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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.

Here are two examples:
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.
Examples

Here are two examples:
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.
Examples

Here are two examples:
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.

Here are two examples:
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.

Here are two examples:
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.

Here are two examples:
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Alternating Series

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.

Here are two examples:
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Alternating Series
Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.

Here are two examples:
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Alternating Series
Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive
and negative.

Here are two examples:

o
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n=1

The nth term of an alternating series has the form
an - (—1)n_1bn or an - (—1)nbn

where by, is positive.
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Alternating Series

Theorem (The Alternating Series Test)
If the alternating series

[e.9]

S (=1)""by=by —bp+bs—bs+bs—---,  by>0
n=1
satisfies
Q@ b,.1 < by, forall nand
Q limyouby,=0
then the series is convergent.
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Alternating Series

The alternating harmonic series

11 1 & (1)
l=3tg gt =X

n=1

satisfies

1 1
Q bpy1 < by because 15 < .
Q limy_,00 by =limp_,50 15
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Alternating Series

The alternating harmonic series

11 1 & (1)
l=3tg gt =X

n=1

satisfies

1 1
Q bpy1 < by because 15 < .
Q limy_,00 by =limp_,50 15 =
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Alternating Series

The alternating harmonic series

11 1 & (1)
l=3tg gt =X

o n=1
satisfies
@ b, < b, because % <1
Q limpyo0 by =limp 00 L - =0.
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Alternating Series

Example
The alternating harmonic series
1_1+1_1+...:i¢
2 3 4 —~ n
satisfies

Q b,,+1 < b because m < -

Therefore the series is convergent by the Alternating Series Test.
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Alternating Series

The series 300 ,(—1)" ;22 is alternating, but

. . 3n
n“%moo bn - nIme 4n —1
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Alternating Series

The series 300 ,(—1)" ;22 is alternating, but

. . 3n
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Alternating Series

The series 300 ,(—1)" ;22 is alternating, but
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Alternating Series

The series 300 ,(—1)" ;22 is alternating, but
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Alternating Series

The series 300 ,(—1)" ;22 is alternating, but

. , 3n
n“%moo bn - nIme 4n —1 '

= |im E =
_n~>oo4_ Z
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1
n

Therefore the series is divergent by the Alternating Series Test.
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Alternating Series Estimating Sums

Estimating Sums

This theorem allows us to estimate the size of the remainder
R, = s — s, in an alternating series.

Theorem (Alternating Series Estimation Theorem)

Let Z( —1)""b,, be the sum of an alternating series that satisfies
Q@ 0<bpy<bpand
Q lim b,=0.
n—o0
Then the size of the error is less than the first omitted term; that is,

|Rol = |5 — Snl < bas+.
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Alternating Series Estimating Sums

Find the sum of 3", ,71,) correct to three decimal places. (0! = 1.)
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1
Qo bni1 = m
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 1
n+ 1) nl(n+1)

0 bn+1 :(
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 1 1_
n+1)

0 bn+1 :(

|: <i—bn

nl(n+1) nl
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 1 1_
n+1)

0 bn+1 :(

|: <i—bn

nl(n+1) nl
Q0< 1
n!

Math 141 Lecture 13 Spring 2015



Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 1 1

obn+1:(n+1)!: < — = bp.
1 1

nl(n+1) nl
Q@0<—<—
n! n
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 1 1

nt ) n(nt1) ° a1 = Pn

0 bn+1 :(

1 1
90<m<5—>0,so b, — 0as n— oo.

Math 141 Lecture 13 Spring 2015



Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 1 1

nt ) n(nt1) ° a1 = Pn

0 bn+1 :(

1 1
90<m<5—>0,so b, — 0as n— oo.

@ Therefore the series converges by the Alternating Series Test.
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 1 1

nt ) n(nt1) ° a1 = Pn

0 bn+1 :(

1 1
Q 0<m<5—>0,so b, — 0as n— oo.
@ Therefore the series converges by the Alternating Series Test.
1 1 1 1 1 1 1 1

ST o untaataTste Ao
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! = 1.)

n!

