Freecalc

Homework on Lecture 14 Quiz date will be announced in class

1. Determine the interval of convergence for the following power series.

(a)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{3\sqrt{n+1}}.$$

(b)
$$\sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}.$$

(c)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{2n+1}$$
.

(d)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

(e)
$$\sum_{n=0}^{\infty} (n+1)x^n$$
 (f) $\sum_{n=0}^{\infty} \frac{x^n}{n}$ (f) $\sum_{n=0}^{\infty} \frac{x^n}{n}$

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 (2) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$

(h)
$$\sum_{n=1}^{\infty} {1 \choose 2} x^n$$
, where we recall that the binomial coefficient ${q \choose n}$ stands for $\frac{q(q-1)\dots(q-n+1)}{n!}$.

Solution. 1.a. We apply the Ratio Test to get that $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=|x-2|$. Therefore the power series converges at least on the interval (1,3). When x=3, the series becomes $\sum_{n=1}^{\infty}\frac{1}{3\sqrt{n+1}}$, which diverges - this can be seen, for example, by comparing to the p-series $\frac{1}{\sqrt{n}}$. When x=1, the series becomes $\sum_{n=1}^{\infty}\frac{(-1)^n}{3\sqrt{n+1}}$, which converges by the Alternating Series Test. Our final answer $x\in[1,3)$.

2. Determine the interval of convergence for the following power series. The answer key has not been proofread, use with caution.

(a)
$$\sum_{n=1}^{\infty} \frac{10^n (x-1)^n}{n^3}$$

(b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x+1)^n}{2n+1}$$

3. (a) Find the Maclaurin series for xe^{x^3} .

$$\frac{1}{1} \sum_{n=0}^{\infty} \frac{3n+1}{n!}$$

(b) Use your series to find the Maclaurin series of $\int xe^{x^3} dx$.

answer:
$$\begin{array}{c} \sum_{n=0}^{\infty} \frac{x^3n+2}{(3n+2)n!} \\ \text{once the integral on sin't be integral durith elementary tunctions.} \end{array}$$

4. Find the Maclaurin series of the function. The answer key has not been proofread, use with caution.

(a)
$$\frac{1}{2x+3}$$
.

ariswei:
$$\frac{1}{3}\left(1-\frac{2}{3}+\frac{2}{3}\right)^2-\frac{2}{3}\left(\frac{x}{2}\right)^3+\cdots\right) = 0$$

(b)
$$\frac{1}{(1-x)^2}$$
.

$$n_{x(1+n)} = \sum_{0=n}^{\infty} = \cdots + x_{k+1} + x_{k+1} = \cdots = 0$$
 and $n_{x(1+n)} = n_{x(1+n)} = n_{x(1+n)} = 0$

$$(c) \ \frac{1}{(1-x)^3}.$$

$$n_{1}\frac{(2+n)(1+n)}{2} \overset{\infty}{\underset{0=n}{\subseteq}} = \left(\ldots + \frac{2-n}{x}(1-n)n + \cdots + x + x + x + x + 2 \right) \frac{1}{2} \quad \text{iswere}$$

(d)
$$xe^{-2x}$$
.

answer:
$$\sum_{n=0}^{\infty} (-1)^n 2^n x^{n+1} = \sum_{n=1}^{\infty} (-1)^{n-1} 2^{n-1} x^n$$

5. Compute the Maclaurin series of the function. Please post on piazza if you discover errors in the answer key.

(a)
$$e^x$$
.

$$\frac{!^n}{n^n} \sum_{0=n}^{\infty} : \text{ignwere} \qquad \text{(a)} \quad \cos x.$$

(b)
$$e^{2x}$$
.

$$\sum_{u^x u^z} \sum_{u^x u^z}^{0=u} = \sum_{x \in \mathcal{F}} \sin(2x).$$
 (h) $\sin(2x)$.

