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0 Basic divergence tests

e The Integral Test and Estimates of Sums
@ The Integral Test
@ Estimating Sums
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0 Basic divergence tests

e The Integral Test and Estimates of Sums
@ The Integral Test
@ Estimating Sums

e The Comparison Test
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Theorem

If the series Y7 | an is convergent, then lim,_,. an = 0.

Proof.
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Theorem

If the series Y7 | an is convergent, then lim,_,. an = 0.

o letsp=a1+a+- -+ an.
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Theorem

If the series Y7 | an is convergent, then lim,_,. an = 0.

o letsp=a1+a+- -+ an.
@ Then a, = sp — Sp_1.
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Theorem

If the series Y7 | an is convergent, then lim,_,. an = 0.

@ letsp,=ai+ax+---+ an.
@ Then a, = sp — Sp_1.
@ Since ).~ an is convergent, the sequence {s,} is convergent.
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Theorem

If the series Y7 | an is convergent, then lim,_,. an = 0.

@ letsp,=ai+ax+---+ an.

@ Then a, = sp — Sp_1.

@ Since ).~ an is convergent, the sequence {s,} is convergent.
@ Letlim,. Sp=S5.
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Theorem

If the series Y7 | an is convergent, then lim,_,. an = 0.

@ letsp,=ai+ax+---+ an.

@ Then a, = sp — Sp_1.

@ Since ).~ an is convergent, the sequence {s,} is convergent.
@ Letlim,. Sp=S5.

@ Then limy_o Sp_1 =
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Theorem

If the series Y7 | an is convergent, then lim,_,. an = 0.

@ letsp,=ai+ax+---+ an.

@ Then a, = sp — Sp_1.

@ Since ).~ an is convergent, the sequence {s,} is convergent.
@ Letlim,. Sp=S5.

@ Thenlimy_ o Sh—1 = S.
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Basic divergence tests

Theorem
If the series Y7 | an is convergent, then lim,_,. an = 0.

Proof.
@ letsp,=ai+ax+---+ an.
@ Thena, =5, — S,_1.
@ Since ).~ an is convergent, the sequence {s,} is convergent.
@ Letlim,. Sp=S5.
@ Then im0 Sp—1 = S.
@ Therefore

lim a, = lim (s, —sp_1)
n—oo n—oo
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Basic divergence tests

Theorem
If the series Y7 | an is convergent, then lim,_,. an = 0.

Proof.
@ letsp,=ai+ax+---+ an.
@ Then a, = sp — Sp_1.
@ Since ).~ an is convergent, the sequence {s,} is convergent.
@ Letlimy_ o Sn=s.
@ Thenlimy_ o Sh—1 = S.
@ Therefore

lim a, = lim (s,—s,_1)=s-—5

n—oo n—oo
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Basic divergence tests

Theorem
If the series Y7 | an is convergent, then lim,_,. an = 0.

Proof.
@ letsp,=ai+ax+---+ an.
@ Then a, = sp — Sp_1.
@ Since ).~ an is convergent, the sequence {s,} is convergent.
@ Letlim,. Sp=S5.
@ Then im0 Sp—1 = S.
@ Therefore

lim a, = lim (sp—8s,_1)=s—5=0 O

n—oo n—oo
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Basic divergence tests

Theorem
If the series Y7 | an is convergent, then lim,_,. an = 0.

This is just a restatement of the previous theorem:

Theorem (The Divergence Test)

Iflimp_. an doesn’t exist or iflimy_,c an # 0, then the series Y " | an
is divergent.
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Basic divergence tests

Show that the series >, , 5n2i+4 diverges.
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Basic divergence tests

Show that the series >, , 5n2i+4 diverges.

2

n
lim a, = Iim ———
n—soo " nooo 5n2 4+ 4
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Basic divergence tests

Show that the series >, , 5n2i+4 diverges.

2

n
lim a, = lim ———-
n—soo " nooo 52 + 4

=R~
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Basic divergence tests

Show that the series >, , 5n2i+4 diverges.

2 1
im a, = lim —— . 2 — jim
= En2 L4 1 4
n—oo n—oo 5nc + 4 = n—>oo5_|_?

Math 141 Lecture 12 Spring 2015



Basic divergence tests

Show that the series >, , 5n2i+4 diverges.

2 1
. . n 3 . 1 1
Ilman:hmz—-”T:hm 4:_750
n—oco n—oo 5nc + 4 = n—>oo5_|_?
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Basic divergence tests

Show that the series >, , 5n2+4 diverges.

2 1
. o n 2 1 1
nhjnman_nﬁnmm lz_n—>oo5_|_ =570

S,

Therefore, by the Divergence Test, the series diverges.
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The Integral Test and Estimates of Sums The Integral Test

The Integral Test and Estimates of Sums

@ In general, it is not easy to find the sum of a series.
@ We could do this for Z 71) because we found a simple
formula for the nth partlal sum sp.

@ In the next few sections, we’ll learn techniques for showing
whether a series is convergent or divergent without explicitly
computing its sum.

Math 141 Lecture 12 Spring 2015



The Integral Test and Estimates of Sums The Integral Test

=1 1 1 1 1
2T tetetat

n=1
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The Integral Test and Estimates of Sums The Integral Test

i1 1 1 1 1 ”3"1:426}61/12
- =5 t~=+t+-75+ 5 .

e 10| 15498
50 1.6251
@ Use a computer to calculate partial 100| 1.6350
sums. 500 1.6429
1000 1.6439
5000 1.6447
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The Integral Test and Estimates of Sums The Integral Test

i T 1 1 1 A nisn=>113

S=mtomtmtgEt 5[ 1.4636
2712 T2 T 32 T g2

=R 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447
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The Integral Test and Estimates of Sums The Integral Test

i1 T 1 1 1 nisn=>113

S=mtomtmtgEt 5[ 1.4636
2712 T2 T 32 T g2

=R 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?
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The Integral Test and Estimates of Sums The Integral Test

i T 1 1 1 A nisn=>113

S=mtomtmtgEt 5[ 1.4636
2712 T2 T 32 T g2

=R 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?
@ Use f(x) = .
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The Integral Test and Estimates of Sums The Integral Test

i1 T 1 1 1 nisn=>113

S=mtotmtgEt 5[ 1.4636
27 12 To2 T 32 T g2

=R 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?

@ Use f(x) = 1.
(%) = % ° %isthe area of a

y rectangle.
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The Integral Test and Estimates of Sums The Integral Test

i1 T 1 1A nisn=>113

=gt tmtgEt 5[ 1.4636
2742 "o02 T 32 T 42

=AU 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?

@ Use f(x) = 1.
(%) = % ° %isthe area of a

y rectangle.
y:% ® Sois 5 = 1.
? 1 ?1 2 3 4 5
A=1 A=—
4
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The Integral Test and Estimates of Sums The Integral Test

i1 T 1 1A nisn=>113

=gt tmtgEt 5[ 1.4636
2742 "o2 "3z T 42

=AU 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?

@ Use f(x) = 1.
(%) = % ° %isthe area of a

y rectangle.
1 o 1 1
v== oSmsz—z:Z.
R e
TR
A=1 A:Z A= —
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The Integral Test and Estimates of Sums The Integral Test

i1 1T 1 1 1 nisn=>113

=gttt t 5[ 1.4636
2712 To2 T3z T g2

=AU 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?

@ Use f(x) = 1.
(%) = % ° %isthe area of a

y rectangle.
! o 1 1
v== oSmsz—z:Z.
R e S
TR
A=1 A=— A=— A=—
4 16
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The Integral Test and Estimates of Sums The Integral Test

i1 1T 1 1 1 nisn=>113

S=mtotmtgEt 5[ 1.4636
2712 To2 T3z T g2

=AU 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?

@ Use f(x) = 1.
(%) = % ° %isthe area of a

y rectangle.
! o 1 1
v== oSmsz—z:Z.
K\ .
TR
A=1 A= — A=— A= — A= —
4 16 25
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The Integral Test and Estimates of Sums The Integral Test

i1 T 1 1 1 nisn=>113

S=mtomtmtgEt 5[ 1.4636
2712 T2 T 32 T g2

=R 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?

