n+\cdots$$

• If we add the terms, we get the partial sums 1,3,6,10,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1+2+3+4+5+\cdots+n+\cdots$$

• If we add the terms, we get the partial sums 1,3,6,10,15.

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the nth term, we get

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1+2+3+4+5+\cdots+n+\cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

• If we add the terms, we get the partial sums

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

• If we add the terms, we get the partial sums $\frac{1}{2}$,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

• If we add the terms, we get the partial sums $\frac{1}{2}$,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

• If we add the terms, we get the partial sums $\frac{1}{2}, \frac{3}{4}$,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

• If we add the terms, we get the partial sums $\frac{1}{2}, \frac{3}{4}$,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

• If we add the terms, we get the partial sums $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}$,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

• If we add the terms, we get the partial sums $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}$,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

• If we add the terms, we get the partial sums $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}$,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

• If we add the terms, we get the partial sums $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}$,

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1+2+3+4+5+\cdots+n+\cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

• If we add the terms, we get the partial sums $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{15}{16}$, $\frac{31}{32}$.

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

- If we add the terms, we get the partial sums $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{15}{16}$, $\frac{31}{32}$.
- After the nth term, we get

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

- If we add the terms, we get the partial sums $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \frac{31}{32}$.
- After the *n*th term, we get $1 \frac{1}{2^n}$.

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

- If we add the terms, we get the partial sums $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{15}{16}$, $\frac{31}{32}$.
- After the *n*th term, we get $1 \frac{1}{2^n}$.
- This gets closer and closer to 1. We write $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$.

Definition (Partial Sum, Convergent, Divergent, Sum)

Given a series $\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \cdots$, let s_n denote the nth partial sum:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s$, then we say that the series $\sum_{i=1}^{\infty} a_i$ is convergent, and we write

$$\sum_{i=1}^{\infty} a_i = s.$$

In this case, we call s the sum of the series.

If the sequence $\{s_n\}$ is divergent, then we say that the series $\sum_{i=1}^{\infty} a_i$ is divergent.

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

An important example is the geometric series

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

• If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.

An important example is the geometric series

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.
- If $r \neq 1$, then

$$s_n = a + ar + ar^2 + \cdots + ar^{n-1}$$

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.
- If $r \neq 1$, then

$$s_n = a + ar + ar^2 + \cdots + ar^{n-1}$$

 $rs_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n$

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.
- If $r \neq 1$, then

$$s_n = a + ar + ar^2 + \cdots + ar^{n-1}$$

$$- rs_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n$$

An important example is the geometric series

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.
- If $r \neq 1$, then

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.
- If $r \neq 1$, then

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.
- If $r \neq 1$, then

$$s_n = a + ar + ar^2 + \cdots + ar^{n-1}$$

$$- rs_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n$$

$$s_n - rs_n = a - ar^n$$

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.
- If $r \neq 1$, then

$$s_n = a + ar + ar^2 + \cdots + ar^{n-1}$$
 $- rs_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n$
 $s_n - rs_n = a - ar^n$
 $s_n = \frac{a(1-r^n)}{1-r}$

An important example is the geometric series

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.
- If $r \neq 1$, then

$$s_n = a + ar + ar^2 + \cdots + ar^{n-1}$$
 $- rs_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n$
 $s_n - rs_n = a - ar^n$
 $s_n = \frac{a(1-r^n)}{1-r}$

• If -1 < r < 1, then $r^n \to 0$, so the geometric series is convergent and its sum is a/(1-r).

An important example is the geometric series

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.
- If $r \neq 1$, then

$$s_n = a + ar + ar^2 + \cdots + ar^{n-1}$$
 $- rs_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n$
 $s_n - rs_n = a - ar^n$
 $s_n = \frac{a(1-r^n)}{1-r}$

- If -1 < r < 1, then $r^n \to 0$, so the geometric series is convergent and its sum is a/(1-r).
- If r > 1 or $r \le -1$, then r^n is divergent, so $\sum_{n=1}^{\infty} ar^{n-1}$ diverges.

This theorem summarizes the results of the previous example.

Theorem (Convergence of Geometric Series)

The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}.$$

If $|r| \ge 1$, the series is divergent. a is called the first term and r is called the common ratio.

$$-2+\frac{6}{5}-\frac{18}{25}+\frac{54}{125}-\cdots$$

$$-2 + \frac{6}{5} - \frac{18}{25} + \frac{54}{125} - \cdots$$

- The first term is *a* =
- The common ratio is r =

$$-2 + \frac{6}{5} - \frac{18}{25} + \frac{54}{125} - \cdots$$

- The first term is a = -2.
- The common ratio is r =

$$-2 + \frac{6}{5} - \frac{18}{25} + \frac{54}{125} - \cdots$$

- The first term is a = -2.
- The common ratio is r =

$$-2 + \frac{6}{5} - \frac{18}{25} + \frac{54}{125} - \cdots$$

- The first term is a = -2.
- The common ratio is $r = -\frac{3}{5}$.