(c)
$$e^{x^2}$$
.

$$\frac{1+nx_{x}1+nx_{2}}{!(1+nx)} n(1-) \sum_{0=n}^{\infty} = (xx) \text{ mis } :: \text{single}$$

answet: $\cos x = \sum_{n=0}^{\infty} (1-) \sum_{n=0}^{\infty} = x \cos$ sos

answer:
$$e^{2x} = \sum_{n=0}^{\infty} \frac{2^n}{n!}$$

(i)
$$\cos(2x)$$
.

(d)
$$e^{-3x^2}$$

$$\frac{\mathrm{i}(uz)}{uz^x} \, uzz_u(\mathrm{I} -) \sum_{\infty}^{0=u} = (xz)\mathrm{so} \quad \text{.i.emsier}$$

answer:
$$e^{-3x^2} = \sum_{n=0}^{\infty} \frac{1}{n^3 n^3 x^{2n}}$$

(j)
$$\cos^2(x)$$
.

(e)
$$x^2 e^{2x}$$
.

answer:
$$\cos^2 x = \frac{1}{2} + \sum_{n=0}^{\infty} (-1)^n 2^{2n-1} \frac{x^{2n}}{(2n)!}$$

$$\frac{u}{z + u^x u^z} \int_{-\infty}^{0 = u} du = \int_{0}^{\infty} d$$

(f)
$$\sin x$$
.

answer:
$$x \sin x = \sum_{n=0}^{\infty} (1-1)^n \sum_{n=0}^{\infty} x^{n+2}$$

6. Compute the Maclaurin series of the function. Please post on piazza if you see errors in the answer key.

(a)
$$\frac{1}{3-x}$$
.

(f)
$$\frac{\frac{1}{2}}{x-1} - \frac{\frac{1}{2}}{x+1}$$
.

(b)
$$\frac{1}{3-2x}$$
.

(f)
$$\frac{\frac{1}{2}}{x-1} - \frac{\frac{1}{2}}{x+1}$$
.
(g) $\frac{1}{(1-x)^2}$.

(b)
$$\frac{1}{3-2x}$$

$$n_{\mathbf{X}}(\mathtt{I}+n) \displaystyle \prod_{0=n}^{\infty}$$
 :Therefore

(c)
$$\frac{1}{1+x^2}$$
.

$$u^x \frac{1+u^{\mathcal{E}}}{u^{\mathcal{I}}} \overset{0=u}{\underset{\infty}{\overset{\text{i.jansure}}{\sum}}} :_{\text{i.jansure}}$$
 (h) $\frac{1}{(1-x)^3}$.

answer:
$$\sum_{0=n}^{\infty} \sum_{n=n}^{\infty} (-1)^n \sum_{n=0}^{\infty} (-1)^n \sum_{n=0}^{\infty$$

$$n_{x} \binom{2+n}{2} \sum_{0=n}^{\infty} = n_{x} (2+n) (1+n) \sum_{0=n}^{\infty} \frac{1}{2}$$
 :13 substituting the substitution of the substitution o

(d)
$$\frac{1}{1-2x^2}$$
.

$$u_{z}^{x} u^{z} \sum_{i=0}^{0=u} \sin(i) \ln(1-x).$$

(i) $\ln(1+x)$.

answer:
$$\sum_{n=1}^{\infty} \frac{1}{1+n} (1-1) \prod_{n=1}^{\infty}$$

(e)
$$\frac{1}{x^2-1}$$
.

(k)
$$\ln(1-3x)$$
.

$$\frac{n}{n} \sum_{1=n}^{\infty} - :$$

answer:
$$-\sum_{n=0}^{\infty} x^{2n}$$

answer:
$$\sum_{n=0}^{\infty} \frac{3^n x^n}{n^n}$$

Solution. 6.m. We solve this problem by using algebraic manipulations and substitutions to reduce it to the already studied power series expansion of $\ln(1-y) = -\sum_{n=1}^{\infty} \frac{y^n}{n}$.

$$\ln \left(3 - 2x^2\right) = \ln \left(3\left(1 - \frac{2}{3}x^2\right)\right)$$

$$= \ln 3 + \ln\left(1 - \frac{2}{3}x^2\right) \qquad \left| \text{ Set } y = \frac{2}{3}x^2\right|$$

$$= \ln 3 + \ln(1 - y)$$

$$= \ln 3 - \sum_{n=1}^{\infty} \frac{y^n}{n} \qquad \left| \text{ Substitute back } y = \frac{2}{3}x^2\right|$$

$$= \ln 3 - \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n \frac{x^{2n}}{n} \qquad .$$

7. Compute the Maclaurin series of

$$\left(\frac{1}{(1-x)^k}\right) \quad ,$$

where $n \geq 1$ is an integer.

