Math 141 Lecture 11

Greg Maloney

Todor Milev

University of Massachusetts Boston

Spring 2015

Outline

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project (a notice of use freecalc is sufficient).

- Latest version of the .tex sources of the slides: https: //sourceforge.net/p/freecalculus/code/HEAD/tree/
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Formal Series

Definition (Formal Series)

A formal series is a list of numbers delimited by the plus sign.

$$a_1 + a_2 + a_3 + a_4 + \cdots + a_n + \cdots$$

Recall a sequence is a list of numbers.

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

- The + sign indicates our intention to attempt to sum the elements of the formal series.
- Except for the indication of that intention, formal series and sequences are essentially synonymous.
- The sum of a finite sequence/finite formal series is studied in the subject of elementary arithmetics.
- The sum, if convergent, of an infinite sequence/infinite formal series will be defined in the following slides.

Let A be the sum of the positive even integers between 2 and and 124. Write A using the \dots notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- We aim to introduce the \sum notation for series via this example.
- The ... notation is informal but easier to read.
- If the ... are too ambiguous, we should include the general term.
- To make it clearer we should rewrite all elements in the pattern of the general term.
- If that is still ambiguous we should switch to the completely unambiguous ∑ notation.

Let A be the sum of the positive even integers between 2 and and 124. Write A using the \dots notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- The number *n* is the index (counter) of the sum.
- \(\sum_{\text{tells}} \) tells us to add several copies of the summed term, where in each term the index is replaced by a concrete value.
- The values taken by the index are determined by the boundaries of summation.
- The index varies over all integers starting with the lower boundary and ending with upper boundary.
- In programming, where do we use notation similar to that for \sum ?

Let A be the sum of the positive even integers between 2 and and 124. Write A using the \dots notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- To go from ∑ to ... notation: substitute few values for the index.
 Make sure to include the last value.
- To go from . . . to ∑ notation:
 - figure out a pattern for the general term just as with sequences;
 - select first and last index so that your general term formula reproduces the first and last terms of the sequence.

Let A be the sum of the positive even integers between 2 and and 124. Write A using the \dots notation and using the \sum notation.

$$A = 2+4+6+\cdots+124$$

$$= 2+4+6+\cdots+2n+\cdots+124$$

$$= 2\cdot 1+2\cdot 2+2\cdot 3+\cdots+2\cdot n+\cdots+2\cdot 62$$

$$= \sum_{n=1}^{62} 2n .$$

- Bear in mind the ... notation is informal.
 - There are infinitely many formulas that fit any single pattern.
 - Thus it is acceptable to use the ... notation only when we believe there is a single completely obvious pattern that will be recognized by every one.
 - The pattern should be obvious not only to us, but also to our potential readers.
 - If in doubt or seeking complete rigor we should use the \sum notation.

Definition (Arithmetic series)

An arithmetic series is a series whose terms are an arithmetic sequence.

Example (Sum of a small arithmetic series)

The sum of the arithmetic series 7 + 4 + 1 - 2 - 5 is

Example (Sum of a large arithmetic series)

Find the sum of the arithmetic series

$$7+4+1-2-5-\cdots-53-56$$
.

Let s denote the sum.

Therefore
$$2s = (-49)(22)$$

 $s = -49 \cdot 22/2 = -539.$

Theorem (Sum of an arithmetic series)

The sum of a finite arithmetic series is the average of the first and last terms, multiplied by the number of terms. That is,

$$a + (a + d) + (a + 2d) + \cdots + (a + (n - 1)d) = \frac{a + (a + (n - 1)d)}{2}n.$$

The only infinite arithmetic series with a sum is the series of all 0.

Example (Sum of an arithmetic series)

Find the sum of the arithmetic series

$$5 + 10 + 15 + 20 + \cdots + 100$$
.

Therefore the sum is $\frac{1}{2}$.

Definition (Geometric series)

A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)

Let $r \neq 1$. Find the sum of the geometric series

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{M-1} = \sum_{n=1}^{M} ar^{n-1}.$$

Let s denote the sum.

s =
$$a + ar + ar^2 + \cdots + ar^{M-1}$$

 $- rs = ar + ar^2 + \cdots + ar^{n-1} + ar^M$
 $s - rs = a - ar^M$
 $s = \frac{a(1-r^M)}{1-r}$

Theorem (The sum of a finite geometric series)

Let $r \neq 1$. The sum of the finite geometric series $\sum_{n=1}^{M} ar^{n-1}$ is $a^{\frac{1-r^M}{1-r}}$.