@ Use f(x) = 1.
(%) = % ° %isthe area of a

y rectangle.
! o 1 1
v== @ Sois 5 = g
@ The improper integral
Jde'e) <| .
. \ J7 edxis
? 1 2 3 ﬁ 4 5

1 1 1
A=1 A=-— A=— A=— A=—
4 16 25
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The Integral Test and Estimates of Sums The Integral Test

i T 1 1 1 A nisn=>113

S=mtomtmtgEt 5[ 1.4636
2712 T2 T 32 T g2

=R 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?

@ Use f(x) = 1.
(%) = % ° %isthe area of a

y rectangle.

w11
oSmsz—Z_Z.

@ The improper integral
Ji¥ Ldx is convergent.

finite area
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The Integral Test and Estimates of Sums The Integral Test

i T 1 1 1 A nisn=>113

=gt tmtgto 5[ 1.4636
2792 T 02 T3z "y

=AU 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?
@ Use f(x) = 1.
(X) = ° 117 is the area of a

y rectangle.
w11
@ Sois 5 = 3.
@ The improper integral

oo 1 .
I~ szdx is convergent.

X

finite area
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The Integral Test and Estimates of Sums The Integral Test

i T 1 1 1 A nisn=>113

S=mtotmtgEt 5[ 1.4636
2712 To2 T3z T g2

=AU 10| 1.5498
50 1.6251
@ Use a computer to calculate partial 100 1.6350
sums. 500 1.6429
@ Looks like it's converging. 1000 1.6439
5000 1.6447

@ How do we prove it?

@ Use f(x) = 1.
(%) = % ° %isthe area of a

y rectangle.
y-= ® Sois 5 = 1.
@ The improper integral
oo 1 :
I = ) I~ szdx is convergent.
1 2 ﬁ 3 4 5 o 1
finite area (] Therefore Zn:1 e IS

convergent.
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The Integral Test and Estimates of Sums The Integral Test
> 1

=— -
1

I
&l
S

\ﬁ+

S

35
I
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The Integral Test and Estimates of Sums The Integral Test

ii_i+i+i+i+ nsn227—1%
—vnooVv1oV2 o V3 V4 5 32317
10 5.0210

@ Use a computer to calculate partial 50 12.7524
SUMS. 100 18.5896
500 43.2834

1000 61.8010

5000 139.9681
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The Integral Test and Estimates of Sums The Integral Test

ii_i+i+i+i+ nsn227—1%
—vno o V1ovV2 o VB V4 5 3.0317
10 5.0210

@ Use a computer to calculate partial 50 12.7524
sums 100 18.5896
e 500 43.2834

@ Looks like it’s diverging. 1000 61.8010

5000 139.9681
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The Integral Test and Estimates of Sums The Integral Test

ii_i+i+i+i+ nsn227—1%
—vno o V1ovV2 o VB V4 5 3.0317
10 5.0210

@ Use a computer to calculate partial 50 12.7524
SUMS 100 18.5896

' 500 43.2834

@ Looks like it’s diverging. 1000 61.8010
@ How do we prove it? 5000 139.9681
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The Integral Test and Estimates of Sums The Integral Test

ii_i+i+i+i+ nsn227—1%

—vno o V1ovV2 o VB V4 5 3.0317

10 5.0210

@ Use a computer to calculate partial 50 12.7524

sums 100 18.5896

o 500 43.2834

@ Looks like it's dlve.rgmg. 1000 61.8010

@ How do we prove it? 5000 139.9681
@ Use f(x) = %
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The Integral Test and Estimates of Sums The Integral Test

ii_i+i+i+i+ nsn227—1%
—vno V1oV2 o VB V4 5 3.0317
10 5.0210
@ Use a computer to calculate partial 50 12.7524
SUMS 100 18.5896
e 500 43.2834
@ Looks like it's dlve.rgmg. 1000 61.8010
@ How do we prove it? 5000 139.9681
@ Use f(x) = %
1
, ° ~is the area of a
1 rectangle.
T
-_—
1 2 s s 5
Ail
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The Integral Test and Estimates of Sums The Integral Test

ii_i+i+i+i+ nsn227—1%
—vno V1oV2 VB V4 5 3.2317
10 5.0210
@ Use a computer to calculate partial 50 12.7524
SUMS 100 18.5896
' 500 43.2834
@ Looks like it’s diverging. 1000 61.8010
@ How do we prove it? 5000 139.9681
@ Use f(x) = %
1
, ° ~is the area of a
o rectangle.
VX i 1
@ Sois 7
\\
1 2 3 4 5 *
g
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The Integral Test and Estimates of Sums The Integral Test

ii_iﬁ-iﬁ-iﬁ-i—f‘ nsn227—1%
—vno V1oV2 VB V4 5 3.2317
10 5.0210
@ Use a computer to calculate partial 50 12.7524
SUMS 100 18.5896
' 500 43.2834
@ Looks like it’s diverging. 1000 61.8010
@ How do we prove it? 5000 139.9681
@ Use f(x) = %
1
, ° ~is the area of a
o rectangle.
VX i 1
@ Sois 7

L X
1 ﬁ 2 ﬁ 3 ﬁ 4 5
1 1
A=1 = =
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The Integral Test and Estimates of Sums The Integral Test

ii_i_‘_i_,_i_'_i_‘_ nsn227—1%
—vn V1oV2 VB V4 5 3.2317
10 5.0210
@ Use a computer to calculate partial 50 12.7524
SUMS 100 18.5896
' 500 43.2834
@ Looks like it’s diverging. 1000 61.8010
@ How do we prove it? 5000 139.9681
@ Use f(x) = %
1
, ° ~is the area of a
o rectangle.
VX i 1
@ Sois 7

1 AL 2 ﬁl 3 ﬁl ' Aif )
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The Integral Test and Estimates of Sums The Integral Test

ii_i_‘_i_,_i_'_i_‘_ nsn227—1%
—vn V1oV2 VB V4 5 3.2317
10 5.0210
@ Use a computer to calculate partial 50 12.7524
SUMS 100 18.5896
' 500 43.2834
@ Looks like it’s diverging. 1000 61.8010
@ How do we prove it? 5000 139.9681
@ Use f(x) = %
1
, ° ~is the area of a
o rectangle.
VX i 1
@ Sois 7

\‘_“_\T ° fcﬁdxis
' ? 2 ﬁl ° ﬁl ¢ %1 ° x
A=1 = = A=
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The Integral Test and Estimates of Sums The Integral Test

ii_i+i+i+i+ nsn227—1%

—vno o V1ovV2 o VB V4 5 3.2317

10 5.0210

@ Use a computer to calculate partial 50 12.7524

sums 100 18.5896

o 500 43.2834

@ Looks like it's dlve.rgmg. 1000 61.8010

@ How do we prove it? 5000 139.9681
@ Use f(x) = %

1
o 7 is the area of a

rectangle.

o 1
@ Sois 7
° [ %dx is divergent.

X

infinite area
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The Integral Test and Estimates of Sums The Integral Test

ii_i+i+i+i+ nsn227—1%
—vno o V1ovV2 o VB V4 5 3.2317
10 5.0210
@ Use a computer to calculate partial 50 12.7524
SUMS 100 18.5896
' 500 43.2834
@ Looks like it’s diverging. 1000 61.8010
@ How do we prove it? 5000 139.9681
@ Use f(x) = %
1
, ° ~is the area of a
o rectangle.
VX i 1
@ Sois 7

\‘_“_\T ° [ %dx is divergent.

