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Improper Integrals

Improper Integrals

The definition of
∫ b

a f (x)dx , where f is defined on [a,b], has two
requirements:

1 [a,b] is a finite interval.
2 f has no infinite discontinuities in [a,b].

We are now going to relax these requirements.
1 We allow infinite intervals, such as (a,∞), (−∞,b), and (−∞,∞).
2 f might have infinite discontinuities in [a,b].

Such integrals are called improper integrals.

Definition (Improper Integral)
The integral ∫ b

a
f (x)dx

is called improper if one or more of the endpoints a and b is infinite, or
if f has an infinite discontinuity on [a,b].
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Improper Integrals Type I: Infinite Intervals

Type I: Infinite Intervals

Consider the region A that lies under y = 1/x2, above the x-axis,
and to the right of x = 1.
To find its area, approximate with A(t), the area of the region
under 1/x2, above the x-axis, right of x = 1, and left of x = t .

A(t) =

∫ t

1

dx
x2 =

[
−1

x

]t

1
= 1− 1

t

t
x

y

y = 1

x2

A(t) = 1 −

1

t

1

Notice A(t) < 1 no matter how large t is.
Also notice lim

t→∞
A(t) = lim

t→∞

(
1− 1

t

)
=

?

1.

We say that the area A is equal to 1 and write∫∞
1

1
x2 dx = limt→∞

∫ t
1

1
x2 dx = 1.
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Improper Integrals Type I: Infinite Intervals

Definition (Improper Integral of Type I)
1 If

∫ t
a f (x)dx exists for every t ≥ a, then∫ ∞

a
f (x)dx = lim

t→∞

∫ t

a
f (x)dx

if the limit exists.
2 If

∫ b
t f (x)dx exists for every t ≤ b, then∫ b

−∞
f (x)dx = lim

t→−∞

∫ b

t
f (x)dx

if the limit exists.∫∞
a f (x)dx and

∫ b
−∞ f (x)dx are called convergent if the corresponding

limit exists and divergent if it doesn’t exist.
3 If both

∫∞
a f (x)dx and

∫ a
−∞ f (x)dx are convergent, then we define∫ ∞

−∞
f (x)dx =

∫ a

−∞
f (x)dx +

∫ ∞
a

f (x)dx .
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Improper Integrals Type I: Infinite Intervals

Example

Determine whether
∫∞

1
1
x dx is convergent or divergent.

y = 1

x

Infinite area
y = 1

x2

Finite area

∫ ∞
1

1
x

dx = lim
t→∞

∫ t

1

1
x

dx

= lim
t→∞

[ln x ]t1

= lim
t→∞

(ln t − ln 1)

= lim
t→∞

ln t =∞

Therefore the improper integral is
divergent.
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Improper Integrals Type I: Infinite Intervals

Example

x

y

1

1

Evaluate∫∞
−∞

1
1+x2 dx .∫ ∞

−∞

1
1 + x2 dx =

∫ 0

−∞

1
1 + x2 dx +

∫ ∞
0

1
1 + x2 dx

=
π

2
+
π

2
= π

Evaluate the two integrals separately:∫ 0

−∞

1
1 + x2 dx = lim

t→−∞

∫ 0

t

1
1 + x2 dx = lim

t→−∞
[

?

arctan x ] 0
t

= lim
t→−∞

( arctan 0− arctan t) = lim
t→−∞

(

?

0− arctan t)

= 0−
(

?

− π

2

)
=
π

2∫ ∞
0

1
1 + x2 dx = lim

t→∞

∫ t

0

1
1 + x2 dx = lim

t→∞
[ arctan x ]t0

= lim
t→∞

(arctan t − arctan 0) = lim
t→∞

arctan t =

?

π

2
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Improper Integrals Type I: Infinite Intervals

Example

For what values of p is the integral
∫∞

1
1
xp dx convergent?

We know from Example 1 that if p = 1, the integral is divergent.
Assume p 6= 1.∫ ∞

1

1
xp dx = lim

t→∞

∫ t

1

1
xp dx = lim

t→∞

[
x−p+1

−p + 1

]t

1
= lim

t→∞

1
tp−1 − 1
1− p

If p > 1, then p − 1 > 0, so as t →∞, tp−1 →∞ and 1/tp−1 → 0.
Therefore

∫∞
1

1
xp dx = 1

p−1 if p > 1, and so the integral is
convergent.
If p < 1, then p − 1 < 0, so 1

tp−1 = t1−p →∞ as t →∞.

Therefore
∫∞

1
1
xp dx is divergent if p < 1.

