
Master Problem Sheet
Version April 29, 2015
Math 141 Calculus II

Instructor: Todor Milev

This master problem sheet contains all freecalc problems on the topics studied in Calculus II. The latest LATEX source of
this file (complete with typo and error fixes) can be downloaded from the freecalc project page below.

https://sourceforge.net/p/freecalculus/code/HEAD/tree/

For a list of contributors/authors of the freecalc project (and in particular, the present problem collection) see the
following file. https://sourceforge.net/p/freecalculus/code/HEAD/tree/trunk/contributors.tex

Contents

1 Derivative non-const exponent 2

2 The number e as a limit 2

3 Inverse trigonometry 4

4 Integration by parts 7

5 Integration of rational functions 12
5.1 Building block integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Complete algorithm: partial fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2.1 Quadratic term in the denominator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.2 Complete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3 A large example illustrating the complete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Trigonometric integrals 22
6.1 Trigonometric integrals solved via general method x = 2 arctan t . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Trigonometric and Euler substitutions 25
7.1 Transforming radicals of quadratics to the forms

√
u2 + 1,

√
1− u2,

√
u2 − 1 . . . . . . . . . . . . . . . . . . . 25

7.2 Trig or Euler substitution, solutions use trig substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Trig or Euler substitution, solutions use Euler substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.3.1 Case 1:
√
x2 + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.3.2 Case 2:
√

1− x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3.3 Case 3:

√
x2 − 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.4 Theory through problems (Optional material) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.5 Case 1:

√
x2 + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.5.1 x = cot θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.5.2 x = tan θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.6 Case 2:
√

1− x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.6.1 x = cos θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.6.2 x = sin θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.7 Case 3:
√
x2 − 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.7.1 x = sec θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.7.2 x = csc θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 L’Hospital’s rule 42

9 Improper Integrals 43

10 Sequences 47
10.1 Understanding sequence notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1

https://sourceforge.net/p/freecalculus/code/HEAD/tree/
https://sourceforge.net/p/freecalculus/code/HEAD/tree/trunk/contributors.tex


11 Series 48
11.1 Some explicit series summations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11.1.1 Geometric series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.1.2 Telescoping series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11.2 Series convergence tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.2.1 Basic tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.2.2 Integral and comparison tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.2.3 Root, ratio tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11.3 Problems collection, all techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

12 Power series, Taylor and Maclaurin series 54
12.1 Interval of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
12.2 Taylor, Maclaurin series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
12.3 Example of differentiable function not equal to its Maclaurin series . . . . . . . . . . . . . . . . . . . . . . . . 59

13 Complex numbers 60

14 Curves 63
14.1 Curves in polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
14.2 Curve tangents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
14.3 Curve lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
14.4 Area under curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
14.5 Area locked by curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

15 A Bit of Differential Equations 70
15.1 Separable Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

15.1.1 The Mixing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
15.1.2 General Separable Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1 Derivative non-const exponent

Problem 1. Differentiate

1. xsin x. answer:xsinx(sinx
x

+cosxlnx)

2. xtan x. answer:xtanx(tanx
x

+(lnx)sec2x)

Solution. 1.1.
(
xsin x

)′
=
(
e(ln x) sin x

)′
= e(ln x) sin x(lnx sinx)′ = xsin x

(
sinx

x
+ lnx cosx

)
.

Problem 2. Differentiate.

1. 10x
3

. answer:3(ln10)x2(10)x3

2. 2tan x. answer:(ln2)2tanxsec2x

3. xx. answer:xx(log(x)+1)

4. xx
x

. answer:(ln(x))2xxx+x+xxx+x−1+(lnx)xxx+x

5. (sinx)cos x. answer:−ln(sinx)(sinx)cosx+2+(sinx)cosxcos2x
sinx

6. (lnx)ln x. answer:ln(ln(x))x−1(ln(x))ln(x)+x−1(ln(x))ln(x)

2 The number e as a limit

Problem 3. Compute the limit.

1. lim
x→∞

(
x− 2

x

)x
.

answer:e−2

2. lim
x→∞

(
x− 2

x

)2x

answer:e−4.
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3. lim
x→∞

(
x

x+ 3

)2x

answer:e−6

Solution. 3.1. Solution I

lim
x→∞

(
x− 2

x

)x
= lim

x→∞

(
1− 2

x

)x
use lim

x→∞

(
1 + k

x

)x
= ek

= e−2 .

3.1. Solution II

lim
x→∞

(
x− 2

x

)x
= lim

x→∞
eln(( x−2

x )
x
)

lim
x→∞

ln

((
x− 2

x

)x)
= lim

x→∞
x (ln(x− 2)− ln(x))

= lim
x→∞

ln(x− 2)− ln(x)
1
x

L’Hospital rule

= lim
x→∞

1
x−2 −

1
x

− 1
x2

= lim
x→∞

−2x2

x2 − 2x
= −2 Therefore

lim
x→∞

(
x− 2

x

)x
= lim

x→∞
eln(( x−2

x )
x
)

= e
lim
x→∞

ln(( x−2
x )

x
)

= e−2 .

Problem 4. Find the limit.

1. lim
x→∞

(
1− 2

x

)x
. answer:e−2

2. lim
x→0

(1− x)
1
x . answer:e−1

3. lim
x→∞

(
x

x− 5

)x
. answer:e5

4. lim
x→∞

(
x

x− 2

)3x+2

. answer:e6

Problem 5. 1. A sum is held under a yearly compound
interest of 1%. Make an approximation by hand (no
calculators allowed) by what factor will have the money
increased after 200 years. Can you do the computation
in your head?

2. Decide, without using a calculator, which is more prof-
itable: earning a yearly compound interest of 2% for
150 years or earning yearly simple interest of 11% for
150 years?

Solution. 5.1 Each year, the sum increases by a factor of
(
1 + 1

100

)
. Therefore in 200 years the sum will have increased by

(
1 + 1

100

)200
=

((
1 + 1

100

)100)2
equals

(
1 + 1

n

)n
for n = 100

≈ e2.

As a rough estimate for e we can take e ≈ 2.7, and so e2 ≈ 2.72 = 7.29. Our sum will have increased approximately 7.3
times. A calculator computation shows that (

1 +
1

100

)200

≈ 7.316018,

so our “in the head” estimate is fairly accurate. Notice that the calculator computation is on its own an approximation -
it was carried using double floating point precision arithmetics, which does introduce some minimal errors. Such round off
errors, of course, are also present in modern banking transactions, so we do not need to adjust for those.

Solution. 5.2 Simple interest of 11% per 150 years a profit of

0.11 ∗ 150 = 15 + 1.5 = 16.5,
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or altogether 17.5-fold increase of our initial sum. A 2% compound interest for 150 years yields a(
1 + 2

100

)150
=

((
1 + 1

50

)50)3
≈ e3

-fold increase of our sum. To establish which of the two options yields more money, we need to compare e3 to 17.5 (without
using a calculator). In the solution of 5.1 we established that e2 ≈ 7.3, so e3 ≈ e·7.3 ≈ 2.7·7.3 = 2·7+2·0.3+0.7·7+0.7·0.3 =
14 + 0.6 + 4.9 + 0.21 = 19.71 ≈ 19.7. We can say that the compound interest results in approximately 19.7-fold increase of
the initial sum, so the compound interest is more profitable. A calculator computation shows that(

1 +
2

100

)150

≈ 19.499603 .

Our error of approximately 0.2 was not optimal, yet fairly accurate for an “in the head” computation.

Problem 6. 1, 000, 000 servers are handling Internet users. Suppose we distribute the computation load as follows. The
computation load distributing program directs every new user to a server chosen at random (one server is allowed to process
more than one user at a time). Suppose one server has defective hardware and crashes. We are testing the system by
simulating X Internet users.

• What is the chance we catch the defective server using 1 simulated user?

• Without using a calculator, estimate the chance we fail to catch the defective server using 1, 000, 000 simulated users.

• Using a calculator, estimate the chance we fail to catch the defective server using 100, 000 simulated users. Write an
expression using e which approximates this chance. Evaluate the latter with a calculator. Are the two numbers close?

Remark. While such a simple system architecture would not be practical, it is not to be immediately dismissed as terrible.
For example, if we need to handle 2 million users per second, our load distributing mechanism might not be fast enough to
keep track of each server’s load. On the other hand, an inexpensive modern pc will easily generate 2 million random numbers
per second.

3 Inverse trigonometry

Problem 7. Let x ∈ (0, 1). Express the following using x and
√

1− x2.

1. sin(arcsin(x)).

answer:x

2. sin(2 arcsin(x)).

answer:2x√1−x2

3. sin(3 arcsin(x)).

answer:−4x3+3x

4. sin(arccos(x)).

answer:√1−x2

5. sin(2 arccos(x)).

answer:2x√1−x2

6. sin(3 arccos(x)).

answer:

(4x2−1)√1−x2

=−4(√1−x2)3+3√1−x2

7. cos(2 arcsin(x)).

answer:1−2x2

8. cos(3 arccos(x)).

answer:4x3−3x

Solution. 7.2. Let y = arcsinx. Then sin y = x, and we can draw a right triangle with opposite side length x and
hypotenuse length 1 to find the other trigonometric ratios of y.

y

1
x

√
1− x2
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Then cos y =
√

1− x2/1 =
√

1− x2. Now we use the double angle formula to find sin(2 arcsinx).

sin(2 arcsinx) = sin(2y)

= 2 sin y cos y

= 2x
√

1− x2.