: : ks . s @ Therefore 377 - is
infinite area divergent_
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Theorem (The Integral Test)

Let f be a continuous, positive, decreasing function on 1, cc) and let
ap = f(n). Then the series Y024 an is convergent if and only if the

improper integral [, f(x)dx is convergent. In other words,
QI / f(x)dx is convergent, then Z an s convergent.
1 n=1

Q If / x)dx is divergent, then Z an is divergent.

n=1
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The Integral Test and Estimates of Sums The Integral Test

Theorem (The Integral Test)

Let f be a continuous, positive, decreasing function on 1, cc) and let
ap = f(n). Then the series Y024 an is convergent if and only if the

improper integral [, f(x)dx is convergent. In other words,
QI / f(x)dx is convergent, then Z an s convergent.
1 n=1

Q If / x)dx is divergent, then Z an is divergent.

n=1

Note that it is not necessary to start the series or the integral at n = 1.
For instance, to test the series

1
2 (=37

n=4

o0 1
I

Math 141 Lecture 12 Spring 2015
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

for convergence.

o0
Test the series
; n° +1
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

for convergence.

n? +1
f(x) = g%q is continuous, positive, and decreasing on [1, o), SO use
the Integral Test.

(o)
Test the series Z
n=1
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

for convergence.
n? +1 g

f(x) = g%q is continuous, positive, and decreasing on [1, o), SO use
the Integral Test.

o0 1 t 1
= i dx
/1 x2+1dX l‘l>rro]o/1 X2 +1

(o)
Test the series Z
n=1
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

for convergence.
n? +1 g

f(x) = g%q is continuous, positive, and decreasing on [1, o), SO use
the Integral Test.

/Oo 1 dx = Iim/t !
1 X241 oo f; X2+

1
— lim [ I
t—o0

(o)
Test the series Z
n=1
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

o0
Test the series ) | for convergence.
n=1

n? +1
f(x) = g%q is continuous, positive, and decreasing on [1, o), S0 use
the Integral Test.

00 1 t 1
_ _ li
/1 x2+1dX l‘l>rro]o/1 x2+1dx

= lim [arctanx]!
t—o0
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

for convergence.
n? +1 g

f(x) = )(2‘—1 is continuous, positive, and decreasing on [1, o), SO use
the Integral Test.

o0 1 t 1
—_ = i dx
/1 x2+1dX l‘l>rro]o/1 X2 +1

= lim [arctanx]!
t—o0

(o)
Test the series Z
n=1

= lim (arctant — )
t—o0o
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

for convergence.
n? +1 g

f(x) = )(2‘—1 is continuous, positive, and decreasing on [1, o), SO use
the Integral Test.

o0 1 t 1
—_ = i dx
/1 x2+1dX l‘l>rro]o/1 X2 +1

= lim [arctanx]!
t—o0

(o)
Test the series Z
n=1

= lim (arctant — )
t—o0
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

for convergence.
n? +1 g

f(x) = )(2‘—1 is continuous, positive, and decreasing on [1, o), SO use
the Integral Test.

o0 1 t 1
—_ = i dx
/1 x2+1dX l‘l>rro]o/1 X2 +1

= lim [arctanx]!
t—o0

(o)
Test the series Z
n=1

= lim (arctant — 7/4)
t—o0
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

o0
Test the series ) | for convergence.
n=1

n? +1
f(x) = )(2‘—1 is continuous, positive, and decreasing on [1, o), S0 use
the Integral Test.

00 1 t 1
_ _ li
/1 x2+1dX l‘l>rro]o/1 x2—|-1dX

= lim [arctanx]!
t—o0

= lim (arctant —n/4)
t—o0
= —7/4
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

o0
Test the series ) | for convergence.
n=1

n? +1
f(x) = )(2‘—1 is continuous, positive, and decreasing on [1, o), S0 use
the Integral Test.

00 1 t 1
_ _ li
/1 x2+1dX l‘l>rro]o/1 x2—|-1dX

= lim [arctanx]!
t—o0

= lim (arctant —n/4)
t—o0

= 7w/2—-7/4
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

for convergence.
n? +1 g

f(x) = )(2‘—1 is continuous, positive, and decreasing on [1, o), SO use
the Integral Test.

o0 1 t 1
—_ = i dx
/1 x2+1dX l‘l>rro]o/1 X2 +1

= lim [arctanx]!
t—o0

(o)
Test the series Z
n=1

= 1flim (arctant — 7 /4)
—00
= 7n/2—-7/4d=n/4
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

for convergence.
n? +1 g

f(x) = )(2‘—1 is continuous, positive, and decreasing on [1, o), SO use
the Integral Test.

o0 1 t 1
—_ = i dx
/1 x2+1dX l‘l>rro]o/1 X2 +1

= lim [arctanx]!
t—o0

(o)
Test the series Z
n=1

= 1flim (arctant — 7 /4)
—00
= 7n/2—-7/4d=n/4

Therefore 3024 ' is
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The Integral Test and Estimates of Sums The Integral Test

Example (Example 1, p. 735)

o0
Test the series ) | for convergence.

n? +1

f(x) = )(2‘—1 is continuous, positive, and decreasing on [1, o), SO use
the Integral Test.

o0 1 t 1
—_ = i dx
/1 x2+1dX l‘l>rro]o/1 X2 +1

= lim [arctanx]!
t—o0

= 1flim (arctant — 7 /4)
—00
= 7n/2—-7/4d=n/4

Therefore >~ , n2 is convergent.
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Example (Example 2, p. 735)

o
For which values of p is the series > — convergent?
n=1
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Example (Example 2, p. 735)

(0.9}
. . . 1 B
For which values of p is the series E 1 pry convergent?
n=
@ If p <0, then limy_o 5 =
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Example (Example 2, p. 735)

(0.9}
. . . 1 B
For which values of p is the series E 1 pry convergent?
n=
e If p <0, then limp_ -5 =cc.
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Example (Example 2, p. 735)

o
. . . 1 5
For which values of p is the series 2:1 5 convergent?
n=
e If p <0, then limp_ -5 =cc.
@ If p=0, then limy_o 5 =
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Example (Example 2, p. 735)

o
. . . 1 5
For which values of p is the series 2:1 5 convergent?
n=
e If p <0, then limp_ -5 =cc.
e If p=0, then limp_ 5 =1.
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Example (Example 2, p. 735)

o
: . . 1 5
For which values of p is the series 2:1 5 convergent?
n—=
e If p <0, then limp_ -5 =cc.
@ If p=0, then limp_, 75 =1.
@ In either case, the series is
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Example (Example 2, p. 735)

o
: . . 1 5
For which values of p is the series 2:1 5 convergent?
n—=
e If p <0, then limp_ -5 =cc.
@ If p=0, then limp_, 75 =1.
@ In either case, the series is divergent.
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Example (Example 2, p. 735)

o
: . . 1 5
For which values of p is the series 2:1 5 convergent?
n—=
e If p <0, then limp_ -5 =cc.
@ If p=0, then limp_, 75 =1.
@ In either case, the series is divergent.

e If p> 0, then f(x) = % is continuous, positive, and decreasing on
[1,00), so we can use the Integral Test.
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Example (Example 2, p. 735)

o
: . . 1 5
For which values of p is the series 2:1 5 convergent?
n—=
e If p <0, then limp_ -5 =cc.
@ If p=0, then limp_, 75 =1.
@ In either case, the series is divergent.

e If p> 0, then f(x) = % is continuous, positive, and decreasing on
[1,00), so we can use the Integral Test.

oo
) —dx is convergent if
- 9

0/1 %dx is divergent if
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Example (Example 2, p. 735)

o
: . . 1 5
For which values of p is the series 2:1 5 convergent?
n—=
e If p <0, then limp_ -5 =cc.
@ If p=0, then limp_, 75 =1.
@ In either case, the series is divergent.

e If p> 0, then f(x) = % is continuous, positive, and decreasing on
[1,00), so we can use the Integral Test.

° /1 %dx is convergent if p > 1.

0/1 %dx is divergent if

Math 141 Lecture 12 Spring 2015



Example (Example 2, p. 735)

o
: . . 1 5
For which values of p is the series 2:1 5 convergent?
n—=
e If p <0, then limp_ -5 =cc.
@ If p=0, then limp_, 75 =1.
@ In either case, the series is divergent.

e If p> 0, then f(x) = % is continuous, positive, and decreasing on
[1,00), so we can use the Integral Test.

