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Power Series

Power Series

Definition (Power Series)
A power series is a series of the form

∞∑
n=0

cnxn = c0 + c1x + c2x2 + c3x3 + · · ·

where x is a variable and the cn’s are constants called the coefficients
of the series.

For each fixed x , this is a series of constants which either
converges or diverges.
A power series might converge for some values of x and diverge
for others.
The sum of the series is a function

f (x) = c0 + c1x + c2x2 + c3x3 + · · ·
whose domain is the set of all x for which the series converges.
f resembles a polynomial, except it has infinitely many terms.
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Power Series

Definition (Power Series Centered at a)
A series of the form

∞∑
n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 + · · ·

is called a power series centered at a or a power series about a or a
power series in (x − a).

We use the convention that (x − a)0 = 1, even if x = a.
If x = a, then all terms are 0 for n ≥ 1, so the series always
converges when x = a.
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Power Series

Example
For what values of x is the series

∑∞
n=0 n!xn convergent?

Use the Ratio Test.
The nth term is an = n!xn.
If x 6= 0, then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)!xn+1

n!xn

∣∣∣∣
= lim

n→∞
(n + 1)|x |

= ∞

Therefore by the Ratio Test the series diverges for all x 6= 0.
Therefore the series only converges for x = 0.
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Power Series

Example

For what values of x is the series
∑∞

n=1
(x−3)n

n convergent?
Use the Ratio Test.
The nth term is an = (x−3)n

n .

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(x − 3)n+1

n + 1
· n
(x − 3)n

∣∣∣∣
= lim

n→∞
|x − 3| n

n + 1
·

1
n
1
n

= lim
n→∞

|x − 3| 1
1 + 1

n

= |x − 3|

Therefore by the Ratio Test the series converges absolutely if
|x − 3| < 1 and diverges if |x − 3| > 1.

|x − 3| < 1 ⇔ −1 < x − 3 < 1 ⇔ 2 < x < 4
If we put x = 4 in the series, we get

∑ 1
n , which is divergent.

If we put x = 2 in the series, we get
∑ (−1)n

n , which is convergent.
The series converges if 2 ≤ x < 4 and diverges otherwise.

Math 141 Lecture 14 Spring 2015



Power Series

Example
Find the domain of the Bessel function of order 0 defined by

J0(x) =
∞∑

n=0

(−1)nx2n

22n(n!)2

The nth term is an = (−1)nx2n

22n(n!)2 .

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1x2(n+1)

22(n+1)[(n + 1)!]2
· 22n(n!)2

(−1)nx2n

∣∣∣∣∣
= lim

n→∞

x2

4(n + 1)2 = 0 < 1

Therefore by the Ratio Test the series converges for all x .
Therefore the domain of the function is (−∞,∞), or R.
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Power Series

Theorem (Convergence of Power Series)

For a power series
∑

cn(x − a)n, there are three possibilities:

1 The series converges only when x = a.
2 The series converges for all x.
3 There is a positive number R such that the series converges if
|x − a| < R and diverges if |x − a| > R.

Definition (Radius of Convergence)
The number R in case three of the theorem is called the radius of
convergence of the power series.

1 In the first case, we say R = 0.
2 In the second case, we say R =∞.
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Power Series

Theorem (Convergence of Power Series)

For a power series
∑

cn(x − a)n, there are three possibilities:

1 The series converges only when x = a.
2 The series converges for all x.
3 There is a positive number R such that the series converges if
|x − a| < R and diverges if |x − a| > R.

Definition (Interval of Convergence)
The interval of convergence of a power series is the interval consisting
of all numbers x for which the series converges.

1 In the first case, the interval contains the single point a.
2 In the second case, the interval is (−∞,∞).
3 In the third case, the inequality |x − a| < R can be rewritten

a− R < x < a + R.
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Power Series

What happens at the endpoints of the interval a− R < x < a + R?
Anything can happen.
The series might converge at one endpoint.
The series might converge at both endpoints.
The series might diverge at both endpoints.
Thus, in the third case, there are four possibilities for the interval
of convergence.

1 [a− R,a + R)
2 (a− R,a + R]
3 [a− R,a + R]
4 (a− R,a + R)

In general, the Ratio Test (or Root Test) should be used to find the
radius of convergence R.
The Ratio and Root Tests will always fail when x is an endpoint
a− R or a + R, so the endpoints must be checked with another
test.
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Power Series

Example
Find the radius of convergence and interval of convergence of the
series

∑∞
n=0

(−3)nxn
√

n+1
.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−3)n+1xn+1
√

n + 2
·
√

n + 1
(−3)nxn

∣∣∣∣
= lim

n→∞
3|x |

√
n + 1
n + 2

·
1√
n

1√
n

= lim
n→∞

3|x |

√
1 + 1

n

1 + 2
n

= 3|x |

Ratio Test: it converges if 3|x | < 1 and diverges if 3|x | > 1.
So it converges if |x | < 1

3 and diverges if |x | > 1
3 .

