Math 141 Lecture 14

Greg Maloney

Todor Milev

University of Massachusetts Boston

Spring 2015

Outline

Power Series

Outline

Power Series

Power Series as Functions

Differentiation and Integration of Power Series

Outline

- Power Series
- Power Series as Functions
 - Differentiation and Integration of Power Series
- Taylor and Maclaurin Series

Definition (Power Series)

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

Definition (Power Series)

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

 For each fixed x, this is a series of constants which either converges or diverges.

Definition (Power Series)

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

- For each fixed x, this is a series of constants which either converges or diverges.
- A power series might converge for some values of x and diverge for others.

Definition (Power Series)

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

- For each fixed x, this is a series of constants which either converges or diverges.
- A power series might converge for some values of x and diverge for others.
- The sum of the series is a function.

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

whose domain is the set of all x for which the series converges.

Definition (Power Series)

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the coefficients of the series.

- For each fixed x, this is a series of constants which either converges or diverges.
- A power series might converge for some values of x and diverge for others.
- The sum of the series is a function.

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

whose domain is the set of all *x* for which the series converges.

• *f* resembles a polynomial, except it has infinitely many terms.

Definition (Power Series Centered at *a*)

A series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

is called a power series centered at a or a power series about a or a power series in (x - a).

Definition (Power Series Centered at *a*)

A series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

is called a power series centered at a or a power series about a or a power series in (x - a).

• We use the convention that $(x - a)^0 = 1$, even if x = a.

Definition (Power Series Centered at *a*)

A series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

is called a power series centered at a or a power series about a or a power series in (x - a).

- We use the convention that $(x a)^0 = 1$, even if x = a.
- If x = a, then all terms are 0 for $n \ge 1$, so the series always converges when x = a.

For what values of x is the series $\sum_{n=0}^{\infty} n! x^n$ convergent?

Use the Ratio Test.

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{(n+1)!x^{n+1}}{n!x^n}\right|$$

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$
$$= \lim_{n \to \infty}$$

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$
$$= \lim_{n\to\infty} (n+1)$$

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$
$$= \lim_{n \to \infty} (n+1)$$

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$
$$= \lim_{n \to \infty} (n+1)|x|$$

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$

$$= \lim_{n \to \infty} (n+1)|x|$$

$$= \infty$$

For what values of x is the series $\sum_{n=0}^{\infty} n! x^n$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(n+1)!x^{n+1}}{n!x^n} \right|$$

$$= \lim_{n\to\infty} (n+1)|x|$$

$$= \infty$$

• Therefore by the Ratio Test the series diverges for all $x \neq 0$.

- Use the Ratio Test.
- The *n*th term is $a_n = n!x^n$.
- If $x \neq 0$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right|$$

$$= \lim_{n \to \infty} (n+1)|x|$$

$$= \infty$$

- Therefore by the Ratio Test the series diverges for all $x \neq 0$.
- Therefore the series only converges for x = 0.

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

Use the Ratio Test.

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{(x-3)^{n+1}}{n+1}\cdot\frac{n}{(x-3)^n}\right|$$

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$
$$= \lim_{n \to \infty}$$

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$
$$= \lim_{n \to \infty} |x-3|$$

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$
$$= \lim_{n \to \infty} |x-3|$$

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$
$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1}$$

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$
$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}$$

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}}$$

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right| \\
= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

 Therefore by the Ratio Test the series converges absolutely if and diverges if

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x - 3| < 1 and diverges if

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x-3| < 1 and diverges if

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x-3| < 1 and diverges if |x-3| > 1.

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x-3| < 1 and diverges if |x-3| > 1.

$$|x-3| < 1 \Leftrightarrow -1 < x-3 < 1$$

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x-3| < 1 and diverges if |x-3| > 1.

$$|x-3| < 1 \Leftrightarrow -1 < x-3 < 1 \Leftrightarrow 2 < x < 4$$

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x-3| < 1 and diverges if |x-3| > 1.

$$|x-3| < 1 \quad \Leftrightarrow \quad -1 < x-3 < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

- If we put x = 4 in the series, we get $\sum \frac{1}{n}$, which is
- If we put x = 2 in the series, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$, which is

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x-3| < 1 and diverges if |x-3| > 1.