1
—dx i tif 1.
0/1 Xde is convergent if p >

0/1 %dxisdivergentif
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Example (Example 2, p. 735)

o
: . . 1 5
For which values of p is the series 2:1 5 convergent?
n—=
e If p <0, then limp_ -5 =cc.
@ If p=0, then limp_, 75 =1.
@ In either case, the series is divergent.

e If p> 0, then f(x) = % is continuous, positive, and decreasing on
[1,00), so we can use the Integral Test.

1
—dx i tif 1.
0/1 Xde is convergent if p >

o /1 %dx is divergent if p < 1.
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Example (Example 2, p. 735)

o
: . . 1 5
For which values of p is the series 231 5 convergent?
n—=
e If p <0, then limp_ -5 =cc.
@ If p=0, then limp_, 75 =1.
@ In either case, the series is divergent.

e If p> 0, then f(x) = % is continuous, positive, and decreasing on
[1,00), so we can use the Integral Test.

0/1 %dx is convergent if p > 1.
1
—dxisdi if p<A1.
0/1 deX is divergent if p <

= 1. : : :
@ Therefore Z P is convergent if p > 1 and divergent if p < 1.
n=1

Math 141 Lecture 12 Spring 2015



The Integral Test and Estimates of Sums The Integral Test

This theorem summarizes the results of the previous example.

Theorem (p-series Convergence)

The p-series Z # is convergent if p > 1 and divergent if p < 1.
n=1
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Example (Example 4, p. 736)

o0
: Inn
Test the series E e for convergence.
n=1
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Example (Example 4, p. 736)

o0
. Inn
Test the series E —— for convergence.
n
n=1
o f(x) = '”X is continuous and positive.
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Example (Example 4, p. 736)

Inn
Test th ri —— for convergence.
est the se |es; - for convergence
e f(x) = "X is continuous and positive.
@ It’'s not obvious if it's decreasing, so take the derivative.
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Example (Example 4, p. 736)

Inn
Test th i — :
est the series ; - for convergence
e f(x) = "X is continuous and positive.
@ It’'s not obvious if it's decreasing, so take the derivative.
) — (D)) = (nx)(1)

X2
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Example (Example 4, p. 736)

Inn
Test th i — :
est the series ; - for convergence
e f(x) = "X is continuous and positive.
@ It’'s not obvious if it's decreasing, so take the derivative.
7(x) = () x)=(nx)(1) _1—Inx
N x2 X2
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Example (Example 4, p. 736)

Inn
Test th i — :
est the series ; - for convergence
e f(x) = "X is continuous and positive.
@ It’'s not obvious if it's decreasing, so take the derivative.
7(x) = () x)=(nx)(1) _1—Inx
N x2 X2

@ This is negative for all x >
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Example (Example 4, p. 736)

Inn
Test th i — :
est the series ; - for convergence
e f(x) = "X is continuous and positive.
@ It’'s not obvious if it's decreasing, so take the derivative.
7(x) = () x)=(nx)(1) _1—Inx
N x2 X2

@ This is negative for all x > e.
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Example (Example 4, p. 736)

Inn
i — f nvergence.
Test the series ; - or convergence
e f(x) = "X is continuous and positive.
@ It’'s not obvious if it's decreasing, so take the derivative.
7(x) = () x)=(nx)(1) _1—Inx
N X2 - x2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.
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Example (Example 4, p. 736)

Inn
Test th i — :
est the series ; - for convergence
e f(x) = "X is continuous and positive.
@ It’'s not obV|ous if it's decreasing, so take the derivative.
7(x) = () x)=(nx)(1) _1—Inx
N x2 X2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.

% |n x . tin x
—dx = lim —dx
1 X t—oo Jq X

Math 141 Lecture 12 Spring 2015



Example (Example 4, p. 736)

Inn
Test th i — :
est the series ; - for convergence
e f(x) = "X is continuous and positive.
@ It’'s not obV|ous if it's decreasing, so take the derivative.
7(x) = () x)=(nx)(1) _1—Inx
N x2 X2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.

% |n x . tin x .
/ —dx = lim / —dx_ lim
1 X t—oo Jq X t—o0
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Example (Example 4, p. 736)

Inn
Test th i — :
est the series ; - for convergence
e f(x) = "X is continuous and positive.
@ It’'s not obV|ous if it's decreasing, so take the derivative.
7(x) = () x)=(nx)(1) _1—Inx
N x2 X2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.

[e9) t 2
/ NXax = lim / X 4x = fim [('”X) }g
1 X t—oo J1 X t—o0 2
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Example (Example 4, p. 736)

o0
: Inn
Test the series E e for convergence.
n=1

e f(x) = "X is continuous and positive.
@ It’'s not obV|ous if it's decreasing, so take the derivative.
(D x)=(nx)(1) 1—Inx
f'(x) = X 2 =2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.

[e9) t 2
/ NXgx = lim / NXgx = lim [('”X) }g
1 X t—oo Jq X t—o0 2

= Jn (;(Int)z >
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Example (Example 4, p. 736)

o0
: Inn
Test the series E e for convergence.
n=1

e f(x) = "X is continuous and positive.
@ It’'s not obV|ous if it's decreasing, so take the derivative.
(D x)=(nx)(1) 1—Inx
f'(x) = X 2 =2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.

[e9) t 2
/ NXgx = lim / NXgx = lim [('”X) }q
1 X t—oo Jq X t—o0 2

= Jn (;(In 1 - >
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Example (Example 4, p. 736)

o0
: Inn
Test the series E e for convergence.
n=1

e f(x) = "X is continuous and positive.
@ It’'s not obV|ous if it's decreasing, so take the derivative.
(D x)=(nx)(1) 1—Inx
f'(x) = X 2 =2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.

[e9) t 2
/ NXgx = lim / NXgx = lim [('”X) }q
1 X t—oo J1 X t—o0 2
o,
N tILrDo (Z(m ) O>
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Example (Example 4, p. 736)

o0
: Inn
Test the series E e for convergence.
n=1

e f(x) = "X is continuous and positive.
@ It’'s not obV|ous if it's decreasing, so take the derivative.
(D x)=(nx)(1) 1—Inx
f'(x) = X 2 =2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.

[e9) t 2
/ NXgx = lim / NXgx = lim [('”X) }g
1 X t—oo J1 X t—o0 2
N2
N tIero]o (2(Int) 0> N
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Example (Example 4, p. 736)

o0
: Inn
Test the series E e for convergence.
n=1

e f(x) = "X is continuous and positive.
@ It’'s not obV|ous if it's decreasing, so take the derivative.
(D x)=(nx)(1) 1—Inx
f'(x) = X 2 =2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.

[e9) t 2
/ NXgx = lim / NXgx = lim [('”X) }g
1 X t—oo J1 X t—o0 2
N2
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Example (Example 4, p. 736)

o0
: Inn
Test the series E e for convergence.
n=1

e f(x) = "X is continuous and positive.
@ It’'s not obV|ous if it's decreasing, so take the derivative.
(D x)=(nx)(1) 1—Inx
f'(x) = X 2 =2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.

[e9) t 2
/ NXgx = lim / NXgx = lim [('”X) }g
1 X t—oo Jq X t—o0 2

: 1 >
= tll[go (z(ln f) 0> =00
Therefore 3°7° , 17 is
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Example (Example 4, p. 736)

o0
: Inn
Test the series E e for convergence.
n=1

e f(x) = "X is continuous and positive.
@ It’'s not obV|ous if it's decreasing, so take the derivative.
(D x)=(nx)(1) 1—Inx
f'(x) = X 2 =2

@ This is negative for all x > e.
@ Therefore f is decreasing for all x > e.

[e9) t [ 2
/ NXgx = lim / NXgx = lim [(”X) }g
1 X t—oo Jq X t—o0 2

= lim (;(In t)20> = o0

Therefore °7° , 7 is divergent.
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The Integral Test and Estimates of Sums Estimating Sums

Estimating the Sum of a Series

@ Suppose we have already used the Integral Test to show that
> ap converges.

@ Now we want to find an approximation to the sum of the series.
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The Integral Test and Estimates of Sums Estimating Sums

Estimating the Sum of a Series

@ Suppose we have already used the Integral Test to show that
> ap converges.