Solution. 7 We have that

$$\frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{(1-x)'}{(1-x)^2} = \frac{1}{(1-x)^2}$$

$$\frac{d^2}{dx^2}\left(\frac{1}{1-x}\right) = \frac{d}{dx}\left(\frac{1}{(1-x)^2}\right) = -2\frac{(1-x)'}{(1-x)^3} = \frac{2}{(1-x)^3}$$

$$\frac{d^3}{dx^3}\left(\frac{1}{1-x}\right) = \frac{d}{dx}\left(\frac{2}{(1-x)^3}\right) = 2(-3)\frac{(1-x)'}{(1-x)^4} = \frac{2\cdot 3}{(1-x)^4}$$

$$\vdots$$

$$\frac{d^{k-2}}{dx^{k-2}}\left(\frac{1}{1-x}\right) = \frac{d}{dx}\left(\frac{(k-2)!}{(1-x)^{k-1}}\right) = \frac{(k-2)!}{(1-x)^k}$$

$$\vdots$$

We can now compute Maclaurin series as follows:

$$\begin{split} \operatorname{Mc}\left(\frac{1}{(1-x)^k}\right) &= \operatorname{Mc}\left(\frac{1}{(k-1)!} \frac{\operatorname{d}^{k-1}}{\operatorname{d}x^{k-1}} \left(\frac{1}{(1-x)}\right)\right) \\ &= \frac{1}{(k-1)!} \frac{\operatorname{d}^{k-1}}{\operatorname{d}x^{k-1}} \left(\operatorname{Mc}\left(\frac{1}{1-x}\right)\right) \\ &= \frac{1}{(k-1)!} \frac{\operatorname{d}^{k-1}}{\operatorname{d}x^{k-1}} \left(\sum_{n=0}^{\infty} x^n\right) \\ &= \frac{1}{(k-1)!} \left(\sum_{n=0}^{\infty} n(n-1) \dots (n-k+2) x^{n-k+1}\right) & \operatorname{Recall}\left(\frac{n}{k}\right) = \frac{n(n-1) \dots (n-k+1)}{k!} \\ &= \sum_{n=0}^{\infty} \binom{n}{k-1} x^{n-k+1} & \operatorname{Set}\ n-k+1 = m \\ &= \sum_{m=-k+1}^{\infty} \binom{m+k-1}{k-1} x^m & \operatorname{first}\ k-2 \ \operatorname{summands}\ \operatorname{are}\ \operatorname{zero} \\ &= \sum_{n=0}^{\infty} \binom{m+k-1}{k-1} x^m \end{split}$$

8. Compute the Maclaurin series of

$$(1+x)^q$$
,

where $q \in \mathbb{R}$ is an arbitrary real number.

Solution. 8 Since q does not have to be an integer, we cannot directly relate its power series to the power series of $\frac{1}{1+x}$ or its derivatives. We therefore compute the Maclaurin series directly using their definition.

$$\begin{array}{rcl} \frac{\mathrm{d}}{\mathrm{d}x} \left((1+x)^q \right) & = & q(1+x)^{q-1} \\ \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left((1+x)^q \right) & = & q(q-1)(1+x)^{q-2} \\ & & \vdots \\ \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left((1+x)^q \right) & = & q(q-1)(q-2)\dots(q-n+1)(1+x)^{q-n} \end{array} \; .$$

Therefore $\frac{d^n}{dx^n} ((1+x)^q)_{|x=0} = q(q-1)(q-2)\dots(q-n+1)(1+0)^{q-n} = q(q-1)(q-2)\dots(q-n+1)$. Therefore

$$\operatorname{Mc}((1+x)^{q}) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n}}{dx^{n}} ((1+x)^{q})_{|x=0} x^{n}$$

$$= \sum_{n=0}^{\infty} \frac{q(q-1)(q-2) \dots (q-n+1)}{n!} x^{n} = \sum_{n=0}^{\infty} {q \choose n} x^{n} .$$
(1)

For the last equality we recall the definition of binomial coefficient $\binom{q}{n} = \frac{q(q-1)\dots(q-n+1)}{n!}$ and that it allows for q to be an arbitrary complex number . The above formula is a generalization of the Newton binomial formula.