1 B 1 <l
n+1)!  n(n+1) ~ nl

0 bn+1 :(

1 1
90<m<5—>0,so b, — 0as n— oo.

= bn.

@ Therefore the series converges by the Alternating Series Test.

1 1 1 1 1 1 1 1
S T o ntaTmta e AT

1 1 1 1 1 1

= 15624 120 " 720 5040
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 B 1 <l
n+1)!  n(n+1) ~ nl

0 bn+1 :(

1 1
90<m<5—>0,so b, — 0as n— oo.

= bn.

@ Therefore the series converges by the Alternating Series Test.

1 1 1 1 1 1 1 1
S T o ntaTmta e AT

1 1 1 1 1 1

= 11t 624 120 T 720 5040

@ |5 — s5| < by = z545 < 0.0002.
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 B 1 <l
n+1)!  n(n+1) ~ nl

0 bn+1 :(

1 1
90<m<5—>0,so b, — 0as n— oo.

= bn.

@ Therefore the series converges by the Alternating Series Test.

1 1 1 1 1 1 1 1
S TR TR-TRNE- T TR I TR TR
1 1 1 1 1 1
= 1-1+

276 24 120 720 5040 =

) ’S—SG‘§b7:501740<00002
© s5=1— 1411+ — b+ i ~0.368056.
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 B 1 <l
n+1)!  n(n+1) ~ nl

0 bn+1 :(

1 1
90<m<5—>0,so b, — 0as n— oo.

= bn.

@ Therefore the series converges by the Alternating Series Test.

1 1 1 1 1 1 1 1
S T o ntaTmta e A

1 1 1 1 1 1

= 115624 120 " 720 5040

@ |5 — s5| < by = z545 < 0.0002.
@ ss=1—-1+5%—%+8 — 5+ 75 ~ 0.368056.
@ The error of less than 0.0002 doesn’t affect the third decimal

place
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Alternating Series Estimating Sums

Find the sum of 3", 1) correct to three decimal places. (0! =1.)

n!

1 B 1 <l
n+1)!  n(n+1) ~ nl

0 bn+1 :(

1 1
90<m<5—>0,so b, — 0as n— oo.

= bn.

@ Therefore the series converges by the Alternating Series Test.

1 1 1 1 1 1 1 1
S T o ntaTmta e A

1 1 1 1 1 1

= 115624 120 " 720 5040

® |s— s5| < by = z545 < 0.0002.
@ ss=1—-1+5% -1+ 8 — 5+ -5 ~ 0.368056.
@ The error of less than 0.0002 doesn’t affect the third decimal

place, so s ~ sg ~ 0.368.
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Alternating Series Estimating Sums

Absolute Convergence and the Ratio and Root Tests

In this section, we start with any series Z an and consider the
corresponding series

> lan| = |an| + |az| + |as| + - -

consisting of the absolute values of the terms of the original series.
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Alternating Series Absolute Convergence

Absolute Convergence

Definition (Absolutely Convergent)
A series Z an is called absolutely convergent if the series of absolute
values > |ay| is convergent.
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Alternating Series Absolute Convergence

Absolute Convergence

Definition (Absolutely Convergent)
A series Z an is called absolutely convergent if the series of absolute

values > |ay| is convergent.

If > an is a series with all positive terms, then |a,| = a, and absolute
convergence is the same thing as convergence in this case.
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Alternating Series Absolute Convergence

The series
=1 1 1 1

ce n

Z Tty
is absolutely convergent because

oo

o[

n2

—1+1+1+1+
22 132 " 42

n=1

is a convergent p-series with p = 2.
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Alternating Series Absolute Convergence

The alternating harmonic series
= (=1)"1 1 1 1

n 273 4"
n=1

is convergent (by the alternating series test, as already demonstrated).
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Alternating Series Absolute Convergence

The alternating harmonic series
= (=1)"1 1 1 1

n 273 4"
n=1

is convergent (by the alternating series test, as already demonstrated).