- Does it make sense to add infinitely many numbers?
- Sometimes yes, sometimes no.
- Consider the series $\sum_{n=1}^{\infty} n$.

$$1 + 2 + 3 + 4 + 5 + \cdots + n + \cdots$$

- If we add the terms, we get the partial sums 1,3,6,10,15.
- After the *n*th term, we get $\frac{n(n+1)}{2}$.
- This goes to ∞ as n gets bigger.
- Now consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^n} + \dots$$

- If we add the terms, we get the partial sums $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{15}{16}$, $\frac{31}{32}$.
- After the *n*th term, we get $1 \frac{1}{2^n}$.
- This gets closer and closer to 1. We write $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$.

Definition (Partial Sum, Convergent, Divergent, Sum)

Given a series $\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \cdots$, let s_n denote the nth partial sum:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s$, then we say that the series $\sum_{i=1}^{\infty} a_i$ is convergent, and we write

$$\sum_{i=1}^{\infty} a_i = s.$$

In this case, we call s the sum of the series.

If the sequence $\{s_n\}$ is divergent, then we say that the series $\sum_{i=1}^{\infty} a_i$ is divergent.

An important example is the geometric series

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}, \quad a \neq 0$$

- If r = 1, then $s_n = a + a + \cdots + a = na \rightarrow \pm \infty$.
- Since $\lim_{n\to\infty} s_n$ doesn't exist, the series is divergent when r=1.
- If $r \neq 1$, then

$$s_n = a + ar + ar^2 + \cdots + ar^{n-1}$$
 $- rs_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n$
 $s_n - rs_n = a - ar^n$
 $s_n = \frac{a(1-r^n)}{1-r}$

- If -1 < r < 1, then $r^n \to 0$, so the geometric series is convergent and its sum is a/(1-r).
- If r > 1 or $r \le -1$, then r^n is divergent, so $\sum_{n=1}^{\infty} ar^{n-1}$ diverges.

This theorem summarizes the results of the previous example.

Theorem (Convergence of Geometric Series)

The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}.$$

If $|r| \ge 1$, the series is divergent. a is called the first term and r is called the common ratio.

For $r \neq 1$, recall that the sum of a geometric series is

$$a + ar + ar^2 + ar^3 + \dots = a\left(1 + r + r^2 + r^3 + \dots\right) = \frac{a}{1 - r}$$
 alternatively

$$\sum_{n=1}^{\infty} ar^{n-1} = \sum_{m=0}^{\infty} ar^m = a \sum_{m=0}^{\infty} r^m = \frac{a}{1-r}$$

Example

Find the sum of the geometric series
$$-2 + \frac{6}{5} - \frac{18}{25} + \frac{54}{125} - \cdots$$

- The first term is a = -2.
- The common ratio is $r = \frac{\frac{6}{5}}{-2} = -\frac{3}{5}$.
- Therefore the sum is

$$\sum_{n=1}^{\infty} (-2) \left(-\frac{3}{5} \right)^{n-1} = \frac{(-2)}{1 - \left(-\frac{3}{5} \right)} = -\frac{2}{\frac{8}{5}} = -\frac{5}{4}$$

Write the number $2.3\overline{17} = 2.3171717...$ as a quotient of integers.

$$2.3171717... = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

- After the first term, we have a geometric series.
- $a = \frac{17}{10^3}$ and $r = \frac{1}{10^2}$.

$$2.3171717... = 2.3 + \frac{\frac{17}{10^3}}{1 - \frac{1}{10^2}} = 2.3 + \frac{\frac{17}{1000}}{\frac{99}{100}}$$
$$= \frac{23}{10} + \frac{17}{990} = \frac{1147}{495}$$

Show the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent and find its sum.

Is this a geometric series? No, because $\frac{a_{n+1}}{a_n} = \frac{\frac{1}{(n+1)(n+2)}}{\frac{1}{n(n+1)}} = \frac{n}{n+2}$

is not constant. Decompose a_n into partial fractions:

$$a_{n} = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$s_{k} = \sum_{n=1}^{k} \frac{1}{n(n+1)} = \sum_{i=1}^{n} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= 1 - \frac{1}{k+1}$$
Therefore
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{k \to \infty} s_{k} = \lim_{k \to \infty} \left(1 - \frac{1}{k+1}\right) = 1$$

Show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ diverges.

$$\begin{array}{lll} \mathbf{S}_{1} & = & 1 \\ \mathbf{S}_{2} & = & 1 + \frac{1}{2} \\ \mathbf{S}_{4} & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} \\ \mathbf{S}_{8} & = & 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \\ & > & 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2} \\ \mathbf{S}_{16} & = & 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) \\ & > & 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) \\ & = & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{4}{2} \\ & \vdots \\ \mathbf{S}_{2n} & > & 1 + \frac{n}{2} \end{array}$$

Therefore $s_{2^n} \to \infty$ as $n \to \infty$, so $\{s_n\}$ is divergent, so the harmonic series is divergent.