9. Compute the Maclaurin series of the function.

(a)
$$\sqrt{1+x}$$
.

(b) $\frac{1}{\sqrt{1+x}}$.

(c) $\frac{1}{\sqrt{1-x^2}}$.

(d) $\arcsin x$.

$$u^x \left(\frac{u}{\xi}\right)^{0=u} \underset{\mathbb{Z}}{\overset{0=u}{\lesssim}} :\text{Jansure}$$

$$u^x \left(\frac{z}{\xi}\right)^{0=u} \underset{\mathbb{Z}}{\overset{1}{\lesssim}} :\text{Jansure}} :\text{Jansure}$$

Solution. 9.a This problem follows directly from the formula $(1+x)^q = \sum_{n=0}^{\infty} {q \choose n} x^n$.

$$\operatorname{Mc}\left(\sqrt{1+x}\right) = \operatorname{Mc}\left((1+x)^{\frac{1}{2}}\right) = \sum_{n=0}^{\infty} {1 \choose n} x^n$$

Solution. 9.b This problem can be solved by computing the derivative of the preceding problem. However, it is easier to simply apply the generalized Newton Binomial formula.

$$\operatorname{Mc}\left((1+x)^{-\frac{1}{2}}\right) = \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} x^n$$

Solution. 9.c This problem is solved by replacing x with $-x^2$ in Problem 9.b. To avoid the possible confusion, we carry out the substitution by introducing an intermediate variable y.

$$\operatorname{Mc}\left(\left(1-x^{2}\right)^{-\frac{1}{2}}\right) = \operatorname{Mc}\left(\left(1+y\right)^{-\frac{1}{2}}\right) \qquad \left| \begin{array}{l} \operatorname{Set}\ y=-x^{2} \\ \\ = \sum\limits_{n=0}^{\infty} {\left(-\frac{1}{2}\atop n\right)} y^{n} \\ \\ = \sum\limits_{n=0}^{\infty} (-1)^{n} {\left(-\frac{1}{2}\atop n\right)} x^{2n} \end{array} \right|$$
Substitute back $y=-x^{2}$

Solution. 9.d We have that $\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$, and the Maclaurin series of $\frac{1}{\sqrt{1-x^2}}$ were computed in Problem 9.c. The power series of arcsin x are therefore obtained via integration.

$$\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{Mc}(\arcsin x) = \operatorname{Mc}\left(\frac{\mathrm{d}}{\mathrm{d}x}\left(\arcsin x\right)\right)$$

$$= \operatorname{Mc}\left(\frac{1}{\sqrt{1-x^2}}\right) \quad \text{use Problem } 9.c$$

$$= \sum_{n=0}^{\infty} (-1)^n \binom{-\frac{1}{2}}{n} x^{2n}$$

$$\operatorname{Mc}\left(\arcsin x\right) = \int \left(\sum_{n=0}^{\infty} (-1)^n \binom{-\frac{1}{2}}{n} x^{2n}\right) \mathrm{d}x$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \binom{-\frac{1}{2}}{n} \int x^{2n} \mathrm{d}x$$

$$= C + \sum_{n=0}^{\infty} (-1)^n \binom{-\frac{1}{2}}{n} \frac{x^{2n+1}}{2n+1} \qquad C = 0 \text{ since } \arcsin 0 = 0$$

$$= \sum_{n=0}^{\infty} (-1)^n \binom{-\frac{1}{2}}{n} \frac{x^{2n+1}}{2n+1} \quad .$$

10. Find the Taylor series of the function at the indicated point.

(a)
$$\frac{1}{x^2}$$
 at $a = -1$.