@ Is it absolutely convergent?

iw—1+1+1+1+
~| n | 2734
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Alternating Series Absolute Convergence

The alternating harmonic series
= (=1)"1 1 1 1

n 273 4"
n=1

is convergent (by the alternating series test, as already demonstrated).

@ Is it absolutely convergent?

ii(_”nq TP
~| n | 234

@ This is a p-series with p =
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Alternating Series Absolute Convergence

The alternating harmonic series
= (=1)"1 1 1 1

n 273 4"
n=1

is convergent (by the alternating series test, as already demonstrated).

@ Is it absolutely convergent?

iw—1+1+1+1+
~| n | 2734

@ This is a p-series with p = 1.

Math 141 Lecture 13 Spring 2015



Alternating Series Absolute Convergence

The alternating harmonic series
= (=1)"1 1 1 1

n 273 4"
n=1

is convergent (by the alternating series test, as already demonstrated).

@ Is it absolutely convergent?

iw—1+1+1+1+
~| n | 2734

@ This is a p-series with p = 1.

@ Therefore >, , ‘% is

o Therefore -2, U™ i
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Alternating Series Absolute Convergence

The alternating harmonic series
= (=1)"1 1 1 1

n 273 4"
n=1

is convergent (by the alternating series test, as already demonstrated).

@ Is it absolutely convergent?

iw—1+1+1+1+
~| n | 2734

@ This is a p-series with p = 1.

@ Therefore 3", ‘(_1,%"71 ’ is divergent.

o Therefore -2, U™ i
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Alternating Series Absolute Convergence

The alternating harmonic series
= (=1)"1 1 1 1

n 273 4"
n=1

is convergent (by the alternating series test, as already demonstrated).

@ Is it absolutely convergent?

iw—1+1+1+1+
~| n | 2734

@ This is a p-series with p = 1.
@ Therefore >, , ‘%’ is divergent.

@ Therefore >~ , % is not absolutely convergent.
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Alternating Series Absolute Convergence

Definition (Conditionally Convergent)

A series Z an is called conditionally convergent if it is convergent but
not absolutely convergent.
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Alternating Series Absolute Convergence

Definition (Conditionally Convergent)

A series Z an is called conditionally convergent if it is convergent but
not absolutely convergent.

@ The alternating harmonic series is conditionally convergent.
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Alternating Series Absolute Convergence

Definition (Conditionally Convergent)

A series Z an is called conditionally convergent if it is convergent but
not absolutely convergent.

@ The alternating harmonic series is conditionally convergent.

@ Therefore it is possible for a series to be convergent but not
absolutely convergent.
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Alternating Series Absolute Convergence

Definition (Conditionally Convergent)

A series Z an is called conditionally convergent if it is convergent but
not absolutely convergent.

@ The alternating harmonic series is conditionally convergent.

@ Therefore it is possible for a series to be convergent but not
absolutely convergent.

@ Question: Is it possible for a series to be absolutely convergent
but not convergent?

Math 141 Lecture 13 Spring 2015



Alternating Series Absolute Convergence

Definition (Conditionally Convergent)

A series Z an is called conditionally convergent if it is convergent but
not absolutely convergent.

@ The alternating harmonic series is conditionally convergent.

@ Therefore it is possible for a series to be convergent but not
absolutely convergent.

@ Question: Is it possible for a series to be absolutely convergent
but not convergent?

@ Answer: No. This is the content of the next theorem.

Math 141 Lecture 13 Spring 2015



Alternating Series Absolute Convergence

Theorem (Absolute Convergence Implies Convergence)
If a series is absolutely convergent, then it is convergent.