@ Now we want to find an approximation to the sum of the series.
@ Any partial sum s, is an approximation. But how good?
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The Integral Test and Estimates of Sums Estimating Sums

Estimating the Sum of a Series

@ Suppose we have already used the Integral Test to show that
> ap converges.

@ Now we want to find an approximation to the sum of the series.
@ Any partial sum s, is an approximation. But how good?

@ Estimate the size of the remainder
Rn:S—Sn:an+1 +an+2+an+3+
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The Integral Test and Estimates of Sums Estimating Sums

Estimating the Sum of a Series

@ Suppose we have already used the Integral Test to show that
> ap converges.

@ Now we want to find an approximation to the sum of the series.
@ Any partial sum s, is an approximation. But how good?

@ Estimate the size of the remainder
Rn:S—Sn:an+1 +an+2+an+3+
@ Suppose f(n) = a,. Draw rectangles with heights a1, ani2, . . ..
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The Integral Test and Estimates of Sums Estimating Sums

Estimating the Sum of a Series

@ Suppose we have already used the Integral Test to show that
> ap converges.

@ Now we want to find an approximation to the sum of the series.
@ Any partial sum s, is an approximation. But how good?
@ Estimate the size of the remainder
Rhn=s8—5sp=apy1 +apio+anz+---.
@ Suppose f(n) = a,. Draw rectangles with heights a1, ani2, . . ..

@ Use the right endpoints to find the height: then the rectangles are
under the curve y = f(x).

@ Use the left endpoints to find the height: then the rectangles are
above the curve y = f(x).
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The Integral Test and Estimates of Sums Estimating Sums

Estimating the Sum of a Series

Suppose we have already used the Integral Test to show that
> ap converges.

Now we want to find an approximation to the sum of the series.
Any partial sum s, is an approximation. But how good?
Estimate the size of the remainder

Rhn=s8—5sp=apy1 +apio+anz+---.

Suppose f(n) = an. Draw rectangles with heights a1, ani2,. . ..

Use the right endpoints to find the height: then the rectangles are
under the curve y = f(x).

Rn == an+1 + an+2 +an+3 + - S f:o f(X)dX

Use the left endpoints to find the height: then the rectangles are
above the curve y = f(x).
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The Integral Test and Estimates of Sums Estimating Sums

Estimating the Sum of a Series

Suppose we have already used the Integral Test to show that
> ap converges.

Now we want to find an approximation to the sum of the series.
Any partial sum s, is an approximation. But how good?
Estimate the size of the remainder

Rhn=s8—5sp=apy1 +apio+anz+---.

Suppose f(n) = an. Draw rectangles with heights a1, ani2, .. ..

Use the right endpoints to find the height: then the rectangles are
under the curve y = f(x).

Rn == an+1 + an+2 +an+3 + - S f:o f(X)dX

Use the left endpoints to find the height: then the rectangles are
above the curve y = f(x).

Rn = ani1 + apy2 + aniz +--- > [0, f(x)dx.
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The Integral Test and Estimates of Sums Estimating Sums

Remainder Estimate for the Integral Test
Suppose f(k) = ak, where f is continuous, positive, and decreasing for
x > n,and ) ax is convergent with sum s. If R, = s — sp,, then

/noo f(x)dx < R, < /OO f(x)dx

+1 n
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The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)

Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?
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The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)

Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?

> 1
/n Fdx_
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The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)

Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?

1 t
_2x2]

n

>
Jn X t—o0
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The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)

Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?

/Oo1dx— T N L H I
n X3 oo | 2x2|,  tsoo \ 212 2n2)
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The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)
Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?
= 1’_|. 1 1T\ 1
/,7 X3 = M [‘ZXQ] - I'JEO(‘ztz*znz) ~ 2@

n
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The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)
Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?
P i 1’_|. 1 1T\ 1
/,7 B = A0 [‘ZXQ] = tLTo<_2t2+2n2> =2

n

1 1 1 1
A ARSI = —m b me bt A2 1.975
nz_;nfﬂ =3t T T s

Math 141 Lecture 12 Spring 2015



The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)
Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?
P i 1’_|. 1 1T\ 1
/,7 B = A0 [‘ZXQ] = tLTo<_2t2+2n2> =2

n

1 1 1 1
A ARSI = —m b me bt A2 1.975
nz_;nfﬂ =3t T T s

Rig < —dx =
10 > /10 %3 X
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The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)
Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?
P i 1’_|. 1 1T\ 1
/,, B = A0 [‘ZXQ] = tLTo<_2t2+2n2> =22

n

1 1 1 1
A ARSI = —m b me bt A2 1.975
;nfﬂ =3t T T s

Math 141 Lecture 12 Spring 2015



The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)
Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?
P i 1’_|. 1 1T\ 1
/,7 B = A0 [‘ZXQ] = tLTo<_2t2+2n2> =2

n

1 1 1 1
A ARSI = —m b me bt A2 1.975
;nfﬂ =3t T T s
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The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)
Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?
P i 1’_|. 1 1T\ 1
/,7 B = A0 [‘ZXQ] = tLTo<_2t2+2n2> =2

n

1 1 1 1
A ARSI = —m b me bt A2 1.975
;nfﬂ =3t T T s

1 1 1
R < — =) = —
10 = /10 39X = 3102 ~ 200

Therefore the error is at most 0.005.
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The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)

Approximate the sum of > # using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?
< ; 11" : 1 1 1
/,7 e = i [‘ye] = <_2t2 g 2/72> =

n
<1 1 1

1

1
R < — =) = —
10 = /10 39X = 3102 ~ 200

Therefore the error is at most 0.005.
To get an accuracy of 0.0005 or better, we want R, < 0.0005. Since
R, < -, we want

Wa
# <0.0005, or n>+1000~ 316
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The Integral Test and Estimates of Sums Estimating Sums

S f(X)dx - < R, < 7 f(x)dx
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The Integral Test and Estimates of Sums Estimating Sums

Joeq F(X)dx
Sn+ [pq F(X)dx

R, < 7 f(x)dx
Sn+ Ry < sp+ [7f(x)dx

@ Add s, to both sides of both inequalities.
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The Integral Test and Estimates of Sums Estimating Sums

[ fx)dx < Ry < [ f(x)dx
St [o f(X)dx < syt Ry < syt [0 f(x)dx
Sn+ [opq f(X)dx < < sy [0 f(x)dx

@ Add s, to both sides of both inequalities.
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The Integral Test and Estimates of Sums Estimating Sums

[ fx)dx < Ry < [ f(x)dx
St [o f(X)dx < syt Ry < syt [0 f(x)dx
st [o f(X)dx < s < sy [ f(x)dx

@ Add s, to both sides of both inequalities.
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The Integral Test and Estimates of Sums Estimating Sums

[ fx)dx < Ry < [ f(x)dx
St [0 f(X)dx < s+ Ry < syt [0 f(x)dx
st [o f(X)dx < s < sy [ f(x)dx

@ Add s, to both sides of both inequalities.
@ This gives upper and lower bounds for s.
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The Integral Test and Estimates of Sums Estimating Sums

[ fx)dx < Ry < [ f(x)dx
St [0 f(X)dx < s+ Ry < syt [0 f(x)dx
st [o f(X)dx < s < sy [ f(x)dx

@ Add s, to both sides of both inequalities.
@ This gives upper and lower bounds for s.
@ This is a better approximation than just using s;,.
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

@ Consider the series > " | 5r7-
@ This reminds us of the series
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

@ Consider the series > " | 5r7-
@ This reminds us of the series
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

. . o’ 1
@ Consider the series > " | 5r7-
@ This reminds us of the series >0 | ..
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

@ Consider the series > " | 5r7-
@ This reminds us of the series >0 | ..

o0 1 . . . . o _
@ > .~ on is @ geometric series witha= andr =
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

@ Consider the series > " | 5r7-
@ This reminds us of the series >0 | ..

o0 1 . . . . o 1 _
@ > .~ on is @ geometric series with a= 5 and r =
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

@ Consider the series > " | 5r7-
@ This reminds us of the series >0 | ..

o0 1 . . . . _ 1 o
@ > .~ on IS @ geometric series with a= 5 and r =
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

@ Consider the series > " | 5r7-
@ This reminds us of the series >0 | ..