Theorem∫∞
1

1
xp dx converges if p > 1 and diverges if p ≤ 1.
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Improper Integrals Type II: Discontinuous Integrands

Type II: Discontinuous Integrands

We can use the same approach if the function f is discontinuous at
one of the endpoints a and b in the integral

∫ b
a f (x)dx .

For example, 1√
x−2

is discontinuous at 2, so we might wonder if the
integral ∫ 5

2

1√
x − 2

dx

exists.

1

2

3

1 2 3 4 5

x

y
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Improper Integrals Type II: Discontinuous Integrands

Definition (Improper Integral of Type II)
1 If f is continuous on [a,b) and discontinuous at b, then∫ b

a
f (x)dx = lim

t→b−

∫ t

a
f (x)dx

if the limit exists.
2 If f is continuous on (a,b] and discontinuous at a, then∫ b

a
f (x)dx = lim

t→a+

∫ b

t
f (x)dx

if the limit exists.∫ b
a f (x)dx is called convergent if the corresponding limit exists and

divergent if it doesn’t exist.
3 If f has a discontinuity at c, where a < c < b, and both

∫ c
a f (x)dx

and
∫ b

c f (x)dx are convergent, then we define∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx
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Improper Integrals Type II: Discontinuous Integrands

Example

Find
∫ 5

2

1√
x − 2

dx .

Observe that x = 2 is a vertical asymptote for the integrand.

1

2

1 2 3 4 5

x

y

Area = 2
√

3

∫ 5

2

1√
x − 2

dx = lim
t→2+

∫ 5

t

1√
x − 2

dx

= lim
t→2+

[

?

2
√

x − 2
] 5

t
= lim

t→2+
2
(√

5− 2−
√

t − 2
)

= 2
√

3
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Improper Integrals Type II: Discontinuous Integrands

Example

Evaluate
∫ 3

0
1

x−1dx .
Observe that x = 1 is a vertical asymptote for the integrand.∫ 3

0

1
x − 1

dx =

∫ 1

0

1
x − 1

dx +

∫ 3

1

1
x − 1

dx

∫ 1

0

dx
x − 1

= lim
t→1−

∫ t

0

dx
x − 1

= lim
t→1−

[ln |x − 1|]t0

= lim
t→1−

ln |t − 1| − ln 1 = −∞

Therefore the integral diverges.
If we had not noticed the vertical asymptote, we might have made
the following mistake:∫ 3

0

dx
x − 1

= [ln |x − 1|]30 = ln 2− ln 1 = ln 2.
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Improper Integrals A Comparison Test for Improper Integrals

A Comparison Test for Improper Integrals

Sometimes it’s impossible to find the exact value of an integral, but we
still want to know if it’s convergent or divergent. For such cases, we
can sometimes use the following theorem.

Theorem (Comparison Theorem)
Suppose f and g are continuous and f (x) ≥ g(x) ≥ 0 for x ≥ a.

1 If
∫∞

a f (x)dx is convergent, then
∫∞

a g(x)dx is convergent.
2 If

∫∞
a g(x)dx is divergent, then

∫∞
a f (x)dx is divergent.

f

g

A similar theorem holds for Type II
improper integrals.
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Improper Integrals A Comparison Test for Improper Integrals

Example

Show that
∫∞

0 e−x2
dx is convergent.

The antiderivative of e−x2
isn’t an elementary function.

If integral were
∫∞

0 e−xdx , we’d have no problem integrating.

Notice that 0 ≤ e−x2 ≤ e−x for x ≥ 1 (because −x2 < −x for
x > 1 and the exponent is an increasing function).

Split
∫∞

0 e−x2
dx =

∫ 1
0 e−x2

dx +
∫∞

1 e−x2
dx .

On the RHS, first integral is proper - no affect on convergence.
y = e−x2

y = e−x

y = e−x2

1

By the Comparison Theorem,∫∞
1 e−x2

dx converges⇒∫∞
0 e−x2

dx converges.

∫ ∞
1

e−x2
dx ≤

∫ ∞
1

e−xdx

= lim
t→∞

∫ t

1
e−xdx

= lim
t→∞

[

?

− e−x] t
1

= lim
t→∞

(
− e−t −

(
− e−1

))
= e−1
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Improper Integrals A Comparison Test for Improper Integrals

Example

Is
∫∞

1
1+e−x

x dx convergent or divergent?

1+e−x

x > 1
x .

By a previously studied example,
∫∞

1
dx
x is divergent.