Math 141 Lecture 13 Spring 2015



Alternating Series Absolute Convergence

Determine vgcbether

cosn cos1 cos2 cos3 cos4
Z n2 = 12 + 22 + 32 + 42 +
n=1

is convergent or divergent.
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Alternating Series Absolute Convergence

Determine vgcbether

cosn cos1l cos2 cos3 cos4
Z:,~,2:12+22+32+42+
n=1
is convergent or divergent.
@ The series has positive and negative terms, but is not alternating.
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Alternating Series Absolute Convergence

Determine vgcbether

cosn cosl cos2 cos3 cos4
Z:,~,2:12+22+32+42+
is convergenn_t10r divergent.
@ The series has positive and negative terms, but is not alternating.
@ Use the Comparison Test:
0 < Jcosn < 1
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Alternating Series Absolute Convergence

Determine vgcbether

cosn cosl cos2 cos3 cos4
Z:,~,2:12+22+32+42+
is convergenn_t10r divergent.
@ The series has positive and negative terms, but is not alternating.
@ Use the Comparison Test:

0 < Jcosn < 1
| cos n| 1
n2

0 <

IA
|
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Alternating Series Absolute Convergence

Determine vgcbether

cosn cosl cos2 cos3 cos4
Z:,~,2:12+22+32+42+
is convergenn_t10r divergent.
@ The series has positive and negative terms, but is not alternating.
@ Use the Comparison Test:

0 < Jcosn < 1
| cos n| 1
2

0 <

IA
|

® Y % is a p-series with p =
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Alternating Series Absolute Convergence

Determine vgcbether

cosn cos1l cos2 cos3 cos4
Z:,~,2:12+22+32+42+
n=1
is convergent or divergent.

@ The series has positive and negative terms, but is not alternating.

@ Use the Comparison Test:

0 < Jcosn < 1

| cos n| 1

n2
@ Y % is a p-series with p = 2.

0 <

IA
|
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Alternating Series Absolute Convergence

Determine whether

~cosn cos1 cos2 cos3  cos4
Z n2 = 12 + 22 + 32 + 42 +
n=1

is convergent or divergent.
@ The series has positive and negative terms, but is not alternating.
@ Use the Comparison Test:
0 < Jcosn < 1
|ccr); n| < 1

0 < 2
@ Y % is a p-series with p = 2.

@ Therefore ) # is and so by the Comparison Test,
3 @ is also
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Alternating Series Absolute Convergence

Determine vgcbether

cosn cosl cos2 cos3 cos4
Z:,~,2:12+22+32+42+
is convergenn_t10r divergent.
@ The series has positive and negative terms, but is not alternating.
@ Use the Comparison Test:

0 < Jcosn < 1

| cos n| 1
n? S 2

@ Y % is a p-series with p = 2.

0 <

@ Therefore ) # is convergent, and so by the Comparison Test,

> L1l i also convergent.
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Alternating Series Absolute Convergence

Determine vgcbether

cosn cosl cos2 cos3 cos4
Z:,~,2:12+22+32+42+
is convergenn_t10r divergent.
@ The series has positive and negative terms, but is not alternating.
@ Use the Comparison Test:

0 < Jcosn < 1

| cos n| 1
n? S 2

@ Y % is a p-series with p = 2.

0 <

@ Therefore ) # is convergent, and so by the Comparison Test,

- o1l i also convergent.

@ Therefore ) <57 is absolutely convergent.
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Alternating Series Absolute Convergence

Determine whether

~cosn cos1 cos2 cos3  cos4
Z n2 = 12 + 22 + 32 + 42 +
n=1

is convergent or divergent.
@ The series has positive and negative terms, but is not alternating.
@ Use the Comparison Test:
0 < Jcosn < 1
|ccr); n| < 1

0 < 2
@ Y % is a p-series with p = 2.

@ Therefore ) # is convergent, and so by the Comparison Test,
- o1l i also convergent.
@ Therefore ) <57 is absolutely convergent.