$$|x-3| < 1 \quad \Leftrightarrow \quad -1 < x-3 < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

- If we put x = 4 in the series, we get $\sum \frac{1}{n}$, which is divergent.
- If we put x = 2 in the series, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$, which is

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x-3| < 1 and diverges if |x-3| > 1.

$$|x-3| < 1 \quad \Leftrightarrow \quad -1 < x-3 < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

- If we put x = 4 in the series, we get $\sum \frac{1}{n}$, which is divergent.
- If we put x = 2 in the series, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$, which is

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x-3| < 1 and diverges if |x-3| > 1.

$$|x-3| < 1 \quad \Leftrightarrow \quad -1 < x-3 < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

- If we put x = 4 in the series, we get $\sum \frac{1}{n}$, which is divergent.
- If we put x = 2 in the series, we get $\sum \frac{(-1)^n}{n}$, which is convergent.

For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

- Use the Ratio Test.
- The *n*th term is $a_n = \frac{(x-3)^n}{n}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} |x-3| \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} |x-3| \frac{1}{1+\frac{1}{n}} = |x-3|$$

• Therefore by the Ratio Test the series converges absolutely if |x-3| < 1 and diverges if |x-3| > 1.

$$|x-3| < 1 \quad \Leftrightarrow \quad -1 < x-3 < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

- If we put x = 4 in the series, we get $\sum \frac{1}{n}$, which is divergent.
- If we put x = 2 in the series, we get $\sum \frac{(-1)^n}{n}$, which is convergent.
- The series converges if $2 \le x < 4$ and diverges otherwise.

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} -----$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(-1)^n x^{2n}}$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(-1)^n x^{2n}}$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4}$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4}$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4(n+1)^2}$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4(n+1)^2} = 0$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4(n+1)^2} = 0 < 1$$

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

• The *n*th term is $a_n = \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4(n+1)^2} = 0 < 1$$

• Therefore by the Ratio Test the series converges for all x.

Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} [(n+1)!]^2} \cdot \frac{2^{2n} (n!)^2}{(-1)^n x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{4(n+1)^2} = 0 < 1$$

- Therefore by the Ratio Test the series converges for all x.
- Therefore the domain of the function is $(-\infty, \infty)$, or \mathbb{R} .

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- 1 The series converges only when x = a.
 - The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Radius of Convergence)

The number R in case three of the theorem is called the radius of convergence of the power series.

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Radius of Convergence)

The number R in case three of the theorem is called the radius of convergence of the power series.

• In the first case, we say R = 0.

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Radius of Convergence)

The number R in case three of the theorem is called the radius of convergence of the power series.

- 1 In the first case, we say R = 0.
- 2 In the second case, we say $R = \infty$.

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Interval of Convergence)

The interval of convergence of a power series is the interval consisting of all numbers x for which the series converges.

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Interval of Convergence)

The interval of convergence of a power series is the interval consisting of all numbers x for which the series converges.

In the first case, the interval contains the single point a.

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- 1 The series converges only when x = a.
 - The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Interval of Convergence)

The interval of convergence of a power series is the interval consisting of all numbers x for which the series converges.

- In the first case, the interval contains the single point a.
- ② In the second case, the interval is $(-\infty, \infty)$.

For a power series $\sum c_n(x-a)^n$, there are three possibilities:

- The series converges only when x = a.
- The series converges for all x.
- There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

Definition (Interval of Convergence)

The interval of convergence of a power series is the interval consisting of all numbers x for which the series converges.

- In the first case, the interval contains the single point a.
- ② In the second case, the interval is $(-\infty, \infty)$.
- In the third case, the inequality |x a| < R can be rewritten a R < x < a + R.

Anything can happen.

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus, in the third case, there are four possibilities for the interval of convergence.

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus, in the third case, there are four possibilities for the interval of convergence.

 - (a-R,a+R)

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus, in the third case, there are four possibilities for the interval of convergence.

 - (a R, a + R)
 - [a R, a + R]

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus, in the third case, there are four possibilities for the interval of convergence.

 - (a R, a + R)
 - [a-R,a+R]
 - (a R, a + R)

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus, in the third case, there are four possibilities for the interval of convergence.
 - 0 [a-R, a+R)
 - (a R, a + R)
 - [a-R, a+R]
 - (a-R,a+R)
- In general, the Ratio Test (or Root Test) should be used to find the radius of convergence R.