Therefore
∫∞

1
1+e−x

x dx is divergent by the Comparison Theorem.
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Improper Integrals A Comparison Test for Improper Integrals

x

1

A P1 P2(x2, 1)

∆

Q2

Q1

O

Draw a unit circle as above, let O,A be as indicated. Let P2 be the
point (x2,1), P1 be the point (x2 −∆,1). By the Pythagorean theorem,
|OP2|2 = 1 + x2

2 and similarly |OP1|2 = 1 + (x2 −∆)2. Let Q1, Q2 be as
indicated. Then 4OP2A is similar to 4OAQ2. By Euclidean geometry,
|OA|
|OP2| = |OQ2|

|OA| and so |OQ2||OP2| = |OA|2 = 1 and therefore
|OQ2|
|OP2| = |OQ2||OP2|

|OP2|2
= 1
|OP2|2

= 1
1+x2

2
. Similarly conclude

|OQ1||OP1| = |OA|2 = 1 = |OQ2||OP2|. Therefore |OQ1|
|OP2| = |OQ2|

|OP1| and so

4OQ2Q1 is similar to 4OP1P2. Therefore |Q1Q2|
|P1P2| = |OQ2|

|OP1| and so

|Q1Q2| = |P1P2||OQ2|
|OP1| =

(
|OP2|
|OP1|

)
|OQ2|
|OP2| |P1P2| = |OP2|

|OP1|
∆

1+x2
2
.
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Improper Integrals A Comparison Test for Improper Integrals

Q2

Qn

P2(x2, 1)

∆

Pn. . .
P1(x1, 1)

x

Q0 = P0 = A

Q1

O

|Q1Q2| = |OP2|
|OP1|

∆
1+x2

2
. For any ε > 0, can choose ∆: 1 < |OP2|

|OP1| < 1 + ε.

If we let P2 → P1, i.e., ∆→ 0, we get |OP2|
|OP1| → 1. In strict mathematical

language: for every ε > 0 there exists δ > 0 such that when ∆ < δ we
have that 1 > |OP2|

|OP1| > 1− ε. Furthermore, the choice of δ can be made
independent of the value of x2: to prove that one analyzes the

expression |OP2|
|OP1| =

√
1+x2

2
1+(x2−∆)2 . We leave the tedious but otherwise

easy details to the interested student.
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Improper Integrals A Comparison Test for Improper Integrals

Q2

Qn

P2(x2, 1)

∆

Pn. . .
P1(x1, 1)

x

Q0 = P0 = A

Q1

O

|Q1Q2| = |OP2|
|OP1|

∆
1+x2

2
. For any ε > 0, can choose ∆: 1 < |OP2|

|OP1| < 1 + ε.

Fix a large number N and let ∆ be such that n = N
∆ is integer. Let

P0 = (0,1), P1 = (∆,1), P2 = (2∆,1), . . . ,Pn = (n∆,1), and let
Q0,Q1,Q2, . . . ,Qn be as indicated.
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Improper Integrals A Comparison Test for Improper Integrals

Q2

Qn

P2(x2, 1)

∆

Pn. . .
P1(x1, 1)

x

Q0 = P0 = A

Q1

O

|Q1Q2| = |OP2|
|OP1|

∆
1+x2

2
. For any ε > 0, can choose ∆: 1 < |OP2|

|OP1| < 1 + ε.
∆

1+x2
1

< |Q0Q1| < (1 + ε) ∆
1+x2

1
∆

1+x2
2

< |Q1Q2| < (1 + ε) ∆
1+x2

2
...

∆
1+x2

n
< |Qn−1Qn| < (1 + ε) ∆

1+x2
n∑n

i=1
∆

1+x2
i

<
∑n

i=1 |Qi−1Qi | < (1 + ε)
∑n

i=1
∆

1+x2
i

↓ ↓ ↓∫∞N
0

dx
1+x2

<

= lim
∆,N,ε

∑
|Qi−1Qi |

<

= (1 + ε)
∫∞N

0
dx

1+x2

Let ∆→ 0. Next take N →∞. Finally take ε→ 0, use squeeze thm.
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Improper Integrals A Comparison Test for Improper Integrals

Q2

Qn

P2(x2, 1)

∆

Pn. . .
P1(x1, 1)

x

Q0 = P0 = A

Q1

O

|Q1Q2| = |OP2|
|OP1|

∆
1+x2

2
. For any ε > 0, can choose ∆: 1 < |OP2|

|OP1| < 1 + ε.

The points Q1,Q2, . . . see the segment OA from an angle of π2 .
Therefore, by Euclidean geometry, the points Q1,Q2, . . . lie on the
circle C with radius 1

2 and center (0, 1
2). Therefore

∑
|Qi−1Qi |

approximates half of the circumference of the circle C. By symmetry,∫ ∞
−∞

dx
1 + x2 = circumference of C = 2π

(
1
2

)
= π,

as desired.
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