Solution. 7.3. Use the result of Problem 7.2. This also requires the addition formula for sine:

sin(A+B) = sinA cosB + sinB cosA,

and the double angle formula for cosine:
cos(2y) = cos2 y − sin2 y.

sin(3 arcsinx) = sin(3y)
= sin(2y + y)
= sin(2y) cos y + sin y cos(2y) Use addition formula
= (2 sin y cos y) cos y + sin y(cos2 y − sin2 y) Use double angle formulas
= 2 sin y cos2 y + sin y cos2 y − sin3 y
= 3 sin y cos2 y − sin3 y
= 3 sin y(1− sin2 y)− sin3 y
= 3x(1− x2)− x3
= 3x− 4x3.

The solution is complete. A careful look at the solution above reveals a strategy useful for problems similar to this one.

1. Identify the inverse trigonometric expression- arcsinx, arccosx, arctanx, . . . . In the present problem that was y =
arcsinx.

2. The problem is therefore a trigonometric function of y.

3. Using trig identities and algebra, rewrite the problem as a trigonometric expression involving only the trig function
that transforms y to x. In the present problem we rewrote everything using sin y.

4. Use the fact that sin(arcsinx) = x, cos(arccosx) = x, . . . , etc. to simplify.

Solution. 7.6 We use the same strategy outlined in the end of the solution of Problem 7.3. Set y = arccosx and so
cos(y) = x. Therefore:

sin(3y) = sin(2y + y)
= sin(2y) cos y + sin y cos(2y)
= 2 sin y cos y cos y + sin y(2 cos2 y − 1)
= 2 sin y cos2 y + sin y(2 cos2 y − 1)

= sin y(4 cos2 y − 1) use
cos y = x

sin y =
√

1− x2
=
√

1− x2(4x2 − 1) .

Problem 8. Express as the following as an algebraic expression of x. In other words, “get rid” of the trigonometric and
inverse trigonometric expressions.

1. cos2(arctanx).

answer:1
1+x2

2. − sin2(arccotx).

answer:−1
1+x2

3. 1
cos(arcsin x) .

answer:1 √1−x2

4. − 1
sin(arccos x) .

answer:−1 √1−x2
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Solution. 8.2. We follow the strategy outlined in the end of the solution of Problem 7.3. We set y = arccotx. Then we
need to express − sin2 y via cot y. That is a matter of algebra:

− sin2(arccotx) = − sin2 y Sety = arccotx

= − sin2 y

sin2 y + cos2 y
use sin2 y + cos2 y = 1

= − 1
sin2 y+cos2 y

sin2 y

= − 1

1 + cot2 y
Substitute back cot y = x

= − 1

1 + x2
.

Problem 9. Rewrite as a rational function of t. This problem will be later used to derive the Euler substitutions (an
important technique for integrating).

1. cos (2 arctan t).

answer:1−t2
1+t2.

2. sin (2 arctan t).

answer:2t
1+t2

3. tan (2 arctan t).

answer:2t
1−t2

4. cot (2 arctan t).

answer:1
2(1

t−t).
5. csc (2 arctan t).

answer:1
2(t+1

t)

6. sec (2 arctan t).

answer:1+t2

1−t2

7. cos (2 arccot t).

answer:t2−1

t2+1

8. sin (2 arccot t).

answer:2t
t2+1

9. tan (2 arccot t).

answer:2t
t2−1

10. cot (2 arccot t).

answer:1
2(t−1

t)
11. csc (2 arccot t).

answer:1
2(t+1

t)

12. sec (2 arccot t).

answer:t2+1

t2−1

Solution. 9.1 Set z = arctan t, and so tan z = t. Then

cos(2 arctan t) = cos(2z)

=
cos(2z)

1

use double angle formulas
and 1 = sin2 z + cos2 z

=
cos2 z − sin2 z

cos2 z + sin2 z
divide top and bottom by cos2 z

=
(cos2 z − sin2 z) 1

cos2 z

(sin2 z + cos2 z) 1
cos2 z

=
1− tan2 z

1 + tan2 z

=
1− t2

1 + t2
.
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Solution. 9.4 Set z = arctan t, and so tan z = t. Then

cot(2 arctan t) = cot(2z)

=
cos(2z)

sin(2z)
use double angle formulas

=
cos2 z − sin2 z

2 sin z cos z

=
1− tan2 z

2 tan z

=
1− t2

2t

=
1

2

(
1

t
− t
)

.

Problem 10. Compute the derivative (derive the formula).

1. (arctanx)′. answer:1
1+x2

2. (arccotx)′. answer:−1
1+x2

3. (arcsinx)′. answer:1 √1−x2

4. (arccosx)′. answer:−1 √1−x2

5. Let arcsec denote the inverse of the secant function.
Compute (arcsecx)′. answer:1

x√x2−1

Problem 11. 1. Let a+ b 6= kπ, a 6= kπ + π
2 and b 6= kπ + π

2 for any k ∈ Z (integers). Prove that

tan a+ tan b

1− tan a tan b
= tan(a+ b) .

2. Let x and y be real. Prove that, for xy 6= 1, we have

arctanx+ arctan y = arctan

(
x+ y

1− xy

)
if the left hand side lies between

(
−π2 ,

π
2

)
.

Solution. 11.1 We start by recalling the formulas

cos(a+ b) = cos a cos b− sin a sin b
sin(a+ b) = sin a cos b+ sin b cos a .

These formulas have been previously studied; alternatively they follow from Euler’s formula and the computation

cos(a+ b) + i sin(a+ b) = ei(a+b) = eiaeib = (cos a+ i sin a)(cos b+ i sin b)
= cos a cos b− sin a sin b+ i(sin a cos b+ sin b cos a) .

Now 11.1 is done via a straightforward computation:

tan(a+ b) =
sin(a+ b)

cos(a+ b)
=

sin a cos b+ sin b cos a

cos a cos b− sin a sin b
=

(sin a cos b+ sin b cos a) 1
cos a cos b

(cos a cos b− sin a sin b) 1
cos a cos b

=
tan a+ tan b

1− tan a tan b
.

(1)

11.2 is a consequence of 11.1. Let a = arctanx, b = arctan y. Then (1) becomes

tan(arctanx+ arctan y) =
tan(arctanx) + tan(arctan y)

1− tan(arctanx) tan(arctan y)
=

x+ y

1− xy
,

where we use the fact that tan(arctanw) = w for all w. We recall that arctan(tan z) = z whenever z ∈
(
−π2 ,

π
2

)
. Now take

arctan on both sides of the above equality to obtain

arctanx+ arctan y = arctan

(
x+ y

1− xy

)
.

4 Integration by parts

Problem 12. Evaluate the indefinite integral. Illustrate the steps of your solutions.
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1.

∫
x sinxdx.

answer:−xcosx+sinx+C

2.

∫
xe−xdx.

answer:−(1+x)e−x+C

3.

∫
x2exdx.

answer:x2ex−2xex+2ex+C

4.

∫
x sin(−2x)dx.

answer:x
2

cos(−2x)+1
4

sin(−2x)+C

5.

∫
x2 cos(3x)dx.

answer:x2

3
sin(3x)+2x

9
cos(3x)−2

27
sin(3x)+C

6.

∫
x2e−2xdx.

answer:−x2e−2x

2−xe−2x

2−e−2x

4
+C

7.

∫
x sin(2x)dx.

answer:−x
2

cos(2x)+1
4

sin(2x)+C

8.

∫
x cos(3x)dx.

answer:x
3

sin(3x)+1
9

cos(3x)+C

9.

∫
x2e2xdx.

answer:x2

2
e2x−x

2
e2x+e2x

4
+C

10.

∫
x3exdx.

answer:x3ex−3x2ex+6xex−6ex+C

Solution. 12.1. ∫
x sinxdx︸ ︷︷ ︸

=d(− cos x)

= −
∫
xd(cosx) = −x cosx+

∫
cosxdx = −x cosx+ sinx+ C .

Solution. 12.3. ∫
x2 exdx︸ ︷︷ ︸

d(ex)

=

∫
x2dex = x2ex −

∫
ex2xdx = x2ex −

∫
2xdex

= x2ex − 2xex +

∫
2exdx = x2ex − 2xex + 2ex + C .

Solution. 12.6. ∫
x2e−2xdx =

∫
x2d

(
e−2x

−2

)
Integrate by parts

= −x
2e−2x

2
−
∫ (

e−2x

−2

)
d
(
x2
)

= −x
2e−2x

2
+

∫
xe−2xdx

= −x
2e−2x

2
+

∫
xd

(
e−2x

−2

)
Integrate by parts

= −x
2e−2x

2
− xe−2x

2
+

1

2

∫
e−2xdx

= −x
2e−2x

2
− xe−2x

2
− e−2x

4
+ C .

Problem 13. Evaluate the indefinite integral. Illustrate the steps of your solutions.

1.