@ Therefore by the previous theorem, 3~ €%57 is convergent.
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test

Theorem (The Ratio Test)

Q /f lim anit| _ L < 1, then the series ) a, is absolutely

n—o0 dan
convergent (and therefore convergent).
. |a . |a . .
Q If lim |2 = L > 1 or lim |22 = oo, then the series S ay is
n—oo an n—oo an
divergent.

© If lim |21 = [ — 1, then the Ratio Test is inconclusive.
n—o00 an
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

ant1| 1
an '

The Ratio Test is inconclusive if lim
n—oo
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

ant1| 1
an '

1
2

The Ratio Test is inconclusive if lim
n—oo

n=1
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test is inconclusive if lim |271| = 1.
n—o00 an
Z lz @ This is a p-series with p =

@ Therefore it is

Zf
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test is inconclusive if lim |271| = 1.
n—o00 an
Z lz @ This is a p-series with p = 2.

@ Therefore it is

Zf
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test is inconclusive if lim |271| = 1.
n—o00 an
Z lz @ This is a p-series with p = 2.

@ Therefore it is convergent.

Zf
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

ant1| 1
an '

i lz @ This is a p-series with p = 2.
n=1 @ Therefore it is convergent.

The Ratio Test is inconclusive if lim
n—oo

ant1
an

Zf
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test is inconclusive if lim |2+ | — 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n—=1 @ Therefore it is convergent.
1
ani1| _ g _ M
an 5 (n+1)32

Zf
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

. . o a
The Ratio Test is inconclusive if lim |27 = 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n—=1 @ Therefore it is convergent.
_1 1
an+1 _ (12 n? e
an 5 (n+1)2 %

Zf
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test is inconclusive if lim |2+ | — 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n—=1 @ Therefore it is convergent.
1
anyi| _ P _ ™ @1
an 2 (12 5 (1 1)?

Zf
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

. . . a
The Ratio Test is inconclusive if lim |21 = 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n—=1 @ Therefore it is convergent.
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

. o a
The Ratio Test is inconclusive if lim |27 = 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n—=1 @ Therefore it is convergent.
1 2 1
anpi| (e o omo 1 ‘
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n n
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

. D a
The Ratio Test is inconclusive if lim |27 = 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n—=1 @ Therefore it is convergent.
1 2 1
anti1| _ (n+1)2 n 2 1
o lz 7(n+1)2 %77(14_1)2_)1 as N — oo
n n

Z ! @ This is a p-series with p =

— @ Therefore it is
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

. D a
The Ratio Test is inconclusive if lim |27 = 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n—=1 @ Therefore it is convergent.
1 2 1
anti1| _ (n+1)2 n 2 1
o lz 7(n+1)2 %77(14_1)2_)1 as N — oo
n n

1
Z ! @ This is a p-series with p = 1.

— @ Therefore it is
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

. D a
The Ratio Test is inconclusive if lim |27 = 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n—=1 @ Therefore it is convergent.
1 2 1
anti1| _ (n+1)2 n 2 1
o lz 7(n+1)2 %77(14_1)2_)1 as N — oo
n n

1
Z ! @ This is a p-series with p = 1.

puritl @ Therefore it is divergent.
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

. D a
The Ratio Test is inconclusive if lim |27 = 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n—=1 @ Therefore it is convergent.
1 2 1
anti1| _ (n+1)2 n 2 1
o lz 7(n+1)2 %77(14_1)2_)1 as N — oo
n n

(o)
Z 1 @ This is a p-series with p = 1.
el @ Therefore it is divergent.
1
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

. D a
The Ratio Test is inconclusive if lim |27 = 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n—=1 @ Therefore it is convergent.
1 2 1
anti1| _ (n+1)2 n 2 1
o lz 7(n+1)2 %77(14_1)2_)1 as N — oo
n n

(o)
Z 1 @ This is a p-series with p = 1.
puritl @ Therefore it is divergent.
an1 n+ n
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