- Anything can happen.
- The series might converge at one endpoint.
- The series might converge at both endpoints.
- The series might diverge at both endpoints.
- Thus, in the third case, there are four possibilities for the interval of convergence.
 - 0 [a-R, a+R)
 - (a R, a + R)
 - [a-R, a+R]
 - (a-R,a+R)
- In general, the Ratio Test (or Root Test) should be used to find the radius of convergence R.
- The Ratio and Root Tests will always fail when x is an endpoint a - R or a + R, so the endpoints must be checked with another test.

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-3)^{n+1}x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n\to\infty}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n\to\infty} 3$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n\to\infty} 3$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x|$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x|$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n\to\infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n\to\infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n\to\infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

Ratio Test: it converges if

and diverges if

Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

• Ratio Test: it converges if 3|x| < 1 and diverges if

Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right| \\
= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

• Ratio Test: it converges if 3|x| < 1 and diverges if

Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

• Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.
- If we use $x = \frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is
- If we use $x = -\frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, which is

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.
- If we use $x = \frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is convergent.
- If we use $x = -\frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, which is

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.
- If we use $x = \frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is convergent.
- If we use $x = -\frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, which is

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.
- If we use $x = \frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is convergent.
- If we use $x = -\frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, which is divergent.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n x^n} \right|$$

$$= \lim_{n \to \infty} 3|x| \sqrt{\frac{n+1}{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} 3|x| \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = 3|x|$$

- Ratio Test: it converges if 3|x| < 1 and diverges if 3|x| > 1.
- So it converges if $|x| < \frac{1}{3}$ and diverges if $|x| > \frac{1}{3}$.
- Therefore $R = \frac{1}{3}$.
- If we use $x = \frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$, which is convergent.
- If we use $x = -\frac{1}{3}$, we get $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, which is divergent.
- The interval of convergence is $\left(-\frac{1}{3}, \frac{1}{3}\right]$.

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

• This is a geometric series with a = and r = and r

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

• This is a geometric series with a = 1 and r = 1

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

• This is a geometric series with a = 1 and r = 1

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

• This is a geometric series with a = 1 and r = x.

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if and divergent otherwise.

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If it converges, the sum is $\frac{1}{1}$.

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If it converges, the sum is $\frac{1}{1-}$.

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If it converges, the sum is $\frac{1}{1-x}$.

Representations of Functions as Power Series

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If it converges, the sum is $\frac{1}{1-x}$.
- The thing that is new in this section is the we now regard the series $\sum_{n=0}^{\infty} x^n$ as expressing the function $f(x) = \frac{1}{1-x}$.

Math 141 Lecture 14 Spring 2015

Representations of Functions as Power Series

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

- This is a geometric series with a = 1 and r = x.
- It is convergent if |x| < 1 and divergent otherwise.
- If it converges, the sum is $\frac{1}{1-x}$.
- The thing that is new in this section is the we now regard the series $\sum_{n=0}^{\infty} x^n$ as expressing the function $f(x) = \frac{1}{1-x}$.
- This only works if -1 < x < 1.

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$\frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n$$

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$\frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = 1 + (-x^2) + (-x^2)^2 + (-x^2)^3 + \cdots$$

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$\frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = 1 + (-x^2) + (-x^2)^2 + (-x^2)^3 + \cdots$$

$$= 1 - x^2 + x^4 - x^6 + \cdots$$

Write $\frac{1}{1+x^2}$ as a power series and find the interval of convergence.

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$\frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = 1 + (-x^2) + (-x^2)^2 + (-x^2)^3 + \cdots$$

$$= 1 - x^2 + x^4 - x^6 + \cdots$$

• Another way to write the series is $\sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$.

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$\frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = 1 + (-x^2) + (-x^2)^2 + (-x^2)^3 + \cdots$$

$$= 1 - x^2 + x^4 - x^6 + \cdots$$

- Another way to write the series is $\sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$.
- This converges if $|-x^2| < 1$, that is, if $x^2 < 1$, or |x| < 1.