Therefore R = 1
3 .

If we use x = 1
3 , we get

∑∞
n=0

(−1)n
√

n+1
, which is convergent.

If we use x = −1
3 , we get

∑∞
n=0

1√
n+1

, which is divergent.

The interval of convergence is (−1
3 ,

1
3 ].
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Power Series as Functions

Representations of Functions as Power Series

∞∑
n=0

xn = 1 + x + x2 + x3 + · · ·

This is a geometric series with a = 1 and r = x .
It is convergent if |x | < 1 and divergent otherwise.
If it converges, the sum is 1

1−x .
The thing that is new in this section is the we now regard the
series

∑∞
n=0 xn as expressing the function f (x) = 1

1−x .
This only works if −1 < x < 1.
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Power Series as Functions

Example

Write 1
1+x2 as a power series and find the interval of convergence.

1
1 + x2 =

1
1− (−x2)

1
1− x

=
∞∑

n=0

xn = 1 + x + x2 + x3 + · · ·

1
1− (− x2)

=
∞∑

n=0

(− x2)n = 1 + (−x2) + (−x2)2 + (−x2)3 + · · ·

= 1 − x2 + x4 − x6 + · · ·

Another way to write the series is
∑∞

n=0(−x2)n =
∑∞

n=0(−1)nx2n.
This converges if | − x2| < 1, that is, if x2 < 1, or |x | < 1.
Therefore the interval of convergence is (−1,1).
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Power Series as Functions

Example

Find a power series representation for 1
x+2 .

1
2 + x

=
1

2
(
1 + x

2

) =
1
2
· 1[

1−
(
− x

2

)]
=

1
2

∞∑
n=0

(
− x

2

)n
=

∞∑
n=0

(−1)n

2n+1 xn

=
1
2
− x

4
+

x2

8
− x3

16
+ · · ·

Interval of convergence: ∣∣∣−x
2

∣∣∣ < 1

|x | < 2
Therefore the interval of convergence is (−2,2).

Math 141 Lecture 14 Spring 2015



Power Series as Functions

Example

Find a power series representation for x3

x+2 .
x3

x + 2
= x3 · 1

x + 2

= x3
∞∑

n=0

(−1)n

2n+1 xn

=
∞∑

n=0

(−1)n

2n+1 xn+3

=
x3

2
− x4

4
+

x5

8
− x6

16
+ · · ·

Another way to write this is x3

x+2 =
∑∞

n=3
(−1)n−1

2n−2 xn.
The interval of convergence is again (−2,2).
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Power Series as Functions Differentiation and Integration of Power Series

Differentiation and Integration of Power Series

Theorem (Differentiation and Integration of Power Series)
If a power series

∑
cn(x − a)n has radius of convergence R > 0, then

the function f defined by

f (x) = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 + · · · =
∞∑

n=0

cn(x − a)n

is differentiable (and therefore continuous) on the interval
(a− R,a + R) and

1 f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + · · · =
∞∑

n=1

ncn(x − a)n−1.

2

∫
f (x) dx = C + c0(x − a) + c1

(x − a)2

2
+ c2

(x − a)3

3
+ · · ·

= C +
∑∞

n=0 cn
(x−a)n+1

n+1 .
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Power Series as Functions Differentiation and Integration of Power Series

This is called term-by-term differentiation and integration.
Another way of saying it is

d
dx

[ ∞∑
n=0

cn(x − a)n

]
=

∞∑
n=0

d
dx

[cn(x − a)n]

∫ [ ∞∑
n=0

cn(x − a)n

]
dx =

∞∑
n=0

∫
[cn(x − a)n]dx

We can treat power series like polynomials with infinitely many
terms.
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Power Series as Functions Differentiation and Integration of Power Series

Example
Find the derivative of the Bessel function

J0(x) =
∞∑

n=0

(−1)nx2n

22n(n!)2

J ′0(x) =
∞∑

n=0

d
dx

(
(−1)nx2n

22n(n!)2

)

=
∞∑

n=0

(−1)n2nx2n−1

22n(n!)2

J0(x) is defined everywhere.
Therefore its derivative J ′0(x) is also defined everywhere.
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Power Series as Functions Differentiation and Integration of Power Series

Example
Find a power series for ln(1− x) and state its radius of convergence.

d
dx

ln(1− x) = − 1
1− x

Therefore
ln(1− x) = −

∫
1

1− x
dx = −

∫
(1 + x + x2 + x3 + · · · )dx

= −
(

x +
x2

2
+

x3

3
+

x4

4
+ · · ·

)
+ C = C −

∞∑
n=1

1
n

xn

The radius is the same as for the original series: R = 1.
To find C, plug in x = 0: 0 = C.