[e/e] 1 . . . 1 A
@ > .~ on is @ geometric series witha= 5 and r = 5.
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

@ Consider the series > " | 5r7-
@ This reminds us of the series >0 | ..

o0 1 . . . . _ 1 _ 1
@ > .~ on is @ geometric series with a= 5 and r = 5.
@ Therefore >-0° | 1 is
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

@ Consider the series > " | 5r7-
@ This reminds us of the series >0 | ..

o0 1 . . . . _ 1 _ 1
@ > .~ on is @ geometric series with a= 5 and r = 5.
@ Therefore >"7° , J; is convergent.
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

o Consider the series 377 ¢ 57
@ This reminds us of the series >0 | ..
@ Y%, J: is a geometric series with a= } and r = 1.
@ Therefore >"5° , J; is convergent.
1 1
2/ +1 2
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.
o Consider the series 377 ¢ 57
@ This reminds us of the series >0 | ..
@ Y%, J: is a geometric series with a= } and r = 1.
@ Therefore >"5° , J; is convergent.
1 1

211 2
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

o Consider the series 377 ¢ 57
@ This reminds us of the series >0 | ..
@ Y%, o is a geometric series with a =} and r
@ Therefore >"5° , J; is convergent.
1 1
i1 S 2

n 1 n 1
i=1 2i+1 ) /21:2’

l\)\
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

o Consider the series 377 ¢ 57
@ This reminds us of the series >0 | ..
@ Y%, o is a geometric series with a =} and r
@ Therefore >"5° , J; is convergent.
1 1
i1 S 2

n 1 n 1 o0 1
227 1 < iz_;zi< I,Z_;zi

l\)\
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

o Consider the series 377 ¢ 57
@ This reminds us of the series >0 | ..
@ Y%, o is a geometric series with a =} and r
@ Therefore >"5° , J; is convergent.
1 1
i1 S 2

n 1 n 1 o0 1
227 1 < iz_;zi< ;2"_

l\)\
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

o Consider the series 377 ¢ 57
@ This reminds us of the series >0 | ..
@ Y%, o is a geometric series with a =} and r
@ Therefore >"5° , J; is convergent.
1 1
i1 S 2

n 1 n 1 o0 1
227 1 < §2I<;21

l\)\
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

o Consider the series 377 ¢ 57
@ This reminds us of the series >0 | ..
@ Y%, o is a geometric series with a =} and r
@ Therefore >"5° , J; is convergent.
1 1
i1 S 2

n 1 n 1 o0 1
227 1 < §2I<§2f

@ The partial sums of >~ , 2,,% are increasing and are bounded
above by 1.

l\)\
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

o Consider the series 377 ¢ 57
@ This reminds us of the series >0 | ..
@ Y%, o is a geometric series with a =} and r
@ Therefore >"5° , J; is convergent.
1 1
i1 S 2

n 1 n 1 o0 1
227 1 < §2I<§2f

@ The partial sums of >~ , 2,,% are increasing and are bounded
above by 1.

@ Therefore 37° | 5oy is

l\)\
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The Comparison Test

(12.4) The Comparison Tests

@ In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.

o Consider the series 377 ¢ 57
@ This reminds us of the series >0 | ..
@ Y%, o is a geometric series with a =} and r
@ Therefore >"5° , J; is convergent.
1 1
i1 S 2

n 1 n 1 o0 1
227 1 < §2I<§2f

@ The partial sums of >~ , 2,,% are increasing and are bounded
above by 1.

@ Therefore 37 | 5,1 is convergent.

l\)\
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The Comparison Test

Theorem (The Comparison Test)
Suppose that > a, and > b, are series with positive terms.

@ /> b, is convergent and a, < by, for all n, then >~ a, is also
convergent.

Q I b, is divergent and a, > by, for all n, then >_ a, is also
divergent.
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The Comparison Test

Theorem (The Comparison Test)
Suppose that > a, and > b, are series with positive terms.

@ /> b, is convergent and a, < by, for all n, then >~ a, is also
convergent.

Q I b, is divergent and a, > by, for all n, then >_ a, is also
divergent.

When we use the Comparison Test, we need to have some series
> b that we know in order to make a comparison. Usually > b, is
one of

@ A p-series
@ A geometric series
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The Comparison Test

Theorem (The Comparison Test)
Suppose that > a, and > b, are series with positive terms.

@ /> b, is convergent and a, < by, for all n, then >~ a, is also
convergent.

Q I b, is divergent and a, > by, for all n, then >_ a, is also
divergent.

When we use the Comparison Test, we need to have some series
> b that we know in order to make a comparison. Usually > b, is
one of

@ A p-series (> % converges if and diverges if )
@ A geometric series
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The Comparison Test

Theorem (The Comparison Test)
Suppose that > a, and > b, are series with positive terms.

@ /> b, is convergent and a, < by, for all n, then >~ a, is also
convergent.

Q I b, is divergent and a, > by, for all n, then >_ a, is also
divergent.

When we use the Comparison Test, we need to have some series
> b that we know in order to make a comparison. Usually > b, is
one of

@ A p-series (> % converges if p > 1 and diverges if )
@ A geometric series
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The Comparison Test

Theorem (The Comparison Test)
Suppose that > a, and > b, are series with positive terms.

@ /> b, is convergent and a, < by, for all n, then >~ a, is also
convergent.

Q I b, is divergent and a, > by, for all n, then >_ a, is also
divergent.

When we use the Comparison Test, we need to have some series
> b that we know in order to make a comparison. Usually > b, is
one of

@ A p-series (> % converges if p > 1 and diverges if )
@ A geometric series
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The Comparison Test

Theorem (The Comparison Test)
Suppose that > a, and > b, are series with positive terms.

@ /> b, is convergent and a, < by, for all n, then >~ a, is also
convergent.

Q I b, is divergent and a, > by, for all n, then >_ a, is also
divergent.

When we use the Comparison Test, we need to have some series
> b that we know in order to make a comparison. Usually > b, is
one of

@ A p-series (> % converges if p > 1 and diverges if p < 1)
@ A geometric series
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The Comparison Test

Theorem (The Comparison Test)
Suppose that > a, and > b, are series with positive terms.

@ /> b, is convergent and a, < by, for all n, then >~ a, is also
convergent.

Q I b, is divergent and a, > by, for all n, then >_ a, is also
divergent.

When we use the Comparison Test, we need to have some series
> b that we know in order to make a comparison. Usually > b, is
one of

@ A p-series (> % converges if p > 1 and diverges if p < 1)
@ A geometric series (3" ar"~' converges if and diverges if

)
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The Comparison Test

Theorem (The Comparison Test)
Suppose that > a, and > b, are series with positive terms.

@ /> b, is convergent and a, < by, for all n, then >~ a, is also
convergent.

Q I b, is divergent and a, > by, for all n, then >_ a, is also
divergent.

When we use the Comparison Test, we need to have some series
> b that we know in order to make a comparison. Usually > b, is
one of

@ A p-series (> % converges if p > 1 and diverges if p < 1)
@ A geometric series (3" ar"~" converges if |r| < 1 and diverges if

)
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The Comparison Test

Theorem (The Comparison Test)
Suppose that > a, and > b, are series with positive terms.

@ /> b, is convergent and a, < by, for all n, then >~ a, is also
convergent.

Q I b, is divergent and a, > by, for all n, then >_ a, is also
divergent.

When we use the Comparison Test, we need to have some series
> b that we know in order to make a comparison. Usually > b, is
one of

@ A p-series (> % converges if p > 1 and diverges if p < 1)
@ A geometric series (3" ar"~" converges if |r| < 1 and diverges if

)
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The Comparison Test

Theorem (The Comparison Test)
Suppose that > a, and > b, are series with positive terms.

@ /> b, is convergent and a, < by, for all n, then >~ a, is also
convergent.

