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Alternating Series

Alternating Series

Definition (Alternating Series)
An alternating series is a series whose terms are alternately positive
and negative.

Examples
Here are two examples:

1 − 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + · · · =

∞∑
n=1

(−1)n−1 1
n

− 1
2 + 2

3 −
3
4 + 4

5 −
5
6 + 6

7 − · · · =
∞∑

n=1

(−1)n n
n + 1

The nth term of an alternating series has the form

an = (−1)n−1bn or an = (−1)nbn

where bn is positive.
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Alternating Series

Theorem (The Alternating Series Test)
If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − · · · , bn > 0

satisfies
1 bn+1 ≤ bn for all n and
2 limn→∞ bn = 0

then the series is convergent.
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Alternating Series

Example
The alternating harmonic series

1− 1
2
+

1
3
− 1

4
+ · · · =

∞∑
n=1

(−1)n−1

n
satisfies

1 bn+1 < bn because 1
n+1 < 1

n .
2 limn→∞ bn =limn→∞

1
n

= 0.
Therefore the series is convergent by the Alternating Series Test.
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Alternating Series

Example

The series
∑∞

n=1(−1)n 3n
4n−1 is alternating, but

lim
n→∞

bn = lim
n→∞

3n
4n − 1

·
1
n
1
n

= lim
n→∞

3
4− 1

n

=
3
4

Therefore the series is divergent by the Alternating Series Test.
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Alternating Series Estimating Sums

Estimating Sums

This theorem allows us to estimate the size of the remainder
Rn = s − sn in an alternating series.

Theorem (Alternating Series Estimation Theorem)

Let
∑

(−1)n−1bn be the sum of an alternating series that satisfies

1 0 ≤ bn+1 ≤ bn and
2 lim

n→∞
bn = 0.

Then the size of the error is less than the first omitted term; that is,

|Rn| = |s − sn| ≤ bn+1.
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Alternating Series Estimating Sums

Example

Find the sum of
∑∞

n=0
(−1)n

n! correct to three decimal places. (0! = 1.)

1 bn+1 =
1

(n + 1)!

=
1

n!(n + 1)
<

1
n!

= bn.

2 0 <
1
n!

<
1
n
→ 0, so bn → 0 as n→∞.

Therefore the series converges by the Alternating Series Test.

s =
1
0!
− 1

1!
+

1
2!
− 1

3!
+

1
4!
− 1

5!
+

1
6!
− 1

7!
+ · · ·

= 1− 1 +
1
2
− 1

6
+

1
24
− 1

120
+

1
720
− 1

5040
+ · · ·

|s − s6| ≤ b7 = 1
5040 < 0.0002.

s6 = 1− 1 + 1
2 −

1
6 + 1

24 −
1

120 + 1
720 ≈ 0.368056.

The error of less than 0.0002 doesn’t affect the third decimal
place

, so s ≈ s6 ≈ 0.368.
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− 1

5040
+ · · ·

|s − s6| ≤ b7 = 1
5040 < 0.0002.

s6 = 1− 1 + 1
2 −

1
6 + 1

24 −
1

120 + 1
720 ≈ 0.368056.

The error of less than 0.0002 doesn’t affect the third decimal
place

, so s ≈ s6 ≈ 0.368.
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Alternating Series Estimating Sums

Absolute Convergence and the Ratio and Root Tests

In this section, we start with any series
∑

an and consider the
corresponding series∑

|an| = |a1|+ |a2|+ |a3|+ · · ·

consisting of the absolute values of the terms of the original series.
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Alternating Series Absolute Convergence

Absolute Convergence

Definition (Absolutely Convergent)

A series
∑

an is called absolutely convergent if the series of absolute

values
∑
|an| is convergent.

If
∑

an is a series with all positive terms, then |an| = an and absolute
convergence is the same thing as convergence in this case.
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Alternating Series Absolute Convergence

Example
The series

∞∑
n=1

(−1)n−1

n2 = 1− 1
22 +

1
32 −

1
42 + · · ·

is absolutely convergent because

∞∑
n=1

∣∣∣∣(−1)n−1

n2

∣∣∣∣ = 1 +
1
22 +

1
32 +

1
42 + · · ·

is a convergent p-series with p = 2.
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Alternating Series Absolute Convergence

Example
The alternating harmonic series

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1
3
− 1

4
+ · · ·

is convergent (by the alternating series test, as already demonstrated).