. . . ... |a
The Ratio Test is inconclusive if nI|_>m ;—“ =1.
o0 n
Z lz @ This is a p-series with p = 2.
n=1 @ Therefore it is convergent.
1 1
8ni1 | _ (12 _ s A —1 as N — oo
an 2 (12 5 (1 1)?
> 1 . . .
Z : @ This is a p-series with p = 1.
puritl @ Therefore it is divergent.
antt | _ 11171 __n 1ﬁ
an 15 n+1 15
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test is inconclusive if lim | 20| — 1.
n—o00 an
Z lz @ This is a p-series with p = 2.
n=1 @ Therefore it is convergent.
_1 2 1
1| (12 N 2z 1
n 2 =5 (1 + ﬁ)
> 1
Z ! @ This is a p-series with p = 1.
puritl @ Therefore it is divergent.
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test is inconclusive if lim | 20| — 1.
n—o00 an
Z lz @ This is a p-series with p = 2.
n=1 @ Therefore it is convergent.
1 2 1
anti|  (nr1@ M 7 1
n 2 =5 (1 + ﬁ)
> 1
Z ! @ This is a p-series with p = 1.
puritl @ Therefore it is divergent.
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test is inconclusive if lim | 20| — 1.
n—oo an
Z lz @ This is a p-series with p = 2.
n=1 @ Therefore it is convergent.
1 2 1
1| (12 N 2z 1
n 2 =5 (1 + ﬁ)
> 1
Z ! @ This is a p-series with p = 1.
puritl @ Therefore it is divergent.
1
a T n = 1
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

. . . ... |a
The Ratio Test is inconclusive if nI|_>m ;’*1 =1.
0 n
Z lz @ This is a p-series with p = 2.
n=1 @ Therefore it is convergent.
1 1
Gnt1| _ (01?2 _ n .E:¥—>1 as N — 0o
an 2 (12 5 (1 1)?
> 1 . . .
Z : @ This is a p-series with p = 1.
puritl @ Therefore it is divergent.
1
8n+1 il _ n -ﬁ:;—ﬂ as N — oo
an |~ T T
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

L e n
Test the series Z(—1 )”ﬁ for absolute convergence.
n=1
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

L e n
Test the series Z(—1 )”ﬁ for absolute convergence.

n=1
(n+1)3
an1 ( 1)n+1 3n+1)
n (=105
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

L e n
Test the series Z(—1 )”ﬁ for absolute convergence.

n=1
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

L e n
Test the series Z(—1 )”ﬁ for absolute convergence.
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Example
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

L e n
Test the series Z(—1 )”ﬁ for absolute convergence.

n=1
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

L e n
Test the series Z(—1 )”ﬁ for absolute convergence.
n=1

3

(=) G
3
(=1)"%

(n+1)3 37
a3

()
(+3)

Therefore the series is by the Ratio Test.
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

L e n
Test the series Z(—1 )”ﬁ for absolute convergence.

n=1
3
an+1 - ( 1)n+1 ?;:1)
- 3
iy (=1)"%
(n+1)3 37
G

- =<1
Therefore the series is absolutely convergent by the Ratio Test.
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

X
. n
Test the convergence of the series E R
n=1
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Example

X
. n
Test the convergence of the series E R

n=1
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

X
. n
Test the convergence of the series E R

n=1
(n+1 )n+1
(n+1)!
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

X
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Test the convergence of the series E R
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Example
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Test the convergence of the series E R
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

X

. n
Test the convergence of the series E R
n=1 "

(n+1 )n+1
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

X

. n
Test the convergence of the series E R
n=1 "

(n+1 )n+1
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nn
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

X

. n
Test the convergence of the series E R
n=1 "

(n+1 )n+1
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

X

. n
Test the convergence of the series E R
n=1 "

(n+1 )n+1
(n+1)!
nn
n!

