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Basic divergence tests

Theorem
If the series

∑∞
n=1 an is convergent, then limn→∞ an = 0.

Proof.
Let sn = a1 + a2 + · · ·+ an.
Then an = sn − sn−1.
Since

∑∞
n=1 an is convergent, the sequence {sn} is convergent.

Let limn→∞ sn = s.
Then limn→∞ sn−1 = s.
Therefore

lim
n→∞

an = lim
n→∞

(sn − sn−1) = s − s = 0
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Basic divergence tests

Theorem
If the series

∑∞
n=1 an is convergent, then limn→∞ an = 0.

This is just a restatement of the previous theorem:

Theorem (The Divergence Test)
If limn→∞ an doesn’t exist or if limn→∞ an 6= 0, then the series

∑∞
n=1 an

is divergent.
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Basic divergence tests

Example

Show that the series
∑∞

n=1
n2

5n2+4 diverges.

lim
n→∞

an = lim
n→∞

n2

5n2 + 4
·

1
n2

1
n2

= lim
n→∞

1
5 + 4

n2

=
1
5
6= 0

Therefore, by the Divergence Test, the series diverges.
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The Integral Test and Estimates of Sums The Integral Test

The Integral Test and Estimates of Sums

In general, it is not easy to find the sum of a series.

We could do this for
∞∑

n=1

1
n(n + 1)

because we found a simple

formula for the nth partial sum sn.
In the next few sections, we’ll learn techniques for showing
whether a series is convergent or divergent without explicitly
computing its sum.
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The Integral Test and Estimates of Sums The Integral Test

∞∑
n=1

1
n2 =

1
12 +

1
22 +

1
32 +

1
42 + · · ·

Use a computer to calculate partial
sums.
Appears to be converging.
How do we prove it?
Use f (x) = 1

x2 .

x

y

a1 = 1 a2 =
1

4
a3 =

1

9
a4 =

1

16
a5 =

1

25

y =
1

x2

1 2 3 4 5

n sn =
∑n

i=1
1
i2

5 1.4636
10 1.5498
50 1.6251

100 1.6350
500 1.6429

1000 1.6439
5000 1.6447

1
12 is the area of a
rectangle.
So is 1

22 = 1
4 .

The improper integral∫∞
1

1
x2 dx is

?

convergent.

Therefore
∞∑

n=1

1
n2 is

convergent.
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The Integral Test and Estimates of Sums The Integral Test

∞∑
n=1

1√
n
=

1√
1
+

1√
2
+

1√
3
+

1√
4
+ · · ·

Use a computer to calculate partial
sums.
Appears to be diverging.
How do we prove it?
Use f (x) = 1√

x .

x

y

a1 = 1 a2 =
1

√

2
a3 =

1
√

3
a4 =

1

2
a5 =

1
√

5

y =
1

√

x

1 2 3 4 5 6

n sn =
∑n

i=1
1√

i
5 3.2317

10 5.0210
50 12.7524

100 18.5896
500 43.2834

1000 61.8010
5000 139.9681

1√
1

is the area of a
rectangle.
So is 1√

2
.

∫∞
1

1√
x dx is

?

divergent.

Therefore
∞∑

n=1

1√
n is

divergent.
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The Integral Test and Estimates of Sums The Integral Test
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The Integral Test and Estimates of Sums The Integral Test

Theorem (The Integral Test)
Let f be a continuous, positive, decreasing function on [1,∞) and let
an = f (n). Then the series

∑∞
n=1 an is convergent if and only if the

improper integral
∫∞

1 f (x)dx is convergent. In other words,

1 If
∫ ∞

1
f (x)dx is convergent, then

∞∑
n=1

an is convergent.

2 If
∫ ∞

1
f (x)dx is divergent, then

∞∑
n=1

an is divergent.

Note that it is not necessary to start the series or the integral at n = 1.
For instance, to test the series

∞∑
n=4

1
(n − 3)2

we would use ∫ ∞
4

1
(x − 3)2 dx
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The Integral Test and Estimates of Sums The Integral Test

Example

Test the series
∞∑

n=1

1
n2 + 1

for convergence.

f (x) = 1
x2+1 is continuous, positive, and decreasing on [1,∞), so use

the Integral Test.

∫ ∞
1

1
x2 + 1

dx = lim
t→∞

∫ t

1

1
x2 + 1

dx

= lim
t→∞

[

?

arctan x ] t
1

= lim
t→∞

(
arctan t −

?

π

4

)
=

?