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$\frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = 1 + (-x^2) + (-x^2)^2 + (-x^2)^3 + \cdots$$

$$= 1 - x^2 + x^4 - x^6 + \cdots$$

- Another way to write the series is $\sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$.
- This converges if $|-x^2| < 1$, that is, if $x^2 < 1$, or |x| < 1.
- Therefore the interval of convergence is (-1, 1).

$$\frac{1}{2+x} \quad = \quad \frac{1}{2\left(1+\frac{x}{2}\right)}$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$
$$= \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$
$$= \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^n = \sum_{n=0}^{\infty} - \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$
$$= \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n}$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$
$$= \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n}$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$
$$= \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{x^n}$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$
$$= \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2} x^n$$

$$\frac{1}{2+x} = \frac{1}{2\left(1+\frac{x}{2}\right)} = \frac{1}{2} \cdot \frac{1}{\left[1-\left(-\frac{x}{2}\right)\right]}$$
$$= \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \cdots$$

Find a power series representation for $\frac{1}{x+2}$.

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \cdots$$

Interval of convergence:

Find a power series representation for $\frac{1}{x+2}$.

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \cdots$$

Interval of convergence:

$$\left|-\frac{x}{2}\right| < 1$$

Find a power series representation for $\frac{1}{x+2}$.

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \cdots$$

Interval of convergence:

$$\left|-\frac{x}{2}\right| < 1$$

$$|x| < 2$$

Find a power series representation for $\frac{1}{x+2}$.

$$\frac{1}{2+x} = \frac{1}{2(1+\frac{x}{2})} = \frac{1}{2} \cdot \frac{1}{[1-(-\frac{x}{2})]}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} (-\frac{x}{2})^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + \cdots$$

Interval of convergence:

$$\begin{vmatrix} -\frac{x}{2} \\ |x| & < 1 \end{vmatrix}$$

Therefore the interval of convergence is (-2, 2).

$$\frac{x^3}{x+2} = x^3 \cdot \frac{1}{x+2}$$

$$\frac{x^3}{x+2} = x^3 \cdot \frac{1}{x+2}$$
$$= x^3$$

$$\frac{x^{3}}{x+2} = x^{3} \cdot \frac{1}{x+2}$$

$$= x^{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}$$

$$\frac{x^{3}}{x+2} = x^{3} \cdot \frac{1}{x+2}$$

$$= x^{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}$$

$$\frac{x^{3}}{x+2} = x^{3} \cdot \frac{1}{x+2}$$

$$= x^{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n+3}$$

$$\frac{x^3}{x+2} = x^3 \cdot \frac{1}{x+2}$$

$$= x^3 \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^{n+3}$$

$$= \frac{x^3}{2} - \frac{x^4}{4} + \frac{x^5}{8} - \frac{x^6}{16} + \cdots$$

Find a power series representation for $\frac{x^3}{x+2}$.

$$\frac{x^3}{x+2} = x^3 \cdot \frac{1}{x+2}$$

$$= x^3 \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^{n+3}$$

$$= \frac{x^3}{2} - \frac{x^4}{4} + \frac{x^5}{8} - \frac{x^6}{16} + \cdots$$

• Another way to write this is $\frac{x^3}{x+2} = \sum_{n=3}^{\infty} \frac{(-1)^{n-1}}{2^{n-2}} x^n$.

$$\frac{x^3}{x+2} = x^3 \cdot \frac{1}{x+2}$$

$$= x^3 \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^{n+3}$$

$$= \frac{x^3}{2} - \frac{x^4}{4} + \frac{x^5}{8} - \frac{x^6}{16} + \cdots$$

- Another way to write this is $\frac{x^3}{x+2} = \sum_{n=3}^{\infty} \frac{(-1)^{n-1}}{2^{n-2}} x^n$.
- The interval of convergence is again (-2, 2).