Q I b, is divergent and a, > by, for all n, then >_ a, is also
divergent.

When we use the Comparison Test, we need to have some series
> b that we know in order to make a comparison. Usually > b, is
one of

@ A p-series (> % converges if p > 1 and diverges if p < 1)

@ A geometric series (3" ar"~" converges if |r| < 1 and diverges if
ir|>1)
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The Comparison Test

Example (Example 1, p. 742)

Determine if S°°° ., -~ converges or diverges.
n=12n214n+3
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The Comparison Test

Example (Example 1, p. 742)
Determine if >~ , Winw converges or diverges.

@ As n — oo, the dominant term in the denominator is 2n?, so

T
compare with 5>;.

5 5

22 +4n+3 2n?
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The Comparison Test

Example (Example 1, p. 742)
Determine if >~ , Winw converges or diverges.

@ As n — oo, the dominant term in the denominator is 2n?, so

T
compare with 5>;.

5 5

22 1 4n+3 = 212
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The Comparison Test

Example (Example 1, p. 742)
Determine if >~ , Wan% converges or diverges.

@ As n — oo, the dominant term in the denominator is 2n?, so
compare with 2n2

5 5

22 1 4n+3 " 212

o

5 =1
Z;an_ 27
n= n=1
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The Comparison Test

Example (Example 1, p. 742)
Determine if >~ , Wan% converges or diverges.

@ As n — oo, the dominant term in the denominator is 2n?, so
compare with 2n2

5 5

22 1 4n+3 " 212

o

5 =1
Z;an_ 27
n= n=1

@ This is a constant times a p-series with p =
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The Comparison Test

Example (Example 1, p. 742)

Determine if S°°° ., -~ converges or diverges.
n=12n214n+3

@ As n — oo, the dominant term in the denominator is 2n?, so
compare with ;.

5 5

22 1 4n+3 " 212

. 5 5K 1
D a3

n=1 n=1

@ This is a constant times a p-series with p =2 > 1.
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The Comparison Test

Example (Example 1, p. 742)

Determine if S°°° ., -~ converges or diverges.
n=12n214n+3

@ As n — oo, the dominant term in the denominator is 2n?, so

T
compare with 5>;.

5 5

22 1 4n+3 " 212
. 5 5K 1
> 37327
n=1 n=1

@ This is a constant times a p-series withp =2 > 1.
@ Therefore Y 7% 52 is
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The Comparison Test

Example (Example 1, p. 742)
Determine if >~ , Wan% converges or diverges.

@ As n — oo, the dominant term in the denominator is 2n?, so
compare with 2n2

5 5

22 1 4n+3 " 212

o

5 =1
Z;an_ 27
n= n=1

@ This is a constant times a p-series withp =2 > 1.
@ Therefore > 7° | 53 is convergent.
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The Comparison Test

Example (Example 1, p. 742)

Determine if S°°° ., -~ converges or diverges.
n=12n214n+3

@ As n — oo, the dominant term in the denominator is 2n?, so

T
compare with 5>;.

5 5

22 1 4n+3 " 212

. 5 5K 1
D e 32T

n=1 n=1

@ This is a constant times a p-series withp =2 > 1.
o Therefore Y ° | 53 is convergent.

@ Therefore > 2, m is by the Comparison Test.
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The Comparison Test

Example (Example 1, p. 742)

. . o0 5 .
Determine if > 7 , smanT3 converges or diverges.
@ As n — oo, the dominant term in the denominator is 2n?, so

T
compare with 5>;.

5 5

22 1 4n+3 " 212
. 5 5K 1
> 37327
n=1 n=1

@ This is a constant times a p-series withp =2 > 1.
o Therefore Y ° | 53 is convergent.

@ Therefore > 2, m is convergent by the Comparison Test.
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.
@ We could use the Integral Test to find this.
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.
@ We could use the Integral Test to find this.

@ The Comparison Test is even easier.
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.

@ We could use the Integral Test to find this.

@ The Comparison Test is even easier.
Inn 1

— = ifn>3
n n
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.

@ We could use the Integral Test to find this.

@ The Comparison Test is even easier.
Inn 1 .
— > — ifn>3
n n
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.

@ We could use the Integral Test to find this.

@ The Comparison Test is even easier.

Inn 1
—_— > — ifn>3
n n

o >, Lis ap-series with p =
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.

@ We could use the Integral Test to find this.

@ The Comparison Test is even easier.

Inn 1
—_— > — ifn>3
n n

o >, Lis a p-series with p = 1.
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.
@ We could use the Integral Test to find this.

@ The Comparison Test is even easier.

Inn 1
—_— > — ifn>3
n n

o Y, Lisap-serieswithp=1.
@ Therefore >, Lis
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.
@ We could use the Integral Test to find this.

@ The Comparison Test is even easier.

Inn 1
—_— > — ifn>3
n n

o Y, Lisap-serieswithp=1.
@ Therefore >7° ; 1 is divergent.
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.
@ We could use the Integral Test to find this.

@ The Comparison Test is even easier.
Inn

1
— > = ifn>3
n " n
o Y> lisa p-series with p = 1.
@ Therefore >~ ; - is divergent.

@ Therefore 70, N7 ig by the Comparison Test.
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The Comparison Test

Example (Example 2, p. 742)

Determine if 3¢, " converges or diverges.
@ We could use the Integral Test to find this.

@ The Comparison Test is even easier.
Inn

— > 1 ifn>3
n "~ n
o Y> lisa p-series with p = 1.
@ Therefore >~ ; - is divergent.
@ Therefore >, '”n” is divergent by the Comparison Test.
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The Comparison Test

In order to use the comparison test to see if Y a,, is convergent or
divergent, we need the terms a, to be

@ smaller than the terms of a convergent series, or
@ bigger than the terms of a divergent series.
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The Comparison Test

In order to use the comparison test to see if Y a,, is convergent or
divergent, we need the terms a, to be

@ smaller than the terms of a convergent series, or
@ bigger than the terms of a divergent series.
If the terms a, are
@ bigger than the terms of a convergent series, or
@ smaller than the terms of a divergent series,
then the Comparison Test gives no information.
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The Comparison Test

In order to use the comparison test to see if Y a,, is convergent or
divergent, we need the terms a, to be

@ smaller than the terms of a convergent series, or
@ bigger than the terms of a divergent series.
If the terms a,, are
@ bigger than the terms of a convergent series, or
@ smaller than the terms of a divergent series,
then the Comparison Test gives no information.
@ Consider the series 0% | 5.
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The Comparison Test

In order to use the comparison test to see if Y a,, is convergent or
divergent, we need the terms a, to be

@ smaller than the terms of a convergent series, or

@ bigger than the terms of a divergent series.
If the terms a,, are

@ bigger than the terms of a convergent series, or

@ smaller than the terms of a divergent series,
then the Comparison Test gives no information.

@ Consider the series 0% | 5.
1 1

2n—1 21
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The Comparison Test

In order to use the comparison test to see if Y a,, is convergent or
divergent, we need the terms a, to be

@ smaller than the terms of a convergent series, or

@ bigger than the terms of a divergent series.
If the terms a,, are

@ bigger than the terms of a convergent series, or

@ smaller than the terms of a divergent series,
then the Comparison Test gives no information.

@ Consider the series 0% | 5.
1 1
on 1~ 2n
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The Comparison Test

In order to use the comparison test to see if Y a,, is convergent or
divergent, we need the terms a, to be

@ smaller than the terms of a convergent series, or

@ bigger than the terms of a divergent series.
If the terms a, are

@ bigger than the terms of a convergent series, or

@ smaller than the terms of a divergent series,
then the Comparison Test gives no information.

@ Consider the series 0% | 5.
1 1
on 1~ 2n

@ The Comparison Test tells us nothing here.
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The Comparison Test

In order to use the comparison test to see if Y a,, is convergent or
divergent, we need the terms a, to be

@ smaller than the terms of a convergent series, or

@ bigger than the terms of a divergent series.
If the terms a,, are

@ bigger than the terms of a convergent series, or

@ smaller than the terms of a divergent series,
then the Comparison Test gives no information.