π

2
− π

4
=
π

4

Therefore
∞∑

n=1

1
n2+1 is

?

convergent.

t → ∞

arctan t →
π

2
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The Integral Test and Estimates of Sums The Integral Test

Example

For which values of p is the series
∞∑

n=1

1
np convergent?

If p < 0, then lim
n→∞

1
np =

?

∞.

If p = 0, then lim
n→∞

1
np =

?

1.

Therefore for p ≤ 0 the series is

?

divergent.
It remains to investigate the case p > 0. If p > 0, then f (x) = 1

xp is
continuous, positive, and decreasing on [1,∞), so we can use the
Integral Test.∫ ∞

1

1
xp dx =

{
convergent when

?

p > 1
divergent when

?

p ≤ 1

⇒
∞∑

n=1

1
np is convergent when p > 1 and divergent when p ≤ 1.
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The Integral Test and Estimates of Sums The Integral Test

This theorem summarizes the results of the previous example.

Theorem (p-series Convergence)

The p-series
∞∑

n=1

1
np is convergent if p > 1 and divergent if p ≤ 1.
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The Integral Test and Estimates of Sums The Integral Test

Example

Test the series
∞∑

n=1

ln n
n

for convergence.

f (x) = ln x
x is continuous and positive (x > 0).

To establish where f (x) is decreasing, take the derivative.

f ′(x) =

( 1
x

)
(x)− (ln x)(1)

x2 =
1− ln x

x2

This is negative for all x >

?

e.
Therefore f is decreasing for all x > e.∫ ∞

1

ln x
x

dx = lim
t→∞

∫ t

1

ln x
x

dx = lim
t→∞

[

?

(ln x)2

2

] t

1

= lim
t→∞

(
1
2
(ln t)2 −

?

0
)

=

?

∞

Therefore
∞∑

n=1

ln n
n is

?

divergent.
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The Integral Test and Estimates of Sums Estimating Sums

Estimating the Sum of a Series

Suppose we have already used the Integral Test to show that∑
an converges.

Now we want to find an approximation to the sum of the series.
Any partial sum sn is an approximation. But how good?
Estimate the size of the remainder
Rn = s − sn = an+1 + an+2 + an+3 + · · · .
Suppose f (n) = an. Draw rectangles with heights an+1,an+2, . . ..
Use the right endpoints to find the height: then the rectangles are
under the curve y = f (x).
Rn = an+1 + an+2 + an+3 + · · · ≤

∫∞
n f (x)dx .

Use the left endpoints to find the height: then the rectangles are
above the curve y = f (x).
Rn = an+1 + an+2 + an+3 + · · · ≥

∫∞
n+1 f (x)dx .
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The Integral Test and Estimates of Sums Estimating Sums

Remainder Estimate for the Integral Test
Suppose f (k) = ak , where f is continuous, positive, and decreasing for
x ≥ n, and

∑
ak is convergent with sum s. If Rn = s − sn, then∫ ∞

n+1
f (x)dx ≤ Rn ≤

∫ ∞
n

f (x)dx
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The Integral Test and Estimates of Sums Estimating Sums

Example (Example 5, p. 737)

Approximate the sum of
∑ 1

n3 using the first 10 terms. Estimate the
error involved in this approximation. How many terms are required to
get an accuracy of 0.0005 or better?∫ ∞

n

1
x3 dx = lim

t→∞

[
− 1

2x2

]t

n
= lim

t→∞

(
− 1

2t2 +
1

2n2

)
=

1
2n2

∞∑
n=1

1
n3 ≈ s10 =

1
13 +

1
23 + · · ·+ 1

103 ≈ 1.975

R10 ≤
∫ ∞

10

1
x3 dx =

1
2(10)2 =

1
200

Therefore the error is at most 0.005.
To get an accuracy of 0.0005 or better, we want Rn ≤ 0.0005. Since
Rn ≤ 1

2n2 , we want
1

2n2 ≤ 0.0005, or n ≥
√

1000 ≈ 31.6
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The Integral Test and Estimates of Sums Estimating Sums

∫∞
n+1 f (x)dx ≤ Rn ≤

∫∞
n f (x)dx

sn +
∫∞

n+1 f (x)dx ≤ sn + Rn ≤ sn +
∫∞

n f (x)dx
sn +

∫∞
n+1 f (x)dx ≤ s ≤ sn +

∫∞
n f (x)dx

Add sn to both sides of both inequalities.
This gives upper and lower bounds for s.
This is a better approximation than just using sn.
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The Comparison Test

The Comparison Tests

In the Comparison Tests, the idea is to compare a given series
with another series that is known to be convergent or divergent.
Consider the series

∑∞
n=1

1
2n+1 .