∫
x2 cos(2x)dx.

answer:1
2
x2sin(2x)+1

2
xcos(2x)−1

4
sin(2x)+C

2.

∫
x2eaxdx, where a is a constant.

answer:1
a
x2eax−2

a2xeax+2
a3eax+C

3.

∫
x2e−axdx, where a is a constant.

answer:−1
a
x2e−ax−2

a2xe−ax−2
a3e−ax+C

4.

∫
x2

(eax + e−ax)2

4
dx, where a is a constant.

answer:

1
8(a−1x2e2ax−a−1x2e−2ax

−a−2xe2ax−a−2xe−2ax+1
2
a−3e2ax

−1
2
a−3e−2ax+2

3
x3)+C

5.

∫
1

cos2 x
dx. (Hint: This problem does not require

integration by parts. What is the derivative of tanx?)

answer:tanx+C

6.

∫
(tan2 x)dx. (Hint: This problem does not require

integration by parts. We can use tan2 x = 1
cos2 x−1 and

the previous problem. )
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7.

∫
x tan2 xdx. (Hint: tan2 xdx = d(F (x)), where

F (x) is the answer from the preceding problem).

answer:−x2
2

+xtanx+ln|cosx|+C

8.

∫
e−
√
xdx.

answer:−2
√
xe−
√
x−2e−

√
x+C

9.

∫
cos2 x dx.

answer:1
4

sin(2x)+x
2

+C

10.

∫
x

1 + x2
dx (Hint: use substitution rule, don’t use in-

tegration by parts)

answer:
ln(1+x2)

2
+C

11.

∫
(arctanx)dx.

answer:xarctanx−
ln(1+x2)

2
+C

12.

∫
(arcsinx)dx.

answer:xarcsinx+√1−x2+C

13.

∫
(arcsinx)2dx. (Hint: Try substituting x =

sin y.)

answer:x(arcsinx)2+2√1−x2arcsinx−2x+C

14.

∫
arctan

(
1

x

)
dx.

15.

∫
sinxexdx

answer:1
2(exsinx−excosx)+C

16.

∫
cosxexdx

answer:1
2(excosx+exsinx)+C

17.

∫
sin(ln(x))dx.

answer:x
2

(sin(lnx)−cos(lnx))+C

18.

∫
cos(ln(x))dx.

answer:x
2

(cos(lnx)+sin(lnx))+C

19.

∫
lnxdx

answer:xln|x|−x+C

20.

∫
x lnx dx.

answer:1
2
x2ln|x|−x2

4
+C

21.

∫
lnx√
x

dx.

answer:2
√
x(lnx−2)+C

22.

∫
(lnx)2dx.

answer:x(lnx)2−2xlnx+2x+C

23.

∫
(lnx)3dx.

answer:x(lnx)3−3x(lnx)2+6xlnx−6x+C

24.

∫
x2 cos2 xdx. (This problem is related to Problem 13.4

as cosx = eix+e−ix

2 ).

Solution. 13.7 ∫
x tan2 xdx =

∫
x
(
sec2 x− 1

)
dx use sec2 x− 1 = tan2 x

=

∫
x
(
sec2 x− 1

)
dx

= −
∫
xdx+

∫
x sec2 xdx use d(tanx) = sec2 xdx

= −x
2

2
+

∫
xd(tanx) integrate by parts

= −x
2

2
+ x tanx−

∫
tanxdx

= −x
2

2
+ x tanx−

∫
sinx

cosx
dx use sinxdx = −d(cosx)

= −x
2

2
+ x tanx+

∫
d(cosx)

cosx
Set y = cosx

= −x
2

2
+ x tanx+

∫
1

y
dy

= −x
2

2
+ x tanx+ ln |y|+ C Substitute back y = cosx

= −x
2

2
+ x tanx+ ln | cosx|+ C .
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Solution. 13.8 ∫
e−
√
xdx =

∫
2ye−ydy Subst.:

√
x = y

1
2
√
x

dx = dy

dx = 2ydy

=

∫
2yd

(
−e−y

)
int. by parts

= −2ye−y + 2
∫
e−ydy

= −2ye−y − 2e−y + C

= −2
√
xe−

√
x − 2e−

√
x + C .

Solution. 13.9. Later, we shall study general methods for solving trigonometric integrals that will cover this example. Let
us however show one way to solve this integral by integration by parts.∫

cos2 xdx=x cos2 x−
∫
xd(cos2 x)

=x cos2 x−
∫
x2 cosx(− sinx)dx sin(2x) = 2 sinx cosx

=x cos2 x+

∫
x sin(2x)dx

=x cos2 x+

∫
xd

(
− cos(2x)

2

)
=x cos2 x+ x

(
− cos(2x)

2

)
−
∫ (

− cos(2x)

2

)
dx

=
x

2

(
2 cos2 x− cos(2x)

)
+

sin(2x)

4
+ C cos(2x) = cos2 x− sin2 x

=
x

2

(
2 cos2 x− (cos2 x− sin2 x)

)
+

sin(2x)

4
+ C cos2 x+ sin2 x = 1

=
x

2
+

sin(2x)

4
+ C .

Solution. 13.11 ∫
arctanxdx = x arctanx−

∫
xd(arctanx)

= x arctanx−
∫

x

x2 + 1
dx

= x arctanx−
∫ 1

2d(x2)

x2 + 1

= x arctanx−
∫ 1

2d(x2 + 1)

x2 + 1

= x arctanx− 1

2
ln(x2 + 1) + C .

Solution. 13.13. ∫
(arcsinx)2dx =

∫
(arcsin(sin y))

2
d(sin y) Set x = sin y

=

∫
y2 cos ydy =

∫
y2d(sin y) Integrate by parts

= y2 sin y −
∫

2y sin ydy

= y2 sin y +

∫
2yd(cos y) Integrate by parts

= y2 sin y + 2y cos y − 2

∫
cos ydy

= y2 sin y + 2y cos y − 2 sin y + C Substitute y = arcsinx
= x(arcsinx)2

+2
√

1− x2 arcsinx− 2x+ C .
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Solution. 13.15 ∫
sinx exdx︸ ︷︷ ︸

=dex

= sinxex −
∫
exd(sinx) = sinxex −

∫
cosx exdx︸ ︷︷ ︸

=dex

= sinxex − ex cosx+

∫
exd(cosx)

= ex sinx− ex cosx−
∫
ex sinxdx

add
∫
ex sinxdx

to both sides

2

∫
sinxexdx = sinxex − ex cosx∫
sinxexdx =

1

2
(sinxex − ex cosx) .

Solution. 13.17.∫
sin(lnx)dx = x sin(lnx)−

∫
xd(sin(lnx)) int. by parts

= x sin(lnx)−
∫
x (cos(lnx)) (lnx)

′
dx

= x sin(lnx)−
∫

cos(lnx)dx int. by parts

= x sin(lnx)−
(
x cos(lnx)−

∫
xd(cos(lnx))

)
= x sin(lnx)− x cos(lnx) +

∫
x(− sin(lnx))(lnx)′dx

= x sin(lnx)− x cos(lnx)−
∫

sin(lnx)dx
add

∫
sin(lnx)dx

to both sides

2

∫
sin(lnx)dx = x sin(lnx)− x cos(lnx)∫
sin(lnx)dx =

x

2
(sin(lnx)− cos(lnx)) .

Solution. 13.19 ∫
lnxdx = x lnx−

∫
xd(lnx) = x lnx−

∫
x

x
dx = x lnx− x+ C .

Solution. 13.21 ∫
lnx√
x

dx =

∫
(lnx)2d

(√
x
)

integrate by parts

= (lnx)2
√
x−

∫
2
√
xd(lnx)

= 2
√
x lnx− 2

∫ √
x

x
dx

= 2
√
x lnx− 2

∫
x−

1
2 dx

= 2
√
x lnx− 4

√
x+ C

= 2
√
x(lnx− 2) + C .

Problem 14. Compute

∫
xnexdx, where n is a non-negative integer.

Solution. 14
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∫
xnexdx =

∫
xndex

= xnex −
∫
exdxn

= xnex − n
∫
xn−1exdx

= xnex − n
(∫

xn−1dex
)

= xnex − n
(
xn−1ex −

∫
(n− 1)xn−2exdx

)
= xnex − nxn−1xex + n(n− 1)

∫
xn−2exdx

= . . . (continue above process) . . .
= xnex − nxn−1ex + n(n− 1)xn−2ex + . . .

+(−1)kn(n− 1)(n− 2) . . . (n− k + 1)xn−kex

+ · · ·+ (−1)nn!ex + C

= C +

n∑
k=0

(−1)n
n!

(n− k)!
xn−kex .

5 Integration of rational functions

5.1 Building block integrals

Problem 15. Integrate. Illustrate the steps of your solution.

1.

∫
1

x+ 1
dx

answer:ln|x+1|+C

2.

∫
x− 1

x+ 1
dx

answer:x−2ln|x+1|+C

3.

∫
1

(x+ 1)2
dx

answer:−1
x+1

+C

4.

∫
x

(x+ 1)2
dx

answer:ln|x+1|+1
x+1

+C

5.

∫
1

(2x+ 3)2
dx

answer:−1
2(2x+3)

+C

6.