$$-2 + \frac{6}{5} - \frac{18}{25} + \frac{54}{125} - \cdots$$

- The first term is a = -2.
- The common ratio is $r = -\frac{3}{5}$.
- Therefore the sum is

$$\sum_{n=1}^{\infty} (-2) \left(-\frac{3}{5} \right)^{n-1} = \frac{(-2)}{1 - \left(-\frac{3}{5} \right)}$$

$$-2 + \frac{6}{5} - \frac{18}{25} + \frac{54}{125} - \cdots$$

- The first term is a = -2.
- The common ratio is $r = -\frac{3}{5}$.
- Therefore the sum is

$$\sum_{n=1}^{\infty} (-2) \left(-\frac{3}{5} \right)^{n-1} = \frac{(-2)}{1 - \left(-\frac{3}{5} \right)}$$
$$= -\frac{2}{\frac{8}{5}}$$

$$-2 + \frac{6}{5} - \frac{18}{25} + \frac{54}{125} - \cdots$$

- The first term is a = -2.
- The common ratio is $r = -\frac{3}{5}$.
- Therefore the sum is

$$\sum_{n=1}^{\infty} (-2) \left(-\frac{3}{5} \right)^{n-1} = \frac{(-2)}{1 - \left(-\frac{3}{5} \right)}$$

$$= -\frac{2}{\frac{8}{5}}$$

$$= -\frac{5}{4}$$

Write the number $2.3\overline{17} = 2.3171717...$ as a quotient of integers.

Write the number
$$2.3\overline{17}=2.3171717\dots$$
 as a quotient of integers.
$$2.3171717\dots=2.3+\frac{17}{10^3}+\frac{17}{10^5}+\frac{17}{10^7}+\cdots$$

Write the number
$$2.3\overline{17} = 2.3171717\dots$$
 as a quotient of integers.
$$2.3171717\dots = \frac{2.3}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

Write the number $2.3\overline{17} = 2.3171717...$ as a quotient of integers.

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

Write the number $2.3\overline{17} = 2.3171717...$ as a quotient of integers.

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

Write the number
$$2.3\overline{17}=2.3171717\dots$$
 as a quotient of integers.
$$2.31717\overline{17}\dots=2.3+\frac{17}{10^3}+\frac{17}{10^5}+\frac{17}{10^7}+\cdots$$

Write the number $2.3\overline{17} = 2.3171717...$ as a quotient of integers.

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

• After the first term, we have a geometric series.

Write the number $2.3\overline{17} = 2.3171717...$ as a quotient of integers.

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- \bullet a = and r =

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and r =

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and r =

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and $r = \frac{1}{10^2}$.

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and $r = \frac{1}{10^2}$.

$$2.3171717... = 2.3 + \frac{1}{1}$$

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and $r = \frac{1}{10^2}$.

$$2.3171717... = 2.3 + \frac{\frac{17}{10^3}}{1 - \frac{1}{10^3}}$$

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and $r = \frac{1}{10^2}$.

$$2.3171717... = 2.3 + \frac{\frac{17}{10^3}}{1 - }$$

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and $r = \frac{1}{10^2}$.

$$2.3171717... = 2.3 + \frac{\frac{17}{10^3}}{1 - \frac{1}{10^2}}$$

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and $r = \frac{1}{10^2}$.

2.3171717... =
$$2.3 + \frac{\frac{17}{10^3}}{1 - \frac{1}{10^2}} = 2.3 + \frac{\frac{17}{1000}}{\frac{99}{100}}$$

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and $r = \frac{1}{10^2}$.

$$2.3171717... = 2.3 + \frac{\frac{17}{10^3}}{1 - \frac{1}{10^2}} = 2.3 + \frac{\frac{17}{1000}}{\frac{99}{100}}$$
$$= \frac{23}{10} + \frac{17}{990}$$

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and $r = \frac{1}{10^2}$.

$$2.3171717... = 2.3 + \frac{\frac{17}{10^3}}{1 - \frac{1}{10^2}} = 2.3 + \frac{\frac{17}{1000}}{\frac{99}{100}}$$
$$= \frac{23}{10} + \frac{17}{990} = \frac{1147}{495}$$

Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent and find its sum.

Math 141 Lecture 11 Spring 2015

Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent and find its sum.

• Is this a geometric series?

Math 141 Lecture 11 Spring 2015

Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent and find its sum.

• Is this a geometric series? No.

- Is this a geometric series? No.
- Use partial fractions:

$$a_n=\frac{1}{n(n+1)}$$

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)}$$

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$
$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$
$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$
$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$
$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$
$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

Therefore
$$\sum_{i=1}^{\infty} \frac{1}{i(i+1)} = \lim_{n \to \infty} s_n$$

Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent and find its sum.