Differentiation and Integration of Power Series

Theorem (Differentiation and Integration of Power Series)

If a power series $\sum c_n(x-a)^n$ has radius of convergence R>0, then the function f defined by

$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots = \sum_{n=0}^{\infty} c_n(x-a)^n$$

is differentiable (and therefore continuous) on the interval (a - R, a + R) and

$$\int f(x) dx = C + c_0(x-a) + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \cdots$$

$$= C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}.$$

Math 141 Lecture 14 Spring 2015

- This is called term-by-term differentiation and integration.
- Another way of saying it is

$$\frac{d}{dx} \left[\sum_{n=0}^{\infty} c_n (x-a)^n \right] = \sum_{n=0}^{\infty} \frac{d}{dx} \left[c_n (x-a)^n \right]$$

$$\int \left[\sum_{n=0}^{\infty} c_n (x-a)^n \right] dx = \sum_{n=0}^{\infty} \int \left[c_n (x-a)^n \right] dx$$

 We can treat power series like polynomials with infinitely many terms.

Find the derivative of the Bessel function

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

Find the derivative of the Bessel function

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J_0'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right)$$

Find the derivative of the Bessel function

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J'_0(x) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n 2n x^{2n-1}}{2^{2n} (n!)^2}$$

Find the derivative of the Bessel function

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J'_0(x) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n 2n x^{2n-1}}{2^{2n} (n!)^2}$$

• $J_0(x)$ is defined

Find the derivative of the Bessel function

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J_0'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n 2n x^{2n-1}}{2^{2n} (n!)^2}$$

• $J_0(x)$ is defined everywhere.

Find the derivative of the Bessel function

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

$$J_0'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n 2n x^{2n-1}}{2^{2n} (n!)^2}$$

- $J_0(x)$ is defined everywhere.
- Therefore its derivative $J'_0(x)$ is also defined everywhere.

Find a power series for ln(1 - x) and state its radius of convergence.

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) =$$

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}$$

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}$$

Therefore

$$\ln(1-x) = -\int \frac{1}{1-x} dx$$

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}$$

Therefore

$$\ln(1-x) = -\int \frac{1}{1-x} dx = -\int (1+x+x^2+x^3+\cdots) dx$$

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}$$

Therefore

$$\ln(1-x) = -\int \frac{1}{1-x} dx = -\int (1+x+x^2+x^3+\cdots) dx$$
$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right)$$

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}$$

Therefore

$$\ln(1-x) = -\int \frac{1}{1-x} dx = -\int (1+x+x^2+x^3+\cdots) dx$$
$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right) + C$$

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}$$

Therefore

$$\ln(1-x) = -\int \frac{1}{1-x} dx = -\int (1+x+x^2+x^3+\cdots) dx$$
$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right) + C = C - \sum_{n=1}^{\infty} \frac{1}{n} x^n$$

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}$$

Therefore

$$\ln(1-x) = -\int \frac{1}{1-x} dx = -\int (1+x+x^2+x^3+\cdots) dx$$
$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right) + C = C - \sum_{n=1}^{\infty} \frac{1}{n} x^n$$

• The radius is the same as for the original series: R = 1.

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}$$

Therefore

$$\ln(1-x) = -\int \frac{1}{1-x} dx = -\int (1+x+x^2+x^3+\cdots) dx$$
$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right) + C = C - \sum_{n=1}^{\infty} \frac{1}{n} x^n$$

- The radius is the same as for the original series: R = 1.
- To find C, plug in x = 0:

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}$$

Therefore

$$\ln(1-x) = -\int \frac{1}{1-x} dx = -\int (1+x+x^2+x^3+\cdots) dx$$
$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right) + C = C - \sum_{n=1}^{\infty} \frac{1}{n} x^n$$

- The radius is the same as for the original series: R = 1.
- To find C, plug in x = 0: 0 = C.

Find a power series for ln(1 - x) and state its radius of convergence.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}$$

Therefore

$$\ln(1-x) = -\int \frac{1}{1-x} dx = -\int (1+x+x^2+x^3+\cdots) dx$$
$$= -\left(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right) + C = C - \sum_{n=1}^{\infty} \frac{1}{n} x^n$$

- The radius is the same as for the original series: R = 1.
- To find C, plug in x = 0: 0 = C.

Therefore

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n$$

Find a power series for arctan *x* and state its radius of convergence.

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{d}{dx} \arctan x =$$

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

$$\arctan x = \int \frac{1}{1+x^2} dx$$

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

$$\arctan x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

$$\arctan x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$
$$= \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right)$$

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

$$\arctan x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$
$$= \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) + C$$

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

$$\arctan x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$

$$= \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty}$$

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

$$\arctan x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$

$$= \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n - \cdots$$

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

$$\arctan x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$

$$= \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n - \cdots$$

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

$$\arctan x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$

$$= \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

arctan
$$x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$

$$= \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

• The radius is the same as for the original series: R = 1.