∫
x

2x2 + 3
dx

answer:1
4

ln(2x2+3)+C

7.

∫
1

2x2 + 3
dx

answer:

√
6

6
arctan(√2

3
x)

8.

∫
x

2x2 + x+ 1
dx .

answer:1
4

ln(x2+1
2
x+1

2)−√7
14

arctan(4x+1 √
7

)+C

9.

∫
x

2x2 + x+ 3
dx

answer:1
4

ln(2x2+x+3)−1
2
√

23
arctan(4x+1 √

23

)+C

10.

∫
x

x2 − x+ 3
dx

answer:1
2

ln∣∣∣x2−x+3∣∣∣+√11
11

arctan

x−1
2 √

11
2


+C

11.

∫
1

(x2 + 1)
2 dx

answer:1
2
x(x2+1)−1

+1
2

arctan(x)+C

12.

∫
1

(x2 + x+ 1)
2 dx

answer:2
3
x(x2+x+1)−1

+1
3(x2+x+1)−1

+4
9

√
3arctan(2

3

√
3x+

√
3

3

)

13.

∫
1

(x2 + 1)
3 dx

answer:3
8
x(x2+1)−1

+1
4
x(x2+1)−2

+3
8

arctan(x)+C

Solution. 15.8.
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∫
x

2x2 + x+ 1
dx=

∫
x

2
(
x2 + 2x 1

4 + 1
2

)dx

=

∫
x

2
(
x2 + 2x 1

4 + 1
16 −

1
16 + 1

2

)dx
complete square
in denominator

=
1

2

∫
x(

x+ 1
4

)2
+ 7

16

dx

=
1

2

∫
x+ 1

4 −
1
4(

x+ 1
4

)2
+ 7

16

d

(
x+

1

4

)
Set u = x+ 1

4

=
1

2

∫
u− 1

4

u2 + 7
16

du

=
1

2

(∫
u

u2 + 7
16

du− 1

4

∫
1

u2 + 7
16

du

)
=

1

2

1

2
ln

(
u2 +

7

16

)
− 1

4
√

7
16

arctan

 u√
7
16

+K

=
1

4
ln

(
x2 +

1

2
x+

1

2

)
−
√

7

14
arctan

(
4x+ 1√

7

)
+K .

Solution. 15.12 ∫
1

(x2 + x+ 1)
2 dx =

∫
1((

x2 + 2x 1
2 + 1

4

)
− 1

4 + 1
)2 dx complete the square

=

∫
1((

x+ 1
2

)2
+ 3

4

)2 d

(
x+

1

2

)
Set w = x+ 1

2

=

∫
1(

w2 + 3
4

)2 dw

=

∫
1(

3
4

((
2w√
3

)2
+ 1

))2

√
3

2
d

(
2w√

3

)
Set z = 2w√

3

=

√
3
2(
3
4

)2 ∫ 1

(z2 + 1)
2 dz

=
8
√

3

9

∫
1

(z2 + 1)
2 dz .

The integral
∫

1
(z2+1)2

dz was already studied; it was also given as an exercise in Problem 15.11. We leave the rest of the

problem to the reader.

Problem 16. Let a, b, c, A,B be real numbers. Suppose in addition a 6= 0 and b2 − 4ac < 0. Integrate∫
Ax+B

ax2 + bx+ c
dx .

The purpose of this exercise is to produce a formula in form ready for implementation in a computer algebra system.

Solution. 16.
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∫
Ax+B

ax2 + bx+ c
dx=

∫
Ax+B

a
(
x2 + 2x b

2a + c
a

)dx

=

∫
Ax+B

a
(
x2 + 2x b

2a + b2

4a2 −
b2

4a2 + c
a

)dx
complete square
in denominator

=
1

a

∫
Ax+B(

x+ b
2a

)2
+ 4ac−b2

4a2

dx Set D = 4ac−b2
4a2

=
1

a

∫
A
(
x+ b

2a −
b
2a

)
+B(

x+ b
2a

)2
+D

d

(
x+

b

2a

)
Set u = x+ b

2a

=
1

a

∫
Au+B − Ab

2a

u2 +D
du Set C = B − Ab

2a

=
1

a

(
A

∫
u

u2 +D
du+ C

∫
1

u2 +D
du

)
=

1

a

(
A

2
ln(u2 +D) +

C√
D

arctan

(
u√
D

))
+K

=
1

a

(
A

2
ln

(
x2 +

b

a
x+

c

a

)
+

C√
D

arctan

(
x+ b

2a√
D

))
+K.

The solution is complete. Question to the student: where do we use b2 − 4ac < 0?

Problem 17. Let a, b, c, A,B be real numbers and let n > 1 be an integer. Suppose in addition a 6= 0 and b2 − 4ac < 0. Let

J(n) =

∫
1(

x2 + b
ax+ c

a

)n dx .

1. Express the integral ∫
Ax+B

(ax2 + bx+ c)
n dx

via J(n).

2. Express J(n) recursively via J(n− 1)

The purpose of this exercise is to produce a formula in form ready for implementation in a computer algebra system.

Solution. 17.1.∫
Ax+B

(ax2 + bx+ c)n
dx=

∫
Ax+B

an
(
x2 + 2x b

2a + c
a

)n dx

=

∫
Ax+B

an
(
x2 + 2x b

2a + b2

4a2 −
b2

4a2 + c
a

)n dx
complete square
in denominator

=
1

an

∫
Ax+B((

x+ b
2a

)2
+ 4ac−b2

4a2

)n dx Set D = 4ac−b2
4a2

=
1

an

∫
A
(
x+ b

2a −
b
2a

)
+B((

x+ b
2a

)2
+D

)n d

(
x+

b

2a

)
Set u = x+ b

2a

=
1

an

∫
Au+B − Ab

2a

(u2 +D)
n du Set C = B − Ab

2a

=
1

an

(
A

∫
u

(u2 +D)
n du+ C

∫
1

(u2 +D)
n du

)
=

1

an

(
A

2(1− n)

(
u2 +D

)1−n
+ CJ(n)

)
=

1

an

(
A

2(1− n)

(
x2 +

b

a
x+

c

a

)1−n

+ CJ(n)

)
Solution. 17.2. We use all notation and computations from the previous part of the problem. According to theory, in order
to solve that integral, we are supposed to integrate by parts the simpler integral
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J (n− 1)=

∫
1(

x2 + b
ax+ c

a

)n−1 dx =

∫
1

(u2 +D)
n−1 du int. by parts

=
u

(u2 +D)
n−1 −

∫
u d

(
1

(u2 +D)
n−1

)
=

u

(u2 +D)
n−1 + 2(n− 1)

∫
u2

(u2 +D)
n du

=
u

(u2 +D)
n−1 + 2(n− 1)

∫
u2 +D −D
(u2 +D)

n du

=
u

(u2 +D)
n−1 + 2(n− 1)J (n− 1)− 2D(n− 1)

∫
1

(u2 +D)
n du

=
u

(u2 +D)
n−1 + 2(n− 1)J (n− 1)− 2D(n− 1)J (n)

In the above equality, we rearrange

terms to get that

2D(n− 1)J (n) =
u

(u2 +D)
n−1 + (2n− 3)J (n− 1)

J(n) =
1

D

(
u

2(n− 1) (u2 +D)
n−1 +

2n− 3

2n− 2
J(n− 1)

)

=
1

D

(
x+ b

2a

(2n− 2)
(
x2 + b

ax+ c
a

)n−1 +
2n− 3

2n− 2
J(n− 1)

)
.

5.2 Complete algorithm: partial fractions

5.2.1 Quadratic term in the denominator

Problem 18. Integrate. Some of the examples require partial fraction decomposition and some do not. Illustrate the steps
of your solution.

1.

∫
1

4x2 + 4x+ 1
dx

answer:−1
2
(2x+1)−1+C

2.

∫
1

1− x2
dx

answer:−1
2

ln|x−1|+1
2

ln|x+1|+C

3.

∫
1

5− x2
dx

answer:−
√

5
10

ln∣∣∣x−√5∣∣∣+√5
10

ln∣∣∣x+
√

5∣∣∣+C

4.

∫
x

4x2 + x+ 1
16

dx

answer:1
4
(8x+1)−1+1

4
ln|8x+1|+C

5.

∫
x+ 1

2x2 + x
dx

answer:−1
2

ln|2x+1|+ln|x|+C

6.

∫
x

4x2 + x+ 5
dx

answer:1
8

ln(x2+1
4
x+5

4)−1
316

√
79arctan(x+1

8
1
8

√
79

)+C

7.

∫
x

4x2 + x− 5
dx

answer:5
36

ln∣∣∣x+5
4∣∣∣+1

9
ln|x−1|+C

8.

∫
x

3x2 + x− 2
dx

answer:2
15

ln∣∣∣x−2
3∣∣∣+1

5
ln|x+1|+C

9.

∫
x

3x2 + x+ 2
dx

answer:1
6

ln(x2+1
3
x+2

3)−√23
69

arctan(6
23

√
23x+

√
23

23

)+C

10.

∫
x

2x2 + x+ 1
dx

answer:1
4

ln(x2+1
2
x+1

2)−1
14

√
7arctan(x+1

4
1
4

√
7

)+C

11.