(n+1)"1 ni
(n+ 1)l nn

(n+1)(n+1)" nl
(n+1)n  nn
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

X
) n
Test the convergence of the series ; E
(n+1)n+1
(n+1)!

an+1
an

(n+1)"1 ni
(n+ 1)l nn

(n+1)(n+1)" nl
(n+1)n  nn

() = (e2)
n n
— e
Therefore the series is by the Ratio Test.
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Absolute Convergence and the Ratio and Root Tests The Ratio Test
Example

X
) n
Test the convergence of the series ; E
(n+1)n+1
(n+1)!

an+1
an

(n+1)"1 ni
(n+ 1)l nn

(n+1)(n+1)" nl
(n+1)n  nn

() = (e2)
n n
- e>1
Therefore the series is divergent by the Ratio Test.
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Absolute Convergence and the Ratio and Root Tests The Root Test

The Root Test

Theorem (The Root Test)

Q If nli_)m V/|an| = L < 1, then the series _ an is absolutely
convergent (and therefore convergent).

QI nIi_}moo Vlan|=L>1or nILmOO \/|an| = oo, then the series ) an is
divergent.

Q If nIi_}m V/|an| = L =1, then the Root Test is inconclusive.
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Absolute Convergence and the Ratio and Root Tests The Root Test

The Root Test

Theorem (The Root Test)
Q If lim ¥/lan| = L < 1, then the series 3" a,, is absolutely
convergent (and therefore convergent).
@ If lim lan|=L>1or lim_ Y/|an| = o, then the series 5" a, is
divergent.
Q If lim ¥/lan| = L =1, then the Root Test is inconclusive.

If L =1 in the Ratio Test, don’t try the Root Test, because it will be
inconclusive too.

If L =1 in the Root Test, don’t try the Ratio Test, because it will be
inconclusive too.
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Absolute Convergence and the Ratio and Root Tests The Root Test
Example

. = /2n+3)\"
Test convergence of the series » <> .
= 3n+2
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Absolute Convergence and the Ratio and Root Tests The Root Test
Example

. = /2n+3)\"
Test convergence of the series Z < i > .
n=1

3n+2

. 2n+3\"
no 3n+2
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Absolute Convergence and the Ratio and Root Tests The Root Test
Example

. = /2n+3)\"
Test convergence of the series Z < i > .
n=1

3n+2
4 - <2n+3>”

3n+2
oflan = 2n+3

3n+2
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Absolute Convergence and the Ratio and Root Tests The Root Test

. = /2n+3)\"
Test convergence of the series Z < i > .
n=1

— \3n+2
4 - <2n+3>”
3n+2

Jal - 2”+3,1ﬁ
3n+2 15
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Absolute Convergence and the Ratio and Root Tests The Root Test

. = /2n+3)\"
Test convergence of the series Z ( i > .
n=1

— \3n+2
4 - <2n+3>”
3n+2
Jal - 2n~|—3'1ﬁ
3n+2 ’17
_ 2%7
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Absolute Convergence and the Ratio and Root Tests The Root Test

. = /2n+3)\"
Test convergence of the series Z < i > .
n=1

— \3n+2
. 2n+3\"
no 3n+2
Jal - 2n+3 5
e 3n+2 1
3
2
3+ 2
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Absolute Convergence and the Ratio and Root Tests The Root Test

. = /2n+3)\"
Test convergence of the series Z < i > .
n=1

— \3n+2
4 - <2n+3>”
3n+2
Jal - 2n~|—3'1ﬁ
3n+2 ’17
. 2]
3+2
.z
3
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Absolute Convergence and the Ratio and Root Tests The Root Test

. = /2n+3)\"
Test convergence of the series Z ( > .
— 3n+2
. 2n+3\"
no 3n+2
, 2n+3 1
lanl = 3n+2 1
n
_ 243
- 342
2
3
Therefore the series is by the Root Test.
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Absolute Convergence and the Ratio and Root Tests The Root Test

. = /2n+3)\"
Test convergence of the series ; <3n i 2) .
4 - <2n+3>”
3n+2
Via] = 2n~|—3'1ﬁ
3n+2 ’17
_ 2%7
3+2
— g<1

Therefore the series is absolutely convergent by the Root Test.
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