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

$$\arctan x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$

$$= \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

- The radius is the same as for the original series: R = 1.
- To find C, plug in x = 0:

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

$$\arctan x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$

$$= \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

- The radius is the same as for the original series: R = 1.
- To find C, plug in x = 0: 0 = C.

Find a power series for arctan *x* and state its radius of convergence.

$$\frac{\mathsf{d}}{\mathsf{d}x}\arctan x = \frac{1}{1+x^2}$$

Therefore

arctan
$$x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+\cdots) dx$$

$$= \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) + C$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

- The radius is the same as for the original series: R = 1.
- To find C, plug in x = 0: 0 = C.

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

(12.10) Taylor and Maclaurin Series

• Let *f* be a function that can be represented by a power series:

•
$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

(12.10) Taylor and Maclaurin Series

• Let *f* be a function that can be represented by a power series:

•
$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

• f(a) =

- Let *f* be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.

• Let *f* be a function that can be represented by a power series:

•
$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$

Math 141 Lecture 14 Spring 2015

- Let *f* be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- f'(a) =

• Let *f* be a function that can be represented by a power series:

•
$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.

Let f be a function that can be represented by a power series:

•
$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$

Math 141 Lecture 14 Spring 2015

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- f''(a) =

Let f be a function that can be represented by a power series:

•
$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$
- f'''(a) =

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$
- $f'''(a) = 2 \cdot 3c_3 = 3!c_3$.

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$
- $f'''(a) = 2 \cdot 3c_3 = 3!c_3$.
- $f^{(n)}(a) =$

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$
- $f'''(a) = 2 \cdot 3c_3 = 3!c_3$.
- $f^{(n)}(a) = n!c_n$.

- Let f be a function that can be represented by a power series:
- $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$
- $f(a) = c_0$.
- $f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$
- $f'(a) = c_1$.
- $f''(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + 4 \cdot 5c_5(x-a)^3 + \cdots$
- $f''(a) = 2c_2$.
- $f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots$
- $f'''(a) = 2 \cdot 3c_3 = 3!c_3$.
- $f^{(n)}(a) = n!c_n$.
- Therefore $c_n = \frac{f^{(n)}(a)}{n!}$.

Theorem (Coefficients of a Power Series)

If f has a power series representation at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, \qquad |x-a| < R,$$

then its coefficients are given by the formula

$$c_n=\frac{f^{(n)}(a)}{n!}.$$

Theorem (Coefficients of a Power Series)

If f has a power series representation at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, \qquad |x-a| < R,$$

then its coefficients are given by the formula

$$c_n=\frac{f^{(n)}(a)}{n!}.$$

Here is what we get if we plug these coefficients into the power series:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$

Theorem (Coefficients of a Power Series)

If f has a power series representation at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, \qquad |x-a| < R,$$

then its coefficients are given by the formula

$$c_n=\frac{f^{(n)}(a)}{n!}.$$

Here is what we get if we plug these coefficients into the power series:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$

Definition (Taylor Series)

This series is called the Taylor series of f.

The case when a = 0 is special enough to have its own name:

Definition (Maclaurin Series)

The Maclaurin series of f is the Taylor series of f centered at a = 0. In other words, it is the series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots$$

•
$$f^{(n)}(x) =$$

•
$$f^{(n)}(x) = e^x$$
.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) =$

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right|$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n\to\infty} - ---$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n\to\infty} \frac{|x|}{x^n}$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{x^n}$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n\to\infty} \frac{|x|}{n+1}$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1} =$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n\to\infty} \frac{|x|}{n+1} = 0$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right|=\lim_{n\to\infty}\frac{|x|}{n+1}=0<1$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• To find the radius of convergence, let $a_n = \frac{x^n}{n!}$.

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1} = 0 < 1$$

• Therefore by the Ratio Test the series converges for all x.

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right|=\lim_{n\to\infty}\frac{|x|}{n+1}=0<1$$

- Therefore by the Ratio Test the series converges for all x.
- Therefore $R = \infty$.

