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Series

Formal Series

Definition (Formal Series)
A formal series is a list of numbers delimited by the plus sign.

a1 + a2 + a3 + a4 + · · · + an + · · ·

Recall a sequence is a list of numbers.

a1, a2, a3, a4, . . . , an, . . .

The + sign indicates our intention to attempt to sum the elements
of the formal series.
Except for the indication of that intention, formal series and
sequences are essentially synonymous.
The sum of a finite sequence/finite formal series is studied in the
subject of elementary arithmetics.
The sum, if convergent, of an infinite sequence/infinite formal
series will be defined in the following slides.
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Series

Example (The . . . and
∑

notations for series)
Let A be the sum of the positive even integers between 2 and and 124.
Write A using the . . . notation and using the

∑
notation.

A =

?

2 + 4 + 6 + · · ·+ 124
= 2 + 4 + 6 + · · ·+ 2n + · · ·+ 124
= 2 · 1 + 2 · 2 + 2 · 3 + · · ·+ 2 · n + · · ·+ 2 · 62

=
62∑

n=1

2n .

We aim to introduce the
∑

notation for series via this example.
The . . . notation is informal but easier to read.
If the . . . are too ambiguous, we should include the general term.
To make it clearer we should rewrite all elements in the pattern of
the general term.
If that is still ambiguous we should switch to the completely
unambiguous

∑
notation.
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Series

Example (The . . . and
∑

notations for series)
Let A be the sum of the positive even integers between 2 and and 124.
Write A using the . . . notation and using the

∑
notation.

A =

?

2 + 4 + 6 + · · ·+ 124
= 2 + 4 + 6 + · · ·+ 2n + · · ·+ 124
= 2 · 1 + 2 · 2 + 2 · 3 + · · ·+ 2 · n + · · ·+ 2 · 62

=
62∑

n=1

2n .

The number n is the index (counter) of the sum.∑
tells us to add several copies of the summed term, where in

each term the index is replaced by a concrete value.
The values taken by the index are determined by the boundaries
of summation.
The index varies over all integers starting with the lower boundary
and ending with upper boundary.
In programming, where do we use notation similar to that for

∑
?
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Series

Example (The . . . and
∑

notations for series)
Let A be the sum of the positive even integers between 2 and and 124.
Write A using the . . . notation and using the

∑
notation.

A =

?

2 + 4 + 6 + · · ·+ 124
= 2 + 4 + 6 + · · ·+ 2n + · · ·+ 124
= 2 · 1 + 2 · 2 + 2 · 3 + · · ·+ 2 · n + · · ·+ 2 · 62

=
62∑

n=1

2n .

To go from
∑

to . . . notation: substitute few values for the index.
Make sure to include the last value.
To go from . . . to

∑
notation:

figure out a pattern for the general term just as with sequences;
select first and last index so that your general term formula
reproduces the first and last terms of the sequence.
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Example (The . . . and
∑

notations for series)
Let A be the sum of the positive even integers between 2 and and 124.
Write A using the . . . notation and using the

∑
notation.

A =

?

2 + 4 + 6 + · · ·+ 124
= 2 + 4 + 6 + · · ·+ 2n + · · ·+ 124
= 2 · 1 + 2 · 2 + 2 · 3 + · · ·+ 2 · n + · · ·+ 2 · 62

=
62∑

n=1

2n .

Bear in mind the . . . notation is informal.
There are infinitely many formulas that fit any single pattern.
Thus it is acceptable to use the . . . notation only when we believe
there is a single completely obvious pattern that will be recognized
by every one.
The pattern should be obvious not only to us, but also to our
potential readers.
If in doubt or seeking complete rigor we should use the

∑
notation.
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Definition (Arithmetic series)
An arithmetic series is a series whose terms are an arithmetic
sequence.

Example (Sum of a small arithmetic series)
The sum of the arithmetic series 7 + 4 + 1− 2− 5 is

5.

Example (Sum of a large arithmetic series)
Find the sum of the arithmetic series

7 + 4 + 1− 2− 5− · · · − 53− 56.
Let s denote the sum.

s = 7 + 4 + 1 − · · · − 56
+ s = − 56 − 53 − 50 − · · · + 7
2s = − 49 − 49 − 49 − · · · − 49

Therefore 2s = (−49)(22)
s = −49 · 22/2 = −539.
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Theorem (Sum of an arithmetic series)
The sum of a finite arithmetic series is the average of the first and last
terms, multiplied by the number of terms. That is,

a + (a + d) + (a + 2d) + · · ·+ (a + (n − 1)d) =
a + (a + (n − 1)d)

2
n.

The only infinite arithmetic series with a sum is the series of all 0.

Example (Sum of an arithmetic series)
Find the sum of the arithmetic series

5 + 10 + 15 + 20 + · · ·+ 100.

The series contains

20

terms. The average of the first and last terms is

5+100
2

.
Therefore the sum is

5+100

2 ·

20 = 105 · 10 = 1050.
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Definition (Geometric series)
A geometric series is a series whose terms are a geometric sequence.

Example (The sum of a finite geometric series)
Let r 6= 1. Find the sum of the geometric series

a + ar + ar2 + ar3 + · · ·+ arM−1 =
M∑

n=1

arn−1.

Let s denote the sum.
s = a +ar +ar2 + · · · +arM−1

− rs = ar + ar2 + · · · + arn−1 + arM

s − rs = a− arM

s = a(1−rM)
1−r

Theorem (The sum of a finite geometric series)

Let r 6= 1. The sum of the finite geometric series
∑M

n=1 arn−1 is a1−rM

1−r .
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Does it make sense to add infinitely many numbers?
Sometimes yes, sometimes no.
Consider the series

∑∞
n=1 n.