∫
x

2x2 + x− 1
dx

answer:
1

3
ln|x+1|+

1

6
ln∣∣∣∣x−1

2

∣∣∣∣+C

12.

∫
1

x2 + x+ 1
dx

answer:2
3

√
3arctan(x+1

2
1
2

√
3

)+C

13.

∫
1

2x2 + 5x+ 1
dx

answer:

√
17

17
ln∣∣∣∣x−√17

4
+5

4

∣∣∣∣−√17
17

ln∣∣∣∣x+

√
17
4

+5
4

∣∣∣∣

Solution. 18.11 The quadratic in the denominator has real roots and therefore can be factored using real numbers. We
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therefore use partial fractions.∫
x

2x2 + x− 1
dx =

∫ 1
2x

(x+ 1)
(
x− 1

2

)dx partial fractions, see below

=

∫ 1
3

(x+ 1)
dx+

∫ 1
6(

x− 1
2

)dx

=
1

3
ln |x+ 1|+ 1

6
ln

∣∣∣∣x− 1

2

∣∣∣∣+ C .

Except for showing how the partial fraction decomposition was obtained, our solution is complete. We proceed to compute
the partial fraction decomposition used above.

We aim to decompose into partial fractions the following function (the denominator has been factored).

x

2x2 + x− 1
=

x

(x+ 1) (2x− 1)
=

A1

x+ 1
+

A2

2x− 1
.

After clearing denominators, we get the following equality.

x = A1(2x− 1) +A2(x+ 1) . (2)

Next, we need to find values for A1 and A2 such that the equality above becomes an identity. We show two variants to do
that: the method of substitutions and the method of coefficient comparison.

Variant I. This variant relies on the fact that if substitute an arbitrary value for x in (2) we get a relationship that
must be satisfied by the coefficients A1 and A2. We immediately see that setting x = 1

2 (notice x = 1
2 is a root of the

denominator) will annihilate the term A1(2x− 1) and we can immediately solve for A2. Similarly, setting x = −1 (x = −1
is the other root of the denominator) annihilates the term A2(x+ 1) and we can immediately solve for A1.

• Set x = 1
2 . The equation (2) becomes

1

2
= A1 · 0 +A2

(
1

2
+ 1

)
1

2
=

3

2
A2

A2 =
1

3
.

• Set x = −1. The equation (2) becomes

−1 = A1(2 · (−1)− 1) +A2 · 0
−1 = −3A2

A2 =
1

3
.

Therefore we have the partial fraction decomposition

x

2x2 + x− 1
=

A1

x+ 1
+

A2

2x− 1

=
1
3

x+ 1
+

1
3

2x− 1

=
1
3

x+ 1
+

1
6

x− 1
2

.

Variant II. We show the most straightforward technique for finding a partial fraction decomposition - the method of
coefficient comparison. Although this technique is completely doable in practice by hand, it is often the most laborious for
a human. We note that techniques such as the one given in the preceding solution Variant are faster on many (but not all)
problems. The present technique is also arguably the easiest to implement on a computer. The computations below were
indeed carried out by a computer program written for the purpose.

After rearranging we get that the following polynomial must vanish. Here, by “vanish” we mean that the coefficients of
the powers of x must be equal to zero.

(A2 + 2A1 − 1)x+ (A2 −A1) .

In other words, we need to solve the following system.

2A1 +A2 = 1
−A1 +A2 = 0
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System status Action
2A1 +A2 = 1
−A1 +A2 = 0

Sel. pivot column 2. Eliminate non-pivot entries.

A1 +A2

2 = 1
2

3
2A2 = 1

2

Sel. pivot column 3. Eliminate non-pivot entries.

A1 = 1
3

A2 = 1
3

Final result.

Therefore, the final partial fraction decompocsition is:

x
2

x2 + x
2 −

1
2

=
1
3

(x+ 1)
+

1
3

(2x− 1)
.

5.2.2 Complete algorithm

Problem 19. Evaluate the indefinite integral. Illustrate all steps of your solution.

1.

∫
x3 + 4

x2 + 4
dx

answer:
x2

2
+2arctan(x

2

)−2ln(x2+4)+C

2.

∫
4x2

2x2 − 1
dx

answer:−1
2

√
2ln(x+1

2

√
2)+1

2

√
2ln(x−1

2

√
2)+2x+C

3.

∫
x3

x2 + 2x− 3
dx

answer:1
4

ln|x−1|+27
4

ln|x+3|+1
2
x2−2x

4.

∫
x3

x2 + 3x− 4
dx

answer:1
2
x2−3x+64

5
ln|x+4|+1

5
ln|x−1|+C

5.

∫
x3

2x2 + 3x− 5
dx

answer:125
56

ln(x+5
2)+1

7
ln(x−1)+1

4
x2−3

4
x+C

6.

∫
x2 + 1

(x− 3)(x− 2)2
dx

answer:10ln|x−3|−9ln|x−2|+
5

x−2
+C

7.

∫
x4

(x+ 1)2(x+ 2)
dx

answer:
x2

2
−4x−5ln|x+1|+16ln|x+2|−

1

x+1
+C

8.

∫
15x2 − 4x− 81

(x− 3)(x+ 4)(x− 1)
dx

answer:5ln|−x−4|+3ln|x−3|+7ln|x−1|

9.

∫
x4 + 10x3 + 18x2 + 2x− 13

x4 + 4x3 + 3x2 − 4x− 4
dx

Check first that (x − 1)(x + 2)2(x + 1) = x4 + 4x3 +
3x2 − 4x− 4.

answer:3(x+2)−1+2ln|x+2|+ln|x−1|+3ln|x+1|+x+C

10.

∫
x4

(x2 + 2)(x+ 2)
dx

answer:
x2

2
−2x+

8

3
ln|x+2|−

1

3
ln(x2+2)+

2
√

2

3
arctan(√2

2
x)+C

11.

∫
x5

x3 − 1
dx

answer:

1
3

ln∣∣∣x2+x+1∣∣∣+1
3

ln|x−1|+1
3
x3+C

=1
3

ln∣∣∣x3−1∣∣∣+1
3
x3+C

12.

∫
x4

(x2 + 2)(x+ 1)2
dx

answer:x−
1

3
(x+1)−1

−
10

9
ln|x+1|−

4

9
ln∣∣∣x2+2∣∣∣−2

9

√
2arctan(√2

2
x)+C

13.

∫
3x2 + 2x− 1

(x− 1)(x2 + 1)
dx

answer:2ln|x−1|+1
2

ln(x2+1)+3arctanx+C

14.

∫
x2 − 1

x(x2 + 1)2
dx

answer:−(x2+1)−1
+1

2
ln(x2+1)−ln|x|

Solution. 19.12 We are trying to integrate a rational function; we aim to decompose into partial fractions the following
function.

x4

x4 + 2x3 + 3x2 + 4x+ 2
=

x4

(x+ 1)
2

(x2 + 2)

Since the numerator of the function is of degree greater than or equal to the denominator, we start the partial fraction
decomposition by polynomial division.

Remainder

−2x3 −3x2 −4x −2
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Divisor(s) Quotient(s)

x4 + 2x3 + 3x2 + 4x+ 2 1

Dividend

x4

x4 +2x3 +3x2 +4x +2

−2x3 −3x2 −4x −2

Therefore we have
x4

x4 + 2x3 + 3x2 + 4x+ 2
= 1 +

−2x3 − 3x2 − 4x− 2

x4 + 2x3 + 3x2 + 4x+ 2
−2x3 − 3x2 − 4x− 2

x4 + 2x3 + 3x2 + 4x+ 2
=
−2x3 − 3x2 − 4x− 2

(x+ 1)
2

(x2 + 2)

=
A1

(x+ 1)
+

A2

(x+ 1)2
+
A3 +A4x

(x2 + 2)

We seek to find Ai’s that turn the above expression into an identity. Just as in the solution of Problem 18.11, we will use
the method of coefficient comparison (see the solution of Problem 19.13 for a shortcut method).

After clearing denominators, we get the following equality.

−2x3 − 3x2 − 4x− 2 = A1(x+ 1)(x2 + 2) +A2(x2 + 2)

+(A3 +A4x)(x+ 1)2

0 = (A4 +A1 + 2)x3

+(2A4 +A3 +A2 +A1 + 3)x2

+(A4 + 2A3 + 2A1 + 4)x

+(A3 + 2A2 + 2A1 + 2) .
In order to turn the above into an identity we need to select Ai’s such that the coefficients of all powers of x become zero.
In other words, we need to solve the following system.

A1 +A4 = −2

A1 +A2 +A3 +2A4 = −3

2A1 +2A3 +A4 = −4

2A1 +2A2 +A3 = −2 .

This is a system of linear equations. There exists a standard method for solving system of linear equations called Gaussian
Elimination (also known as Row-Echelon Form Reduction Method). This method is very well suited for computer imple-
mentation. We illustrate it on this particular example; for a description of the method in full generality we direct the reader
to a standard course in Linear algebra.

System status Action

A1 +A4 = −2

A1 +A2 +A3 +2A4 = −3

2A1 +2A3 +A4 = −4

2A1 +2A2 +A3 = −2

Sel. pivot column 2. Eliminate non-pivot entries.