Find the sum of the series

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

Find the sum of the series

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^{x} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \binom{n}{n!}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{1}{2} \right)^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{1}{2} \right)^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^{\mathbf{x}} = \sum_{n=0}^{\infty} \frac{1}{n!} \mathbf{x}^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{1}{2} \right)^n$$

$$= e^{-1/2}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = 1 - \frac{1}{2 \cdot 1!} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{1}{2} \right)^n$$

$$= e^{-1/2}$$

$$= \frac{1}{\sqrt{e}}$$

•
$$f^{(n)}(x) =$$

•
$$f^{(n)}(x) = e^x$$
.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) =$

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right|$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{|x-3|}$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n!}$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1}$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1} =$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1} = 0$$

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

• To find the radius of convergence, let $a_n = \frac{e^3}{n!}(x-3)^n$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1} = 0$$

• Therefore by the Ratio Test the series converges for all x.

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1} = 0$$

- Therefore by the Ratio Test the series converges for all x.
- Therefore $R = \infty$.

Find the Taylor series for $f(x) = e^x$ at a = 3.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(3) = e^3$.
- Therefore the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(3)}{n!} (x-3)^n = \sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$$

• To find the radius of convergence, let $a_n = \frac{e^3}{n!}(x-3)^n$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{e^3 (x-3)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^3 (x-3)^n} \right| = \lim_{n \to \infty} \frac{|x-3|}{n+1} = 0$$

- Therefore by the Ratio Test the series converges for all x.
- Therefore $R = \infty$.
- Just like the Maclaurin series, this series also represents e^x .

Math 141 Lecture 14 Spring 2015

$$e^x = e^{x-3+3}$$

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$

Recall that
$$e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!}$$

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$

$$= e^{3}\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n!}$$

Recall that
$$e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!}$$

Set $y = x - 3$

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$

$$= e^{3}\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{e^{3}}{n!} (x-3)^{n}$$

Recall that
$$e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!}$$

Set $y = x - 3$

Find the Taylor series for $f(x) = e^x$ at a = 3.

$$e^{x} = e^{x-3+3} = e^{3}e^{x-3}$$
 Recall that $e^{y} = \sum_{n=0}^{\infty} \frac{y^{n}}{n!}$
 $= e^{3}\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n!}$
 $= \sum_{n=0}^{\infty} \frac{e^{3}}{n!} (x-3)^{n}$

The radius of convergence was already computed to be $R = \infty$.

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

Math 141 Lecture 14 Spring 2015

$$f(x) = \sin x$$
 $f(0) = f'(x) = f''(x) = f''(x) = f''(x) = f''(x) = f''(x) = f^{(4)}(x) = f^{(4)}($

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = f''(0) = f''(0) = f'''(0) = f'''(0) = f'''(0) = f^{(4)}(0) =$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = f''(0) = f''(0) = f'''(0) = f'''(0) = f'''(0) = f^{(4)}(0) =$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 0$
 $f''(x) = f''(0) = 0$
 $f'''(x) = f'''(0) = 0$
 $f'''(x) = f'''(0) = 0$
 $f'''(x) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 0$
 $f''(x) = f''(0) = 0$
 $f''(x) = f''(0) = 0$
 $f'''(x) = f'''(0) = 0$
 $f'''(x) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = f'''(0) = 1$
 $f'''(x) = f'''(0) = 1$
 $f(x) = f(0) = 0$
 $f''(0) = 1$
 $f'''(0) = 1$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = f'''(0) = 1$
 $f'''(x) = f'''(0) = 1$
 $f(x) = x$
 $f'''(0) = x$
 $f(x) = x$
 $f'''(0) = x$
 $f(x) = x$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) =$
 $f'''(x) = f'''(0) =$
 $f(x) = 0$
 $f''(x) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) =$
 $f'''(x) = f'''(0) =$
 $f(x) = 0$
 $f''(0) = 0$
 $f'''(0) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = f'''(0) = 0$
 $f'''(x) = f'''(0) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = f'''(0) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = 0$
 $f^{(4)}(x) = f^{(4)}(0) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = 0$
 $f^{(4)}(x) = f^{(4)}(0) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = f^{(4)}(0) =$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = f^{(4)}(0) = 0$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) =$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) =$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n =$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n =$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f''(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n =$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f''(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \mathbf{x}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n - \dots$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Use the Ratio Test to find R.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

Math 141 Lecture 14 Spring 2015

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{1}{(2n+3)!} = \lim_{n$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(-1)^n x^{2n+1}}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(-1)^n x^{2n+1}}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)}$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} =$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0$$

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Use the Ratio Test to find R.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0$$

Therefore R =

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Use the Ratio Test to find R.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0$$

Therefore $R = \infty$.