Therefore

ln(1− x) = −
∞∑

n=1

1
n

xn
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Power Series as Functions Differentiation and Integration of Power Series

Example
Find a power series for arctan x and state its radius of convergence.

d
dx

arctan x =
1

1 + x2

Therefore
arctan x =

∫
1

1 + x2 dx =

∫
(1− x2 + x4 − x6 + · · · )dx

=

(
x − x3

3
+

x5

5
− x7

7
+ · · ·

)
+ C

= C +
∞∑

n=0

(−1)n x2n+1

2n + 1

The radius is the same as for the original series: R = 1.
To find C, plug in x = 0: 0 = C.

arctan x =
∞∑

n=0

(−1)n x2n+1

2n + 1
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Taylor and Maclaurin Series

(12.10) Taylor and Maclaurin Series

Let f be a function that can be represented by a power series:
f (x) = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 + · · ·
f (a) = c0.
f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + 4c4(x − a)3 + · · ·
f ′(a) = c1.
f ′′(x) = 2c2 + 2 · 3c3(x − a) + 3 · 4c4(x − a)2 + 4 · 5c5(x − a)3 + · · ·
f ′′(a) = 2c2.
f ′′′(x) = 2 · 3c3 + 2 · 3 · 4c4(x − a) + 3 · 4 · 5c5(x − a)2 + · · ·
f ′′′(a) = 2 · 3c3 = 3!c3.
f (n)(a) = n!cn.

Therefore cn = f (n)(a)
n! .
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Taylor and Maclaurin Series

Theorem (Coefficients of a Power Series)
If f has a power series representation at a, that is, if

f (x) =
∞∑

n=0

cn(x − a)n, |x − a| < R,

then its coefficients are given by the formula

cn =
f (n)(a)

n!
.

Here is what we get if we plug these coefficients into the power series:

f (x) =
∞∑

n=0

f (n)(a)
n!

(x − a)n

= f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 +
f ′′′(a)

3!
(x − a)3 + · · ·

Definition (Taylor Series)
This series is called the Taylor series of f .
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Taylor and Maclaurin Series

The case when a = 0 is special enough to have its own name:

Definition (Maclaurin Series)
The Maclaurin series of f is the Taylor series of f centered at a = 0. In
other words, it is the series

f (x) =
∞∑

n=0

f (n)(0)
n!

xn = f (0) +
f ′(0)

1!
x +

f ′′(0)
2!

x2 +
f ′′′(0)

3!
x3 + · · ·
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Taylor and Maclaurin Series

Example
Find the Maclaurin series of f (x) = ex and its radius of convergence.

f (n)(x) = ex .
f (n)(0) = e0 = 1.
Therefore the Maclaurin series is

∞∑
n=0

f (n)(0)
n!

xn =
∞∑

n=0

1
n!

xn = 1 +
x
1!

+
x2

2!
+

x3

3!
+ · · ·

To find the radius of convergence, let an = xn

n! .

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n + 1)!
· n!

xn

∣∣∣∣ = lim
n→∞

|x |
n + 1

= 0 < 1

Therefore by the Ratio Test the series converges for all x .
Therefore R =∞.

Math 141 Lecture 14 Spring 2015



Taylor and Maclaurin Series

Example
Find the sum of the series

∞∑
n=0

(−1)n 1
2nn!

= 1− 1
2 · 1!

+
1

4 · 2!
− 1

8 · 3!
+ · · ·

ex =
∞∑

n=0

1
n!

xn

∞∑
n=0

(−1)n 1
2nn!

=
∞∑

n=0

1
n!

(
− 1

2

)
n

= e−1/2

=
1√
e
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Taylor and Maclaurin Series

Example
Find the Taylor series for f (x) = ex at a = 3.

f (n)(x) = ex .
f (n)(3) = e3.
Therefore the Taylor series is

∞∑
n=0

f (n)(3)
n!

