Freecalc
Homework on Lecture 14
Quiz date will be announced in class

1. Determine the interval of convergence for the following power series.
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Solution. We apply the Ratio Test to get that lim = |z — 2|. Therefore the power series converges at
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least on the interval (1,3). When x = 3, the series becomes nZ::1 ﬁ, which diverges - this can be seen, for example,

0 n
by comparing to the p-series ﬁ When =z = 1, the series becomes nz::l 3(\;711)?, which converges by the Alternating

Series Test. Our final answer z € [1, 3).

. Determine the interval of convergence for the following power series. The answer key has not been proofread, use with

caution.
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(b) Use your series to find the Maclaurin series of / ze” dz.
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4. Find the Maclaurin series of the function. The answer key has not been proofread, use with caution.
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5. Compute the Maclaurin series of the function. Please post on piazza if you discover errors in the answer key.
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6. Compute the Maclaurin series of the function. Please post on piazza if you see errors in the answer key.
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Solution. We solve this problem by using algebraic manipulations and substitutions to reduce it to the already
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studied power series expansion of In(1 — y)
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We can now compute Maclaurin series as follows:
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8. Compute the Maclaurin series of
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where g € R is an arbitrary real number.
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first k — 2 summands are zero

Solution. [§] Since g does not have to be an integer, we cannot directly relate its power series to the power series of

1

—— or its derivatives. We therefore compute the Maclaurin series directly using their definition.
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For the last equality we recall the definition of binomial coefficient
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and that it allows for ¢ to be

an arbitrary complex number . The above formula is a generalization of the Newton binomial formula.

9. Compute the Maclaurin series of the function.
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Solution. This problem follows directly from the formula (1
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Solution. [9:5 This problem can be solved by computing the derivative of the preceding problem. However, it is easier
to simply apply the generalized Newton Binomial formula.
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Solution. This problem is solved by replacing = with —z? in Problem To avoid the possible confusion, we
carry out the substitution by introducing an intermediate variable y.
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Solution. We have that % (arcsinz) = \/1177, and the Maclaurin series of ﬁ were computed in Problem
The power series of arcsin x are therefore obtained via integration.
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(c) Write the Taylor series of the function Inz around a = 2.
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Although the problem does not ask us to do this, we will determine the interval of convergence of the series for exercise.

If we use the fact that In(1+y) = > (—1)"*13’% holds for —1 < y <1, it follows immediately that the above equality
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holds for 0 < (z — 1) < 1, which holds for z € [0,2]. Let us however compute the interval of convergence without
using the aforementioned fact.

Let a,, be the n* term of our series, i.e., let
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By the ratio test, the series is divergent for (z —1)? > 1, i.e., for |z — 1| > 1, and convergent for (z —1)? < 1, i.e., for
|z — 1| < 1. The ratio test is inconclusive at only two points: x —1 =1,ie., x =2and z—1 = —1, i.e,, z = 0. At both
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and the series is convergent at both points by the alternating series test.

Solution. This solution is similar to the solution of [I0.b] but we have written it in a concise fashion suitable for
test taking.

Denote Taylor series at a by T, and recall that the Maclaurin series of are just Ty, the Taylor series at 0.
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11. Find the Taylor series around the indicated point. The answer key has not been proofread, use with caution.
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12. (This problem is of higher difficulty, it will not appear on the quiz.) Let f(x) be defined as
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(a) Prove that if R(z) is an arbitrary rational function,
lim R(z)e™ 2 =0

z—0
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(b) Prove that f(x) is differentiable at 0 and f/(0) = 0.

(c) Prove that the Maclaurin series of f(z) are 0 (but f(x) is clearly a non-zero function).