A1 +A4 = −2

A2 +A3 +A4 = −1

2A3 −A4 = 0

2A2 +A3 −2A4 = 2

Sel. pivot column 3. Eliminate non-pivot entries.

A1 +A4 = −2

A2 +A3 +A4 = −1

2A3 −A4 = 0

−A3 −4A4 = 4

Sel. pivot column 4. Eliminate non-pivot entries.

A1 +A4 = −2

A2 + 3
2A4 = −1

A3 −A4

2 = 0

− 9
2A4 = 4

Sel. pivot column 5. Eliminate non-pivot entries.
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A1 = − 10
9

A2 = 1
3

A3 = − 4
9

A4 = − 8
9

Final result.

Therefore, the final partial fraction decomposition is the following.

x4

x4 + 2x3 + 3x2 + 4x+ 2
= 1 +

−2x3 − 3x2 − 4x− 2

x4 + 2x3 + 3x2 + 4x+ 2

= 1 +
− 10

9

(x+ 1)
+

1
3

(x+ 1)2
+
− 8

9x−
4
9

(x2 + 2)

Therefore we can integrate as follows.∫
x4

(x2 + 2)(x+ 1)2
dx =

∫ (
1 +

− 10
9

(x+ 1)
+

1
3

(x+ 1)2
+
− 8

9x−
4
9

(x2 + 2)

)
dx

=

∫
dx− 10

9

∫
1

(x+ 1)
dx+

1

3

∫
1

(x+ 1)2
dx

−8

9

∫
x

x2 + 2
dx− 4

9

∫
1

x2 + 2
dx

= x− 1

3
(x+ 1)−1 − 10

9
log (x+ 1)

−4

9
log

(
x2 + 2

)
− 2

9

√
2 arctan

(√
2

2
x

)
+ C

Solution. 19.13. This is a concise solution written in a form suitable for exam taking. We set up the partial fraction
decomposition as follows.

3x2 + 2x− 1

(x− 1)(x2 + 1)
=

A

x− 1
+
Bx+ C

x2 + 1
.

Therefore 3x2 + 2x− 1 = A(x2 + 1) + (Bx+ C)(x− 1).

• We set x = 1 to get 4 = 2A, so A = 2.

• We set x = 0 to get −1 = A− C, so C = 3.

• Finally, set x = 2 to get 15 = 5A+ 2B + C, so B = 1.

We can now compute the integral as follows.∫ (
2

x− 1
+

x+ 3

x2 + 1

)
dx = 2 ln(|x− 1|) +

1

2
ln(x2 + 1) + 3 arctanx+K .

Solution. 19.11 This problem can be solved directly with a substitution shortcut, or by the standard method.
Variant I (standard method).∫
x5

x3 − 1
dx=

∫ (
x2 +

x2

x3 − 1

)
dx Polyn. long div.

=
x3

3
+

∫
x2

(x− 1)(x2 + x+ 1)
dx part. frac.

=
x3

3
+

∫ ( 1
3

x− 1
+

2
3x+ 1

3

x2 + x+ 1

)
dx complete square

=
x3

3
+

1

3
ln |x− 1|+ 2

3

∫
x+ 1

2(
x+ 1

2

)2
+ 3

4

dx Set
u =

(
x+ 1

2

)2
+ 3

4
1
2du =

(
x+ 1

2

)
dx

=
x3

3
+

1

3
ln |x− 1|+ 1

3

∫
du

u

=
x3

3
+

1

3
ln |x− 1|+ 1

3
ln |u|+ C

=
x3

3
+

1

3
ln |x− 1|+ 1

3
ln |x2 + x+ 1|+ C
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Variant II (shortcut method).∫
x5

x3 − 1
dx =

∫
x5 − x2 + x2

x3 − 1
dx

=

∫
x2(x3 − 1) + x2

x3 − 1
dx

=

∫
x2dx+

∫
x2

x3 − 1
dx

=
x3

3
+

∫ d
(
x3

3

)
x3 − 1

=
x3

3
+

1

3

∫
d
(
x3 − 1

)
x3 − 1

Set u = x3 − 1

=
x3

3
+

1

3

∫
du

u

=
x3

3
+

1

3
ln |u|+ C

=
x3

3
+

1

3
ln
∣∣x3 − 1

∣∣+ C .

The answers obtained in the two solution variants are of course equal since

ln |x− 1|+ ln |x2 + x+ 1| = ln
∣∣(x− 1)

(
x2 + x+ 1

)∣∣ = ln
∣∣x3 − 1

∣∣ .

5.2.3 A large example illustrating the complete algorithm

Problem 20. Integrate ∫
x6 − x5 + 9

2x
4 − 4x3 + 13

2 x
2 − 7

2x+ 11
4

x5 − x4 + 3x3 − 3x2 + 9
4x−

9
4

dx .

Solution. 20.
Step 1. The first step of our algorithm is to reduce the fraction so that numerator has smaller degree than the denominator.
This is done using polynomial long division as follows.

Variable name(s): x1 division steps total.

Remainder
3
2x

4 −x3 + 17
4 x

2 − 5
4x + 11

4

Divisor(s) Quotient(s)

x5 − x4 + 3x3 − 3x2 + 9
4x−

9
4 x

Dividend

x6 −x5 + 9
2x

4 −4x3 + 13
2 x

2 − 7
2x + 11

4

x6 −x5 +3x4 −3x3 + 9
4x

2 − 9
4x

3
2x

4 −x3 + 17
4 x

2 − 5
4x + 11

4

In other words,

x6 − x5 + 9
2x

4 − 4x3 + 13
2 x

2 − 7
2x+ 11

4 =(x5 − x4 + 3x3 − 3x2 + 9
4x−

9
4 )x

+ 3
2x

4 − x3 + 17
4 x

2 − 5
4x+ 11

4 ,
and therefore
x6 − x5 + 9

2x
4 − 4x3 + 13

2 x
2 − 7

2x+ 11
4

x5 − x4 + 3x3 − 3x2 + 9
4x−

9
4

=x+
3
2x

4 − x3 + 17
4 x

2 − 5
4x+ 11

4

x5 − x4 + 3x3 − 3x2 + 9
4x−

9
4

=x+
6x4 − 4x3 + 17x2 − 5x+ 11

4x5 − 4x4 + 12x3 − 12x2 + 9x− 9
.

Set
N(x) = 6x4 − 4x3 + 17x2 − 5x+ 11

and
D(x) = 4x5 − 4x4 + 12x3 − 12x2 + 9x− 9 .

Step 2. (Split into partial fractions). Factor the denominator D(x) = 4x5 − 4x4 + 12x3 − 12x2 + 9x− 9.
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We recall from elementary algebra that there is a trick to find all rational roots of D(x) on condition D(x) has in-
teger coefficients. It is well known that when p

q is a rational number, then ±pq may be a root of the integer coefficient

polynomial D(x) only if p is a divisor of the constant term of D(x), and q is a divisor of the leading coefficient of D(x).
Since in our case the leading coefficient is 4 and the constant term is -9, the only possible rational roots of D(x) are
±1,±3,±9,± 1

2 ,±
3
2 ,±

9
2 ,±

1
4 ,±

3
4 ,±

9
4 . A rational number r is a root of D(x) if and only if substituting x = r yields 0.

Direct check shows that, for example, D(−1) = −50. However, D(1) = 0 and therefore using polynomial division we
get that D(x) = (x − 1)(4x4 + 12x2 + 9). We recognize that the second multiplicand is an exact square and therefore
D(x) = (x− 1)(2x2 + 3)2.

So far we got
N(x)

D(x)
=

6x4 − 4x3 + 17x2 − 5x+ 11

(x− 1)(2x2 + 3)2
.

In order to split N(x)
D(x) into partial fractions, we need to find numbers A,B,C,D,E such that

6x4 − 4x3 + 17x2 − 5x+ 11

(x− 1)(2x2 + 3)2
=

A

(x− 1)
+

Bx+ C

(2x2 + 3)
+

Dx+ E

(2x2 + 3)2
.

After clearing denominators, we see that this amounts to finding A,B,C,D,E such that

6x4 − 4x3 + 17x2 − 5x+ 11 = A(2x2 + 3)2 + (Bx+ C)(2x2 + 3)(x− 1) + (Dx+ E)(x− 1) .

Plugging in x = 1 we see that 25 = 25A and so A = 1. We may plug back A = 1 and regroup to get

2x4 − 4x3 + 5x2 − 5x+ 2 = (Bx+ C)(2x2 + 3)(x− 1) + (Dx+ E)(x− 1) .

Dividing both sides by (x− 1) we get

2x3 − 2x2 + 3x− 2 = (Bx+ C)(2x2 + 3) +Dx+ E .

Regrouping we get
x3(2− 2B) + x2(−2− 2C) + x(3− 3B −D) + (−2− 3C − E) = 0 .

As x is an indeterminate, the above expression may vanish only if all coefficients in the preceding expression vanish. Therefore
we get the system ∣∣∣∣∣∣∣∣∣

2− 2B = 0

−2− C = 0

3− 3B −D = 0

−2− 3C − E = 0 .