@ Consider the series 0% | 5.
1 1
on 1~ 2n

@ The Comparison Test tells us nothing here.
@ Nevertheless, we think 3 57— should converge, because it's so
close to 3~ 4.
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The Comparison Test

Theorem (The Limit Comparison Test)
Suppose that > a, and > b, are series with positive terms. If

where c is a finite number and ¢ > 0, then either both series converge
or both series diverge.
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The Comparison Test

Theorem (The Limit Comparison Test)
Suppose that > a, and > b, are series with positive terms. If

where c is a finite number and ¢ > 0, then either both series converge
or both series diverge.

The main thing to check is that c is finite and non-zero.
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The Comparison Test

Example (Example 3, p. 743)

Test the series Y7 ; s for convergence or divergence.
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The Comparison Test

Example (Example 3, p. 743)

Test the series Y7 ; s for convergence or divergence.

Use the Limit Comparison Test with

1 1
=g DT
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The Comparison Test

Example (Example 3, p. 743)

Test the series Y7 ; s for convergence or divergence.
Use the Limit Comparison Test with

1 1
h=giq b=z
; 1
. . n__
lim 22 lim 221
n—oo by, n—oo o
Math 141
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The Comparison Test

Example (Example 3, p. 743)

Test the series Y7 ; s for convergence or divergence.
Use the Limit Comparison Test with

a”:2n1—1’ b”:21n
ap oy
n“—>moo by n“—>moo %
2n
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The Comparison Test

Example (Example 3, p. 743)

Test the series Y7 ; s for convergence or divergence.
Use the Limit Comparison Test with

1 1
=g bh=g
a _1
. . n_
im =% = lim &
n—oo by, n—oo o
on L
= lim = . 2T
n—oo 21 — 1 o7
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The Comparison Test

Example (Example 3, p. 743)

Test the series Y7 ; s for convergence or divergence.
Use the Limit Comparison Test with

1 1
=g bh=g
a 1
. n _ o 2n_1
n“—>moo b, n“—>moo 1
n 5n
on L
= lim 2 . ZT
n—oo 2N — 14 27
. 1
= lim -
n—oo 1 — -
2!7
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The Comparison Test

Example (Example 3, p. 743)

Test the series Y7 ; s for convergence or divergence.
Use the Limit Comparison Test with

1 1
=g bh=g
a _1
. n _ o 2n_1
n“—>moo b, n“—>moo 1
n 5n
: on L
= lim —— 2
n—oo 21 — 1 27
. 1
n—oo 1 — -
2[7
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The Comparison Test

Example (Example 3, p. 743)

Test the series Y7 ; s for convergence or divergence.
Use the Limit Comparison Test with

1 1
h=gn_q =g
a 1
. . n_
im =% = lim &
n—oo by n—oo o
2"
= lim —— 2
n—oo 2N — 1 -
: 1
n—oo 1 — -
2n
@Y sisa geometric series.

Math 141 Lecture 12 Spring 2015



The Comparison Test

Example (Example 3, p. 743)

Test the series Y7 ; s for convergence or divergence.
Use the Limit Comparison Test with

1 1
=g bh=g
a _1
. n _ o 2n_1
nIL>mooF o n“—>moo 1
n 5n
: on L
— im 2T
n—oo 21 — 1 27
. 1
n—oo 1 — -
2!7

> % is a convergent geometric series.
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The Comparison Test

Example (Example 3, p. 743)

Test the series Y7 ; s for convergence or divergence.
Use the Limit Comparison Test with

1 1
h=giq b=z
a 1
. n _ o 2n_1
nIL>mooF o n“—>moo 1
n 5n
: on L
= lim —— 2
n—oo 21 — 1 27
. 1
n—oo 1 — -

o> % is a convergent geometric series.
@ By the Limit Comparison Test > ZJ—_1 is convergent too.
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

Math 141 Lecture 12 Spring 2015



The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is and the dominant part
of the denominator is

a_2n2+3n b
S "
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is

2n? +3n 2n?
an = —F——, bp =
v5+
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is

a _ 2n*+3n b 2
n /754_”57 n
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is vn® = n®/2.

a _ 2n*+3n b 2
" VB "7 o2
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

a_2n2+3n b_2n2_ 2
W= /515’ = p5/2 — pij2
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

a_2n2+3n b_2n2_ 2
W= /515’ = p5/2 — pij2

an . 2n?+3n n'/?
lim — = lim

n—oo bp, n—oco /5 4+ nd 2
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

2n° 4+ 3n 2n? 2
an=—5, bh=—5=—%
/5% 52— nij2
an . 2n?+3n n'/? . 2n?/2 4 3n8/2
lim — = lim

n—oo bn n—oo ,/5_|_n5 2 nLoo 2,/5+n5
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

a_2n2+3n b_2n2_ 2
W= /515’ = p5/2 — pij2

an 2@ +43n n'/2 224 3m2
lim — = lim : = |lim ————T—

n—oo bn n—oo ,/5_|_n5 2 n—oo 2,/5+n ﬁ
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

_ 2n*+3n b_2n2_ 2
an_ﬁ7 H_W_TQ
im @ _ o 2480 2 2rP/2 4 3rR/2 =
n—o00 bn B n—o0 ,/5_|_n5 2 " n—ooo 2,/5+n5 #
2,3
— im o

N—00 2\/?
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

2n? +3n 2n? 2
P L L W L
51 B2~ iR
an _2m?+3n n'2  om243mi2 s

im — = lim : = lim

n—oo bn n—oo ,/5_|_n5 2 n—oo 2,/5+n5 #
3

. P =

= lim —2_-=1>0

il NN
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

2% +3n 2P 2
an = bn = — = —
5+ nd/2  ni/2
. an . 2n?+3n n'/? _onbl2 4 3p2 1,
I|m — = ||m 5 = ||m n1

n—o00 bn n—oo /5 + n° 2 n—oo  2./5 4 n°

3
— im —“fh _q1590

il NN

@ > -2, is a constant multiple of a p-series with p =
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

2% +3n 2P 2
an = bn = — = —
5+ nd/2  ni/2
. an . 2n?+3n n'/? _onbl2 4 3p2 1,
I|m — = ||m 5 = ||m n1

n—o00 bn n—oo /5 + n° 2 n—oo  2./5 4 n°

3
— im —“fh _q1590

il NN

@ > -2, is a constant multiple of a p-series with p = 1.
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

2% +3n 2P 2
an = bn = — = —
5+ nd/2  ni/2
. an . 2n?+3n n'/? _onbl2 4 3p2 1,
I|m — = ||m 5 = ||m n1

n—o00 bn n—oo /5 + n° 2 n—oo  2./5 4 n°

3
— im —“fh _q1590

n—oo 2 /% + 1
@ > -2, is a constant multiple of a p-series with p = .

® Therefore 3 —2; is
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

2% +3n 2P 2
an = bn = — = —
5+ nd/2  ni/2
. an . 2n?+3n n'/? _onbl2 4 3p2 1,
I|m — = ||m 5 = ||m n1

n—o00 bn n—oo /5 + n° 2 n—oo  2./5 4 n°

3
— im —“fh _q1590

n—oo 2 /% + 1
@ > -2, is a constant multiple of a p-series with p = .

@ Therefore 3 —2; is divergent
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The Comparison Test

Example (Example 4, p. 743)

Test the series Y77 f/”ﬂ’ for convergence or divergence.

@ The dominant part of the numerator is 2n? and the dominant part
of the denominator is v'n® = n®/2.

2% +3n 2P 2
an = bn = — = —
5+ nd/2  ni/2
. an . 2n?+3n n'/? _onbl2 4 3p2 1,
I|m — = ||m 5 = ||m n1

n—o00 bn n—oo /5 + n° 2 n—oo  2./5 4 n°

3
— im —“fh _q1590

n—oo 2 /% + 1
@ > -2, is a constant multiple of a p-series with p = .

2n+3n
NGE
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o Therefore 3~ -Z; is divergent, and so is 3
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