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$S_{n} = \sum_{i=1}^{n} \frac{1}{i(i+1)} = \sum_{i=1}^{n} \left(\frac{1}{i} - \frac{1}{i+1}\right)$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

Therefore
$$\sum_{i=1}^{\infty} \frac{1}{i(i+1)} = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)$$

Math 141 Lecture 11 Spring 2015

Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent and find its sum.

- Is this a geometric series? No.
- Use partial fractions:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

Therefore
$$\sum_{i=1}^{\infty} \frac{1}{i(i+1)} = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1$$

Math 141 Lecture 11 Spring 2015

$$s_1 = 1$$

$$s_1 = 1$$

 $s_2 = 1 + \frac{1}{2}$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \end{array}$$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} \end{array}$$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \end{array}$$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \end{array}$$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \end{array}$$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \end{array}$$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} \end{array}$$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} \end{array}$$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} \end{array}$$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \end{array}$$

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2} \end{array}$$

$$\begin{array}{lll} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2} \\ s_{16} & = & 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) \end{array}$$

$$\begin{array}{rclcrcl} s_1 & = & 1 \\ s_2 & = & 1+\frac{1}{2} \\ s_4 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{2}{2} \\ s_8 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\ & > & 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\ s_{16} & = & 1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right) \\ & > & 1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right) \end{array}$$

$$\begin{array}{lll} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2} \\ s_{16} & = & 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) \\ & > & 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) \end{array}$$

$$\begin{array}{lll} s_1 & = & 1 \\ s_2 & = & 1+\frac{1}{2} \\ s_4 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{2}{2} \\ s_8 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\ & > & 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\ s_{16} & = & 1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right) \\ & > & 1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right) \end{array}$$

$$\begin{array}{rclcrcl} s_1 & = & 1 \\ s_2 & = & 1+\frac{1}{2} \\ s_4 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{2}{2} \\ s_8 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\ & > & 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\ s_{16} & = & 1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right) \\ & > & 1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right) \\ & = & 1+\frac{1}{2} \end{array}$$

Show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ diverges.

$$\begin{array}{rcl} s_1 & = & 1 \\ s_2 & = & 1+\frac{1}{2} \\ s_4 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{2}{2} \\ s_8 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\ & > & 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\ s_{16} & = & 1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right) \\ & > & 1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right) \\ & = & 1+\frac{1}{2}+\frac{1}{2} \end{array}$$

$$\begin{array}{lll} s_1 & = & 1 \\ s_2 & = & 1+\frac{1}{2} \\ s_4 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{2}{2} \\ s_8 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\ & > & 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\ s_{16} & = & 1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right) \\ & > & 1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right) \\ & = & 1+\frac{1}{2}+\frac{1}{2} \end{array}$$

$$\begin{array}{rclcrcl} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2} \\ s_{16} & = & 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) \\ & > & 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \end{array}$$

Show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ diverges.

$$\begin{array}{rclcrcl} s_1 & = & 1 \\ s_2 & = & 1+\frac{1}{2} \\ s_4 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{2}{2} \\ s_8 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\ & > & 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\ s_{16} & = & 1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right) \\ & > & 1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right) \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2} \end{array}$$

$$\begin{array}{lll} s_1 & = & 1 \\ s_2 & = & 1+\frac{1}{2} \\ s_4 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{2}{2} \\ s_8 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\ & > & 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\ s_{16} & = & 1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right) \\ & > & 1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right) \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2} \end{array}$$

$$\begin{array}{lll} s_1 & = & 1 \\ s_2 & = & 1+\frac{1}{2} \\ s_4 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{2}{2} \\ s_8 & = & 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} \\ & > & 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\ s_{16} & = & 1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right) \\ & > & 1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right) \\ & = & 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{4}{2} \end{array}$$

Show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ diverges.

$$\begin{array}{lll} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2} \\ s_{16} & = & 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) \\ & > & 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{4}{2} \\ & \vdots \\ s_{2n} & > \end{array}$$

$$\begin{array}{lll} s_1 & = & 1 \\ s_2 & = & 1 + \frac{1}{2} \\ s_4 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ s_8 & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2} \\ s_{16} & = & 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) \\ & > & 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{4}{2} \\ & \vdots \\ s_{2^n} & > & 1 + \frac{n}{2} \end{array}$$

Show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ diverges.

$$\begin{array}{lll} \mathbf{S}_{1} & = & 1 \\ \mathbf{S}_{2} & = & 1 + \frac{1}{2} \\ \mathbf{S}_{4} & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ \mathbf{S}_{8} & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2} \\ \mathbf{S}_{16} & = & 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) \\ & > & 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{4}{2} \\ & \vdots \\ \mathbf{S}_{2n} & > & 1 + \frac{n}{2} \end{array}$$

Therefore $s_{2^n} \to \infty$ as $n \to \infty$, so $\{s_n\}$ is divergent, so the harmonic series is divergent.