This reminds us of the series
∑∞

n=1
1
2n .∑∞

n=1
1
2n is a geometric series with a = 1

2 and r = 1
2 .

Therefore
∑∞

n=1
1
2n is convergent.

1
2i + 1

<
1
2i

n∑
i=1

1
2i + 1

<

n∑
i=1

1
2i <

∞∑
i=1

1
2i = 1

The partial sums of
∑∞

n=1
1

2n+1 are increasing and are bounded
above by 1.
Therefore

∑∞
n=1

1
2n+1 is convergent.
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The Comparison Test

Theorem (The Comparison Test)
Suppose that

∑
an and

∑
bn are series with positive terms.

1 If
∑

bn is convergent and an ≤ bn for all n, then
∑

an is also
convergent.

2 If
∑

bn is divergent and an ≥ bn for all n, then
∑

an is also
divergent.

When we use the Comparison Test, we need to have some series∑
bn that we know in order to make a comparison. Usually

∑
bn is

one of
A p-series (

∑ 1
np converges if p > 1 and diverges if p ≤ 1)

A geometric series (
∑

arn−1 converges if |r | < 1 and diverges if
|r | ≥ 1)
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The Comparison Test

Example (Example 1, p. 742)

Determine if
∑∞

n=1
5

2n2+4n+3 converges or diverges.

As n→∞, the dominant term in the denominator is 2n2, so
compare with 5

2n2 .
5

2n2 + 4n + 3
<

5
2n2

∞∑
n=1

5
2n2 =

5
2

∞∑
n=1

1
n2

This is a constant times a p-series with p = 2 > 1.
Therefore

∑∞
n=1

5
2n2 is convergent.

Therefore
∑∞

n=1
5

2n2+4n+3 is convergent by the Comparison Test.
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The Comparison Test

Example (Example 2, p. 742)

Determine if
∑∞

n=1
ln n
n converges or diverges.

We could use the Integral Test to find this.
The Comparison Test is even easier.

ln n
n

>
1
n

if n ≥ 3

∑∞
n=1

1
n is a p-series with p = 1.

Therefore
∑∞

n=1
1
n is divergent.

Therefore
∑∞

n=1
ln n
n is divergent by the Comparison Test.
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The Comparison Test

In order to use the comparison test to see if
∑

an is convergent or
divergent, we need the terms an to be

1 smaller than the terms of a convergent series, or
2 bigger than the terms of a divergent series.

If the terms an are
1 bigger than the terms of a convergent series, or
2 smaller than the terms of a divergent series,

then the Comparison Test gives no information.
Consider the series

∑∞
n=1

1
2n−1 .
1

2n − 1
>

1
2n

The Comparison Test tells us nothing here.
Nevertheless, we think

∑ 1
2n−1 should converge, because it’s so

close to
∑ 1

2n .
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The Comparison Test

Theorem (The Limit Comparison Test)
Suppose that

∑
an and

∑
bn are series with positive terms. If

lim
n→∞

an

bn
= c

where c is a finite number and c > 0, then either both series converge
or both series diverge.

The main thing to check is that c is finite and non-zero.
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The Comparison Test

Example (Example 3, p. 743)

Test the series
∑∞

n=1
1

2n−1 for convergence or divergence.
Use the Limit Comparison Test with

an =
1

2n − 1
, bn =

1
2n

lim
n→∞

an

bn
= lim

n→∞

1
2n−1

1
2n

= lim
n→∞

2n

2n − 1
·

1
2n

1
2n

= lim
n→∞

1
1− 1

2n

= 1 > 0

∑ 1
2n is a convergent geometric series.

By the Limit Comparison Test
∑ 1

2n−1 is convergent too.
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The Comparison Test

Example (Example 4, p. 743)

Test the series
∑∞

n=1
2n2+3n√

5+n5 for convergence or divergence.

The dominant part of the numerator is 2n2 and the dominant part
of the denominator is

√
n5 = n5/2.

an =
2n2 + 3n√

5 + n5
, bn =

2n2

n5/2 =
2

n1/2

lim
n→∞

an

bn
= lim

n→∞

2n2 + 3n√
5 + n5

· n1/2

2
= lim

n→∞

2n5/2 + 3n3/2

2
√

5 + n5

1
n5/2

1
n5/2

= lim
n→∞

2 + 3
n

2
√

5
n5 + 1

= 1 > 0

∑ 2
n1/2 is a constant multiple of a p-series with p = 1

2 .

Therefore
∑ 2

n1/2 is divergent, and so is
∑ 2n2+3n√

5+n5 .
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