Math 141 Lecture 8

Greg Maloney

Todor Milev

University of Massachusetts Boston

Spring 2015

Outline

- 1 Indeterminate Forms and L'Hospital's Rule
 - Indeterminate Products
 - Indeterminate Differences
 - Indeterminate Powers

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project (a notice of use freecalc is sufficient).

- Latest version of the .tex sources of the slides: https: //sourceforge.net/p/freecalculus/code/HEAD/tree/
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Find $\lim_{x\to 1} \frac{\ln x}{x-1}$.

- $\bullet \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- We don't get any cancellation between top and bottom.
- We need new techniques.

 $\lim_{x\to a} f(x) = 0$

Theorem (L'Hospital's Rule)

Suppose that f and g are differentiable and $g'(x) \neq 0$ on an open interval that contains a (except possibly at a). Suppose that

and $\lim_{x\to a} g(x) = 0$

or that
$$\lim_{x\to a} f(x) = \pm \infty$$
 and $\lim_{x\to a} g(x) = \pm \infty$

(In other words, we have an indeterminate form of type 0/0 or ∞/∞ .) Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Find $\lim_{x\to 1} \frac{\ln x}{x-1}$.

- $\bullet \lim_{x\to 1} \ln x = 0.$
- $\lim_{x\to 1}(x-1)=0$.
- This is an indeterminate form of type 0/0.
- Apply L'Hospital's rule:

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(x - 1)} = \lim_{x \to 1} \frac{1/x}{1} = \lim_{x \to 1} \frac{1}{x} = 1.$$

Find $\lim_{X\to\infty} \frac{e^x}{X^2}$.

- $\lim_{x\to\infty} e^x = \infty$.
- $\lim_{x\to\infty} x^2 = \infty$.
- This is an indeterminate form of type ∞/∞ .
- Apply L'Hospital's rule:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

- $\lim_{x\to\infty} 2x = \infty$.
- This is an inderminate form of type ∞/∞ .
- Apply L'Hospital's rule again:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{e^x}{2} = \infty.$$

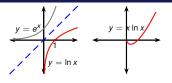
Indeterminate Products

If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \pm \infty$, then it isn't clear what $\lim_{x\to a} (fg)(x)$ will be.

In such a case, write the product fg as a quotient:

$$fg = \frac{f}{1/g}$$
 or $fg = \frac{g}{1/f}$.

This converts the given limit into an indeterminate form of type 0/0 or ∞/∞ .



Evaluate $\lim_{x\to 0^+} x \ln x$.

- $\bullet \lim_{x\to 0^+} \ln x = -\infty.$
- $\bullet \lim_{x\to 0^+} x = 0.$
- This is an indeterminate form of type $0(-\infty)$ (or $-\infty/(1/0)$).
- Apply L'Hospital's rule:

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0^{+}} \frac{\frac{d}{dx} (\ln x)}{\frac{d}{dx} (\frac{1}{x})}$$
$$= \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} = \lim_{x \to 0^{+}} (-x) = 0$$

Indeterminate Differences

If $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = \infty$, then the limit

$$\lim_{x\to a}[f(x)-g(x)]$$

is called an indeterminate form of type $\infty - \infty$.

To compute such a limit, try to convert it into a quotient (by using a common denominator, or by rationalizing, or by factoring out a common factor).

Evaluate $\lim_{x\to(\pi/2)^-}(\sec x - \tan x)$.

- $\lim_{x\to(\pi/2)^-}\sec x=\infty$.
- $\lim_{x\to(\pi/2)^-} \tan x = \infty$.
- This is an indeterminate form of type $\infty \infty$.
- Apply L'Hospital's rule:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$
(indeterminate form of type 0/0.)
$$= \lim_{x \to (\pi/2)^{-}} \frac{\frac{d}{dx} (1 - \sin x)}{\frac{d}{dx} \cos x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{-\cos x}{-\sin x} = 0$$

Indeterminate Powers

Several indeterminate forms arise from the limit $\lim_{x\to a} f(x)^{g(x)}$.

$$\lim_{x\to a} f(x) = 0$$
 and $\lim_{x\to a} g(x) = 0$ type 0^0 $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = 0$ type ∞^0

$$\lim_{x\to a} f(x) = 1$$
 and $\lim_{x\to a} g(x) = \pm \infty$ type 1^{∞}

These can all be solved either by taking the natural logarithm:

let
$$y = [f(x)]^{g(x)}$$
, then $\ln y = g(x) \ln f(x)$

or by writing the function as an exponential:

$$[f(x)]^{g(x)} = e^{g(x)\ln f(x)}.$$

Find $\lim_{x\to 0^+} x^x$.

- $0^x = 0$ for any x > 0.
- $x^0 = 1$ for any $x \neq 0$.
- This is an indeterminate form of type 00.
- Write as an exponential:
- $x^x = e^{x \ln x}$.
- Recall that $\lim_{x\to 0^+} x \ln x = 0$.
- Therefore

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^0 = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{k}{x} \right)^x = \lim_{x \to \infty} e^{\ln(1 + \frac{k}{x})^x}$$
 exponent= continuous f-n
$$= e^{\lim_{x \to \infty} \ln(1 + \frac{k}{x})^x} = e^k$$
 limit computed below
$$\lim_{x \to \infty} \ln \left(1 + \frac{k}{x} \right)^x = \lim_{x \to \infty} x \ln \left(1 + \frac{k}{x} \right)$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx} \left(\ln \left(1 + \frac{k}{x} \right) \right)}{\frac{d}{dx} \left(\frac{1}{x} \right)}$$
 form "\frac{0}{0}", use L'Hospital
$$= \lim_{x \to \infty} \frac{1 + \frac{k}{x}}{1 + \frac{k}{x}} \left(1 + \frac{k}{x} \right)' - \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \frac{k}{1 + \frac{k}{x}} = k$$