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Use the Ratio Test to find R.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0$$

Therefore $R = \infty$. It can be shown that this series sums to $\sin x$.

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} (-1)^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \binom{n}{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n+1}$$

$$= \sin \frac{\pi}{2}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \frac{\pi}{2} - \frac{\pi^3}{8 \cdot 3!} + \frac{\pi^5}{32 \cdot 5!} - \frac{\pi^7}{128 \cdot 7!} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n+1}$$

$$= \sin \frac{\pi}{2}$$

$$= 1$$

$$\cos x = \frac{\mathsf{d}}{\mathsf{d}x} ($$

$$\cos x = \frac{\mathsf{d}}{\mathsf{d}x} \left(\sin x \right)$$

$$\cos x = \frac{d}{dx} \left(\sin x \right) = \frac{d}{dx} \left($$

$$\cos x = \frac{d}{dx} (\sin x) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$\cos x = \frac{d}{dx} (\sin x) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$
$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$\cos x = \frac{d}{dx} (\sin x) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

$$\cos x = \frac{d}{dx} \left(\sin x \right) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}$$

$$\cos x = \frac{d}{dx} \left(\sin x \right) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}$$

$$\cos x = \frac{d}{dx} \left(\sin x \right) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

Find the Maclaurin series for cos x.

$$\cos x = \frac{d}{dx} \left(\sin x \right) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

The series for $\sin x$ converges everywhere, so the series for $\cos x$ does too.

$$X \cos X = X$$

$$x \cos x = x \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$x \cos x = x \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$x \cos x = x \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n)!}$$

$$x \cos x = x \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n)!}$$

$$= x - \frac{x^3}{2!} + \frac{x^5}{4!} - \frac{x^7}{6!} + \cdots$$

Here is a table of some important Maclaurin series we have learned:

Function	Series	R
I - X	$= \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$	1
	$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	1
	$= \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	∞
sin <i>x</i>	$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	∞
cos x	$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	∞

Use a power series to find $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$. $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Use a power series to find $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$. $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ $e^x - 1 - x = \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{x} - 1 - x = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

Use a power series to find
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$$
.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$e^x - 1 - x = \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

$$\frac{e^x - 1 - x}{x^2} = \frac{1}{2!} + \frac{x}{3!} + \frac{x^2}{4!} + \cdots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{x} - 1 - x = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \frac{1}{2!} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \lim_{x \to 0} \left(\frac{1}{2} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots\right)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{x} - 1 - x = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \frac{1}{2!} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots$$

$$\lim_{x \to 0} \frac{e^{x} - 1 - x}{x^{2}} = \lim_{x \to 0} \left(\frac{1}{2} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots\right) = 0$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{x} - 1 - x = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$\frac{e^{x} - 1 - x}{x^{2}} = \frac{1}{2!} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots$$

$$\lim_{x \to 0} \frac{e^{x} - 1 - x}{x^{2}} = \lim_{x \to 0} \left(\frac{1}{2} + \frac{x}{3!} + \frac{x^{2}}{4!} + \cdots\right) = \frac{1}{2}$$

Use a power series to find
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$
.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Use a power series to find
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$
.
 $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$
 $-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$\frac{x - \sin x}{x^3} = \frac{1}{3!} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$\frac{x - \sin x}{x^3} = \frac{1}{3!} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots$$

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \left(\frac{1}{6} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots \right)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$\frac{x - \sin x}{x^3} = \frac{1}{3!} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots$$

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \left(\frac{1}{6} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots \right) = 0$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$-\sin x = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$x - \sin x = \frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \cdots$$

$$\frac{x - \sin x}{x^3} = \frac{1}{3!} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots$$

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \left(\frac{1}{6} - \frac{x^2}{5!} + \frac{x^4}{7!} - \cdots \right) = \frac{1}{6}$$