We may solve the above linear system using the standard algorithm for solving linear systems (the algorithm is called row
reduction and is also known as Gaussian elimination). The latter algorithm is studied in any standard the Linear algebra
course. Alternatively, we see from the first equations B = 1, C = −1, and substituting in the remaining equations we see
D = 0, E = 1. Finally, we check that

x6 − x5 + 9
2x

4 − 4x3 + 13
2 x

2 − 7
2x+ 11

4

x5 − x4 + 3x3 − 3x2 + 9
4x−

9
4

= x+
1

(x− 1)
+

x− 1

(2x2 + 3)
+

1

(2x2 + 3)2
.

Step 3. (Find the integral of each partial fraction).∫
xdx =

x2

2
+ C∫

1

x− 1
dx = ln |x− 1|+ C∫

x− 1

2x2 + 3
dx =

∫
x

2x2 + 3
dx− 1

3

∫
1

2
3x

2 + 1
dx

=

∫ d
(
x2

2

)
2x2 + 3

dx− 1

3

∫
1(√

2
3x
)2

+ 1

dx

=
1

4

∫
d(2x2 + 3)

2x2 + 3
dx− 1

3

∫ d
(√

2
3x
)

√
2
3(√

2
3x
)2

+ 1

=
1

4
ln(2x2 + 3)−

√
6

6
arctan

(√
2

3
x

)
+ C .
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The last integral is ∫
1

(2x2 + 3)2
dx =

1

9

∫ d
(√

2
3x
)

√
2
3((√

2
3x
)2

+ 1

)2

=

√
6

18

∫ d
(√

2
3x
)

((√
2
3x
)2

+ 1

)2 Set y =
√

2
3x

=

√
6

18

∫
dy

(y2 + 1)2
.

The general form of the integral

∫
dy

(y2 + 1)2
is solved in the theoretical discussion by integration by parts. As a review of

the theory, we redo the computations directly.

C + arctan y =

∫
dy

y2 + 1

=
y

y2 + 1
+

∫
2y2dy

(y2 + 1)2
=

y

y2 + 1
+

∫
2(y2 + 1− 1)dy

(y2 + 1)2

=
y

y2 + 1
+ 2

∫
dy

(y2 + 1)
− 2

∫
dy

(y2 + 1)2
.

Transferring summands we get ∫
dy

(y2 + 1)2
=

1

2

(
y

y2 + 1
+ arctan y

)
+ C .

We recall that y =
√

2
3x and therefore

∫
dx

(2x2 + 3)2
=

√
6

36


√

2
3x(√

2
3x
)2

+ 1

+ arctan

(√
2

3
x

)+ C

To get the final answer we need to collect all terms, to get a final answer:

1

6

(
x

2x2 + 3

)
− 5
√

6

36
arctan

(√
2

3
x

)
+

1

4
ln(2x2 + 3) + ln |x− 1|+ x2

2
+ C .

6 Trigonometric integrals

Problem 21. Integrate. The answer key has not been proofread, use with caution.

1.

∫
sin(3x) cos(2x)dx.

answer:−1
10

cos(5x)−1
2

cosx+C

2.

∫
sinx cos(5x)dx.

answer:−1
12

cos(6x)+1
8

cos(4x)+C

3.

∫
cos(3x) sin(2x)dx.

answer:−1
10

cos(5x)+1
2

cosx+C

4.

∫
sin(5x) sin(3x)dx.

answer:1
4

sin(2x)−1
16

sin(8x)+C

5.

∫
cos(x) cos(3x)dx.

answer:1
8

sin(4x)+1
4

sin(2x)+C
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Problem 22. Integrate.

1.

∫
sin2 x cosxdx.

answer:1
3

sin3x+C

2.

∫
sin2 xdx.

answer:x
2−1

4
sin(2x)+C

3.

∫
cos3 xdx.

answer:sinx−1
3

sin3x+C

Problem 23. Integrate.

1.

∫
secxdx.

answer:ln|secx+tanx|=ln

∣∣∣∣
∣∣
1+tan(x2)
1−tan(x2)

∣∣∣∣
∣∣+C

2.

∫
sec3 xdx.

answer:1
2

(secxtanx+ln|secx+tanx|)+C

3.

∫
tan3 xdx.

answer:1
2

tan2x−ln|secx|+C

4.

∫
sec2 x tan2 xdx.

answer:tan3x
3

+C

Problem 24. Integrate.

1.

∫
sin(5x) sin(2x)dx.

answer:1
2

(sin(3x)
3−

sin(7x)
7

)+C

2.

∫
sinx cos(2x)dx.

answer:1
2

(cosx−cos(3x)
3

)+C

3.

∫
sec θdθ.

answer:ln|secθ+tanθ|+C

4.

∫
sec3 θdθ.

answer:1
2

(ln|tanθ+secθ|+secxtanx)+C

5.

∫
tan θdθ. answer:ln|secθ|+C

6.1 Trigonometric integrals solved via general method x = 2arctan t

Problem 25. Integrate.

1.

∫
1

3 + cosx
dx.

answer:
1
√

2
arctan(1

√
2

tan(x
2

))+C

2.

∫
1

4 + cosx
dx.

answer:
2

15

√
15arctan(√15

5
tan(x

2

))+C
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3.

∫
1

3 + sinx
dx.

answer:
1
√

2
arctan

3tan(x2)+1

2
√

2


+C

4.

∫
1

2 + tanx
dx. (Hint: this integral can be done simply with the substitution x = arctan t.)

answer:
1

5
ln(sinx+2cosx)+

2

5
x+C

5.

∫
dx

2 sinx− cosx+ 5
.

answer:

√
5

5
arctan(3

√
5

(tan(θ
2

)+
1

3

))+C

Solution. 25.1 We to use the standard rationalizing substitution x = 2 arctan t, t = tan
(
x
2

)
. We recall that from the double

angle formulas it follows that

cos(2 arctan t) =
cos2(arctan t)− sin2(2 arctan t)

cos2(arctan t) + sin2(arctan t)
=

1− t2

1 + t2
.

Therefore we can solve the integral as follows.∫
1

3 + cosx
dx =

∫
1

3 + cos(2 arctan t)
d (2 arctan t) Set x = 2 arctan t

=

∫
1(

3 + 1−t2
1+t2

) 2

(1 + t2)
dt

=

∫
2

4 + 2t2
dt

=

∫
1

2 + t2
dt

=

√
2

2
arctan

(√
2

2
t

)
+ C

=

√
2

2
arctan

(√
2

2
tan

(x
2

))
+ C .

Solution. 25.4 This integral is of none of the forms that can be integrated quickly. Therefore we can solve it using the
standard rationalizing substitution x = 2 arctan t, t = tan

(
x
2

)
. This results in somewhat long computations and we invite

the reader to try it.
However, as proposed in the hint, the substitution x = arctan t works much faster:∫

1

2 + tanx
dx =

∫
1

2 + tan(arctan t)
d (arctan t) Substitute x = arctan t

=

∫
1

(2 + t)

1

(1 + t2)
dt part. fractions

=

∫ ( 1
5

(t+ 2)
+
− t

5 + 2
5

(t2 + 1)

)
dt

=
1

5
ln |t+ 2| − 1

10
ln(t2 + 1) +

2

5
arctan t+ C t = tanx

=
1

5
ln |tanx+ 2| − 1

10
ln(tan2 x+ 1) +

2

5
x+ C

=
1

5
ln | tanx+ 2|+ 1

5
ln |cosx|+ 2

5
x+ C

=
1

5
ln |(tanx+ 2) cosx|+ 2

5
x+ C

=
1

5
ln |sinx+ 2 cosx|+ 2

5
x+ C.

Solution. 25.5.
Set x = 2 arctan t. As studied, this substitution implies cosx = 1−t2

1+t2 , sinx = 2t
1+t2 , dx = 2

1+t2 dt. Therefore
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∫
dx

2 sinx− cosx+ 5
=

∫
2dt

(1 + t2)
(

2 2t
t2+1 −

(−t2+1)
t2+1 + 5

) Set x = 2 arctan t

=

∫
dt

3t2 + 2t+ 2

=

∫
dt

3
(
t2 + 2

3 t+ 1
9 −

1
9 + 2

3

)
=

∫
dt

3
((
t+ 1

3

)2
+ 5

9

)

=

∫
dt

5
3

((
3√
5

(
t+ 1

3

))2
+ 1

)
Set

w = 3√
5

(
t+ 1

3

)
=
√
5
5 (3t+ 1)

dw = 3√
5
dt

dt =
√
5
3 dw

=

∫ √
5
3 dw

5
3 (w2 + 1)

=

√
5

5
arctanw + C

=

√
5

5
arctan

(√
5

5
(3t+ 1)

)
+ C

=

√
5

5
arctan

(√
5

5

(
3 tan

(x
2

)
+ 1
))

+ C .

7 Trigonometric and Euler substitutions

7.1 Transforming radicals of quadratics to the forms
√
u2 + 1,

√
1− u2,

√
u2 − 1

Problem 26. Find a linear substitution (via completing the square) to transform the radical to a multiple of an expression
of the form

√
u2 + 1,

√
u2 − 1 or

√
1− u2.

1.
√
x2 + x+ 1.

2.
√
−2x2 + x+ 1.