(b)
$$\ln (\sqrt{x^2 - 2x + 2})$$
 at $a = 1$.

answer:
$$\sum_{t=0}^{\infty} \frac{1+n(1-t)}{t} = n$$

(c) Write the Taylor series of the function $\ln x$ around a = 2.

answer:
$$\ln 2 + \sum_{n=1}^{\infty} \frac{2n}{1-n+1} (x-2)^n$$

Solution. 10.b

$$\ln\left(\sqrt{x^2 - 2x + 2}\right) = \frac{1}{2}\ln\left((x - 1)^2 + 1\right) \quad \text{use } \ln(1 + y) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{y^n}{n}, |y| < 1$$

$$= \frac{1}{2}\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\left((x - 1)^2\right)^n}{n}$$

$$= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x - 1)^{2n}}{2n} .$$

Although the problem does not ask us to do this, we will determine the interval of convergence of the series for exercise. If we use the fact that $\ln(1+y) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{y^n}{n}$ holds for $-1 < y \le 1$, it follows immediately that the above equality holds for $0 < (x-1)^2 \le 1$, which holds for $x \in [0,2]$. Let us however compute the interval of convergence without using the aforementioned fact.

Let a_n be the n^{th} term of our series, i.e., let

$$a_n = (-1)^{n+1} \frac{(x-1)^{2n}}{2n}$$

We use the ratio test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+2} (x-1)^{2n+2}}{(2n+2)} \frac{2n}{(-1)^{n+1} (x-1)^{2n}} \right|$$

$$= \lim_{n \to \infty} (x-1)^2 \frac{n}{n+1}$$

$$= (x-1)^2 .$$

By the ratio test, the series is divergent for $(x-1)^2 > 1$, i.e., for |x-1| > 1, and convergent for $(x-1)^2 < 1$, i.e., for |x-1| < 1. The ratio test is inconclusive at only two points: x-1=1, i.e., x=2 and x-1=-1, i.e., x=0. At both points the series becomes $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n}}{2n}$ and the series is convergent at both points by the alternating series test.

Solution. 10.c This solution is similar to the solution of 10.b, but we have written it in a concise fashion suitable for test taking.

Denote Taylor series at a by T_a and recall that the Maclaurin series of are just T_0 , the Taylor series at 0.

$$T_{2}(\ln x) = T_{2}(\ln ((x-2)+2))$$

$$= T_{2}\left(\ln \left(2\left(\frac{x-2}{2}+1\right)\right)\right)$$

$$= T_{2}\left(\ln 2 + \ln \left(1 + \frac{x-2}{2}\right)\right) \qquad \left|T_{0}(\ln(1+y)) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}y^{n}}{n}\right|$$

$$= \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}\left(\frac{x-2}{2}\right)}{n}$$

$$= \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n}}(x-2)^{n} .$$

11. Find the Taylor series around the indicated point. The answer key has not been proofread, use with caution.

(a)
$$\frac{1}{x}$$
 at $a = 1$.

answer:
$$1 - x \cdot n^{n} (1 - x)^{n} = \dots + \frac{2}{n} = \dots + \frac{2}{n} (1 - x) - \frac{2}{n} (1 - x) + (1 - x) - 1$$

(b)
$$\frac{1}{r^2}$$
 at $a = 1$.

answers
$$1 - x^2 (1-x)^n (1-x)^n = 1 - x^2 (1-x)^n - x^2 (1-x)^n (1-x)^n = 0$$

12. (This problem is of higher difficulty, it will not appear on the quiz.) Let f(x) be defined as

$$f(x) := \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

(a) Prove that if R(x) is an arbitrary rational function,

$$\lim_{\substack{x \to 0 \\ x > 0}} R(x)e^{-\frac{1}{x^2}} = 0$$

- (b) Prove that f(x) is differentiable at 0 and f'(0) = 0.
- (c) Prove that the Maclaurin series of f(x) are 0 (but f(x) is clearly a non-zero function).