(x − 3)n =
∞∑

n=0

e3

n!
(x − 3)n

To find the radius of convergence, let an = e3

n! (x − 3)n.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣e3(x − 3)n+1

(n + 1)!
· n!

e3(x − 3)n

∣∣∣∣ = lim
n→∞

|x − 3|
n + 1

= 0

Therefore by the Ratio Test the series converges for all x .
Therefore R =∞.
Just like the Maclaurin series, this series also represents ex .
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Taylor and Maclaurin Series

Example
Find the Taylor series for f (x) = ex at a = 3.

ex = ex−3+3 = e3ex−3 Recall that ey =
∞∑

n=0

yn

n!

Set y = x − 3

= e3
∞∑

n=0

(x − 3)n

n!

=
∞∑

n=0

e3

n!
(x − 3)n

The radius of convergence was already computed to be R =∞.

Math 141 Lecture 14 Spring 2015



Taylor and Maclaurin Series

Example
Find the Maclaurin series of f (x) = sin x and its radius of convergence.

f (x) = sin x f (0) = 0
f ′(x) = cos x f ′(0) = 1
f ′′(x) = − sin x f ′′(0) = 0
f ′′′(x) = − cos x f ′′′(0) = − 1

f (4)(x) = sin x f (4)(0) = 0
The Maclaurin series is

∞∑
n=0

f (n)(0)
n!

xn = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!

Use the Ratio Test to find R.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+1x2n+3

(2n + 3)!
· (2n + 1)!
(−1)nx2n+1

∣∣∣∣
= lim

n→∞

x2

(2n + 2)(2n + 3)
= 0

Therefore R =∞. It can be shown that this series sums to sin x .
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Taylor and Maclaurin Series

Example
Find the sum of the series

∞∑
n=0

(−1)n π2n+1

22n+1(2n + 1)!
=
π

2
− π3

8 · 3!
+

π5

32 · 5!
− π7

128 · 7!
+ · · ·

sin x =
∞∑

n=0

(−1)n 1
(2n + 1)!

x2n+1

∞∑
n=0

(−1)n π2n+1

22n+1(2n + 1)!
=

∞∑
n=0

(−1)n 1
(2n + 1)!

(π
2

)
2n+1

= sin
π

2
= 1
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Taylor and Maclaurin Series

Example (Example 5, p. 776)
Find the Maclaurin series for cos x .

cos x =
d

dx
( sin x) =

d
dx

( ∞∑
n=0

(−1)n x2n+1

(2n + 1)!

)

=
∞∑

n=0

d
dx

(
(−1)n x2n+1

(2n + 1)!

)

=
∞∑

n=0

(−1)n (2n + 1)x2n

(2n + 1)!

=
∞∑

n=0

(−1)n x2n

(2n)!

= 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

The series for sin x converges everywhere, so the series for cos x does
too.
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Taylor and Maclaurin Series

Example (Example 6, p. 776)
Find the Maclaurin series for x cos x .

x cos x = x
∞∑

n=0

(−1)n x2n

(2n)!

=
∞∑

n=0

(−1)n x2n+1

(2n)!

= x − x3

2!
+

x5

4!
− x7

6!
+ · · ·
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Taylor and Maclaurin Series

Here is a table of some important Maclaurin series we have learned:

Function Series R
1

1− x
=

∞∑
n=0

xn = 1 + x + x2 + x3 + · · · 1

arctan x =
∞∑

n=0

(−1)n x2n+1

2n + 1
= x − x3

3
+

x5

5
− x7

7
+ · · · 1

ex =
∞∑

n=0

xn

n!
= 1 +

x
1!

+
x2

2!
+

x3

3!
+ · · · ∞

sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
= x − x3

3!
+

x5

5!
− x7

7!
+ · · · ∞

cos x =
∞∑

n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ · · · ∞
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Taylor and Maclaurin Series

Example (Example 11, p. 780)

Use a power series to find lim
x→0

ex − 1− x
x2 .

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

ex − 1− x =
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

ex − 1− x
x2 =

1
2!

+
x
3!

+
x2

4!
+ · · ·

lim
x→0

ex − 1− x
x2 = lim

x→0

(
1
2
+

x
3!

+
x2

4!
+ · · ·

)
=

1
2
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Taylor and Maclaurin Series

Example

Use a power series to find lim
x→0

x − sin x
x3 .

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

− sin x = − x +
x3

3!
− x5

5!
+

x7

7!
− · · ·

x − sin x =
x3

3!
− x5

5!
+

x7

7!
− · · ·

x − sin x
x3 =

1
3!
− x2

5!
+

x4

7!
− · · ·

lim
x→0

x − sin x
x3 = lim

x→0

(
1
6
− x2

5!
+

x4

7!
− · · ·

)
=

1
6
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