1 + 2 + 3 + 4 + 5 + · · ·+ n + · · ·

If we add the terms, we get the partial sums 1,3,6,10,15.
After the nth term, we get n(n+1)

2 .
This goes to∞ as n gets bigger.
Now consider the series

∑∞
n=1

1
2n .

1
2
+

1
4
+

1
8
+

1
16

+
1

32
+ · · ·+ 1

2n + · · ·

If we add the terms, we get the partial sums 1
2 ,3

4 ,7
8 ,15

16 ,31
32 .

After the nth term, we get 1− 1
2n .

This gets closer and closer to 1. We write
∑∞

n=1
1
2n = 1.
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Definition (Partial Sum, Convergent, Divergent, Sum)
Given a series

∑∞
i=1 ai = a1 + a2 + a3 + · · · , let sn denote the nth

partial sum:

sn =
n∑

i=1

ai = a1 + a2 + · · ·+ an

If the sequence {sn} is convergent and limn→∞ sn = s, then we say
that the series

∑∞
i=1 ai is convergent, and we write

∞∑
i=1

ai = s.

In this case, we call s the sum of the series.
If the sequence {sn} is divergent, then we say that the series

∑∞
i=1 ai

is divergent.
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Example
An important example is the geometric series

a + ar + ar2 + ar3 + · · ·+ arn−1 + · · · =
∞∑

n=1

arn−1, a 6= 0

If r = 1, then sn = a + a + · · ·+ a = na→ ±∞.
Since limn→∞ sn doesn’t exist, the series is divergent when r = 1.
If r 6= 1, then

sn = a +ar +ar2 + · · · +arn−1

− rsn = ar + ar2 + · · · + arn−1 + arn

sn − rsn = a− arn

sn = a(1−rn)
1−r

If −1 < r < 1, then rn → 0, so the geometric series is convergent
and its sum is a/(1− r).
If r > 1 or r ≤ −1, then rn is divergent, so

∑∞
n=1 arn−1 diverges.

Math 141 Lecture 11 Spring 2015



Series

This theorem summarizes the results of the previous example.

Theorem (Convergence of Geometric Series)
The geometric series

∞∑
n=1

arn−1 = a + ar + ar2 + · · ·

is convergent if |r | < 1 and its sum is

∞∑
n=1

arn−1 =
a

1− r
.

If |r | ≥ 1, the series is divergent.
a is called the first term and r is called the common ratio.
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For r 6= 1, recall that the sum of a geometric series is

a + ar + ar2 + ar3 + . . . = a
(

1 + r + r2 + r3 + . . .
)

=
a

1− r
alternatively

∞∑
n=1

arn−1 =
∞∑

m=0

arm = a
∞∑

m=0

rm =
a

1− r

Example

Find the sum of the geometric series − 2 +
6
5
− 18

25
+

54
125
− · · ·

The first term is a =

?

− 2.

The common ratio is r =

?

6
5
−2 = −3

5 .
Therefore the sum is

∞∑
n=1

(−2)
(
−3

5

)n−1

=
(−2)

1−
(
−3

5

) = −2
8
5

= −5
4
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Example

Write the number 2.317 = 2.3171717 . . . as a quotient of integers.

2.3171717 . . . = 2.3 +
17
103 +

17
105 +

17
107 + · · ·

After the first term, we have a geometric series.
a = 17

103 and r = 1
102 .

2.3171717 . . . = 2.3 +
17
103

1− 1
102

= 2.3 +
17

1000
99
100

=
23
10

+
17

990
=

1147
495
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Example

Show the series
∞∑

n=1

1
n(n + 1)

is convergent and find its sum.

Is this a geometric series?

?

No, because
an+1

an
=

1
(n+1)(n+2)

1
n(n+1)

=
n

n + 2
is not constant. Decompose an into partial fractions:

an =
1

n(n + 1)
=

?

1
n
− 1

n + 1

sk =
k∑

n=1

1
n(n + 1)

=
n∑

i=1

(
1
n
− 1

n + 1

)
=

(
1− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+ · · ·+

(
1
k
− 1

k + 1

)
= 1− 1

k + 1

Therefore
∞∑

n=1

1
n(n + 1)

= lim
k→∞

sk = lim
k→∞

(
1− 1

k + 1

)
= 1
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Example

Show that the harmonic series
∞∑

n=1

1
n
= 1 +

1
2
+

1
3
+

1
4
+ · · · diverges.

s1 = 1
s2 = 1 + 1

2
s4 = 1 + 1

2 + 1
3 + 1

4 > 1 + 1
2 + 1

4 + 1
4 = 1 + 2

2
s8 = 1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

6 + 1
7 + 1

8
> 1 + 1

2 + 1
4 + 1

4 + 1
8 + 1

8 + 1
8 + 1

8
= 1 + 1

2 + 1
2 + 1

2 = 1 + 3
2

s16 = 1 + 1
2 +

(1
3 + 1

4

)
+
(1

5 + · · ·+ 1
8

)
+
(1

9 + · · ·+ 1
16

)
> 1 + 1

2 +
(1

4 + 1
4

)
+
(1

8 + · · ·+ 1
8

)
+
( 1

16 + · · ·+ 1
16

)
= 1 + 1

2 + 1
2 + 1

2 + 1
2 = 1 + 4

2
...

s2n > 1 + n
2

Therefore s2n →∞ as n→∞, so {sn} is divergent, so the harmonic
series is divergent.
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