Is it absolutely convergent?

∞∑
n=1

∣∣∣∣(−1)n−1

n

∣∣∣∣ = 1 +
1
2
+

1
3
+

1
4
+ · · ·

This is a p-series with p =

1.

Therefore
∑∞

n=1

∣∣∣ (−1)n−1

n

∣∣∣ is

divergent.

Therefore
∑∞

n=1
(−1)n−1

n is

not absolutely convergent.
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Alternating Series Absolute Convergence

Example
The alternating harmonic series

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1
3
− 1

4
+ · · ·

is convergent (by the alternating series test, as already demonstrated).

Is it absolutely convergent?
∞∑

n=1

∣∣∣∣(−1)n−1

n

∣∣∣∣ = 1 +
1
2
+

1
3
+

1
4
+ · · ·

This is a p-series with p = 1.

Therefore
∑∞

n=1

∣∣∣ (−1)n−1

n

∣∣∣ is divergent.

Therefore
∑∞

n=1
(−1)n−1

n is

not absolutely convergent.

Math 141 Lecture 13 Spring 2015



Alternating Series Absolute Convergence

Example
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Alternating Series Absolute Convergence

Definition (Conditionally Convergent)

A series
∑

an is called conditionally convergent if it is convergent but
not absolutely convergent.

The alternating harmonic series is conditionally convergent.
Therefore it is possible for a series to be convergent but not
absolutely convergent.
Question: Is it possible for a series to be absolutely convergent
but not convergent?
Answer: No. This is the content of the next theorem.
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Definition (Conditionally Convergent)

A series
∑
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Alternating Series Absolute Convergence

Theorem (Absolute Convergence Implies Convergence)
If a series is absolutely convergent, then it is convergent.
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Alternating Series Absolute Convergence

Example
Determine whether

∞∑
n=1

cos n
n2 =

cos 1
12 +

cos 2
22 +

cos 3
32 +

cos 4
42 + · · ·

is convergent or divergent.

The series has positive and negative terms, but is not alternating.
Use the Comparison Test:

0 ≤ | cos n| ≤ 1

0 ≤ | cos n|
n2 ≤ 1

n2∑ 1
n2 is a p-series with p =

2.

Therefore
∑ 1

n2 is

convergent,

and so by the Comparison Test,∑ | cos n|
n2 is also

convergent.

Therefore
∑ cos n

n2 is absolutely convergent.
Therefore by the previous theorem,

∑ cos n
n2 is convergent.
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test

Theorem (The Ratio Test)

1 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then the series
∑

an is absolutely

convergent (and therefore convergent).

2 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1 or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =∞, then the series
∑

an is

divergent.

3 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L = 1, then the Ratio Test is inconclusive.
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Absolute Convergence and the Ratio and Root Tests The Ratio Test

The Ratio Test is inconclusive if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.

Example
∞∑

n=1

1
n2

This is a p-series with p =

2.

Therefore it is

convergent.

∣∣∣∣an+1

an

∣∣∣∣ = 1
(n+1)2

1
n2

=
n2

(n + 1)2

·
1
n2

1
n2

=
1(

1 + 1
n

)2 →

1

as n→∞

Example
∞∑

n=1

1
n

This is a p-series with p =

1.

Therefore it is

divergent.

∣∣∣∣an+1

an

∣∣∣∣ = 1
n+1

1
n

=
n

n + 1

·
1
n
1
n

=
1

1 + 1
n

→

1

as n→∞
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Absolute Convergence and the Ratio and Root Tests The Root Test

The Root Test

Theorem (The Root Test)
1 If lim

n→∞
n
√
|an| = L < 1, then the series

∑
an is absolutely

convergent (and therefore convergent).
2 If lim

n→∞
n
√
|an| = L > 1 or lim

n→∞
n
√
|an| =∞, then the series

∑
an is

divergent.
3 If lim

n→∞
n
√
|an| = L = 1, then the Root Test is inconclusive.

If L = 1 in the Ratio Test, don’t try the Root Test, because it will be
inconclusive too.
If L = 1 in the Root Test, don’t try the Ratio Test, because it will be
inconclusive too.
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Absolute Convergence and the Ratio and Root Tests The Root Test

Example

Test convergence of the series
∞∑

n=1

(
2n + 3
3n + 2

)n

.

an =

(
2n + 3
3n + 2

)n

n
√
|an| =

2n + 3
3n + 2
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by the Root Test.
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