Solution. 26.1 √
x2 + x+ 1 =

√
x2 + 2

1

2
x+

1

4
− 1

4
+ 1

=

√(
x+

1

2

)2

+
3

4

=

√√√√3

4

(
4

3

(
x+

1

2

)2

+ 1

)

=

√
3

2

√(
2√
3

(
x+

1

2

))2

+ 1

=

√
3

2

√
u2 + 1,

where u = 2√
3

(
x+ 1

2

)
= 2
√
3

3 x+
√
3
3 .
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Solution. 26.2 √
−2x2 + x+ 1 =

√
−2

(
x2 − 1

2
x− 1

2

)
=

√
−2

(
x2 − 2

1

4
x+

1

16
− 1

16
− 1

2

)

=

√√√√−2

((
x− 1

16

)2

− 9

16

)

=

√√√√9

8

(
−16

9

(
x− 1

16

)2

+ 1

)

=
3√
8

√
−
(

4

3

(
x− 1

16

))2

+ 1

=
3√
8

√
−u2 + 1

where u = 4
3

(
x− 1

16

)
= 4

3x−
1
12 .

7.2 Trig or Euler substitution, solutions use trig substitution

Problem 27. Compute the integral using a trigonometric substitution.

1.

∫ √
9− x2
x2

dx .

answer:−

√9−x2
x−arcsin(x3)+C

Solution. 27.1 ∫ √
9− x2
x2

dx =

∫
3
√

cos2 θ

9 sin2 θ
(3 cos θ)dθ

Set x = 3 sin θ
for θ ∈

[
π
2 , 0
)
∪
(
0, π2

]
dx = 3 cos θdθ

= 9

∫
| cos θ|
sin2 θ

cos θdθ
For θ ∈

[
π
2 , 0
)
∪
(
0, π2

]
we have| cos θ| = cos θ

=

∫
cot2 θdθ

=

∫
(csc2 θ − 1)dθ

= − cot θ − θ + C

= −
√

9− x2
x

− arcsin
(x

3

)
+ C,

where we expressed cot θ via sin θ by considering the following triangle.

θ

x
3

√

9 − x2

7.3 Trig or Euler substitution, solutions use Euler substitution

7.3.1 Case 1:
√
x2 + 1

Problem 28. Integrate

1.

∫ √
x2 + 1dx

answer:1
2
x√x2+1+1

2
ln(√x2+1+x)+C

2.

∫ √
x2 + 2dx

answer:ln(√1
2
x2+1+

√
2

2
x)+

√
2

2
x√1

2
x2+1+C
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3.

∫ √
x2 + x+ 1dx

answer:3
4

(1
2

ln(√4
3
(x+1

2
)2+1+2

3

√
3(x+1

2))+

√
3

3(x+1
2)√4

3
(x+1

2
)2+1)+C

4.

∫ √
(2x2 + 2x+ 1)dx

answer:

√
2

4

(1
2
(2x+1)√(2x+1)2+1+1

2
ln(√(2x+1)2+1+2x+1))+C

5.

∫ √
(3x2 + 2x+ 1)dx

answer:2
9

√
3(1

2
ln(√9

2
(x+1

3
)2+1+3

2

√
2(x+1

3))+3
4

√
2(x+1

3)√9
2
(x+1

3
)2+1)+C

6.

∫ √
x2 + 1

x+ 1
dx

answer:

−
√

2ln(√x2+1−x+
√

2−1)
+
√

2ln(√x2+1−x−
√

2−1)
+ln(√x2+1−x)
+√x2+1

Solution. 28.1.
This problem can be solved both via the Euler substitution and by transforming to a trigonometric integral and solving

the trigonometric integral on its own. We present both variants.
28.1.Variant I. We recall the Euler substitution for

√
x2 + 1 given in (4):

x =
1

2

(
1

t
− t
)

√
x2 + 1 =

1

2

(
1

t
+ t

)
dx = −1

2

(
1

t2
+ 1

)
dt

t =
√
x2 + 1− x .

Therefore∫ √
(x2 + 1)dx=−

∫
1

4

(
1

t
+ t

)(
1

t2
+ 1

)
dt

=−1

4

∫ (
1

t3
+ 2

1

t
+ t

)
dt

=−1

4

(
− t
−2

2
+ 2 ln |t|+ t2

2

)
+ C

=
1

8

(
t−2 − t2

)
+

1

2
ln |t|+ C

a2 − b2 =
(a− b)(a+ b)

=
1

2

1

2

(
t−1 − t

)
︸ ︷︷ ︸

=x


1

2

(
t−1 + t

)
︸ ︷︷ ︸

=
√
x2+1

+
1

2
ln |t|+ C

=
1

2
x
√
x2 + 1− 1

2
ln
∣∣∣√x2 + 1− x

∣∣∣+ C See below

=
1

2
x
√
x2 + 1 +

1

2
ln
(√

x2 + 1 + x
)

+ C .

Our problem is solved.
A few comments are in order. In the above expression we would have obtained a perfectly good answer to the problem if

we plugged in t =
√
x2 + 1−x into the fourth line, however our answer would look much more complicated. Indeed, had we

not used the formula a2−b2 = (a−b)(a+b) in the fourth line, the term t−2−t2 would be equal to 1
(
√
x2+1−x)2−(

√
x2 + 1−x)2.

In turn, the term 1
(
√
x2+1−x)2 − (

√
x2 + 1 − x)2 can be simplified to 4x

√
x2 + 1 as follows. We note that the computations

below are included here illustrate some of the algebraic issues arising when dealing with integrals of radicals.
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t−2 − t2=
1

(
√
x2 + 1− x)2

− (
√
x2 + 1− x)2

=
(
√
x2 + 1 + x)2

(
√
x2 + 1− x)2(

√
x2 + 1 + x)2

−(
√
x2 + 1− x)2

=
(
√
x2 + 1 + x)2

((
√
x2 + 1)2 − x2)2︸ ︷︷ ︸

=1

− (
√
x2 + 1− x)2

=4x
√
x2 + 1 .

Of course, the above computations are unnecessary if we use the formula a2 − b2 = (a− b)(a+ b) as done in the original
solution.
We note that in the last transformation we transformed ln

∣∣√x2 + 1− x
∣∣ to ln

(√
x2 + 1− x

)
because the quantity

√
x2 + 1−x

is always positive. The proof of that fact we leave for the reader’s exercise.
Finally, we note that as a last simplification to our solution, we used the transformation ln |t| = ln

(√
x2 + 1− x

)
=

− ln | 1t | = − ln
(√
x2 + 1 + x

)
. This is seen as follows.

ln |t| = − ln

∣∣∣∣1t
∣∣∣∣

= − ln

(
1√

x2 + 1− x

)
rationalize

= − ln

( (√
x2 + 1 + x

)(√
x2 + 1− x

) (√
x2 + 1 + x

))

= − ln

(√
x2 + 1 + x

x2 + 1− x2

)
= − ln

(√
x2 + 1 + x

)
.

28.1. Variant II. In this variant we transform to a trigonometric integral and solve it using ad-hoc methods. We recall
that if we decided to solve the trigonometric integral using the standard substitution θ = 2 arctan t, we would arrive at one
of the Euler substitutions.∫ √

x2 + 1dx =

∫ √
tan2 θ + 1 d(tan θ)

Set
x = tan θ
θ ∈

(
−π2 ,

π
2

)
=

∫ √
sec2θ sec2 θdθ sec θ > 0

=

∫
sec3 θdθ Problem 23.2

=
1

2
(tan θ sec θ + ln | sec θ + tan θ|) + C

θ

x

1

√

x2 + 1

sec θ =
√
x2 + 1

tan θ = x

=
1

2

(
x
√
x2 + 1 + ln

(√
x2 + 1 + x

))
+ C
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Solution. 28.4

∫ √
(2x2 + 2x+ 1)dx=

∫ √
2

√√√√((x+
1

2

)2

+
1

4

)
dx complete square

=

√
2

2

∫ √√√√(4

(
x+

1

2

)2

+ 1

)
dx

=

√
2

2

∫ √(
(2x+ 1)

2
+ 1
)1

2
d (2x+ 1) Set u = 2x+ 1

=

√
2

4

∫ √
(u2 + 1)du

Euler subst.:
u = 1

2

(
1
t − t

)
,

t > 0

du = − 1
2

(
1
t2 + 1

)
dt

√
u2 + 1 = 1

2

(
1
t + t

)
t =
√
u2 + 1− u

=−
√

2

16

∫ (
1

t
+ t

)(
1

t2
+ 1

)
dt

=−
√

2

16

∫ (
t−3 + 2t−1 + t

)
dt

=−
√

2

16

(
− t
−2

2
+ 2 ln |t|+ t2

2

)
+ C

simplify as
in Problem 28.1

=

√
2

8

(
u
√
u2 + 1 + ln

(√
u2 + 1 + u

))
+ C

=

√
2

8

(
(2x+ 1)

√
(2x+ 1)2 + 1

+ ln
(√

(2x+ 1)2 + 1 + 2x+ 1
))

+ C.

Solution. 28.6
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∫ √
x2 + 1

x+ 1
dx=

∫ 1
2

(
1
t + t

)
1
2

(
1
t − t

)
+ 1

d

(
1

2

(
1

t
− t
)) Euler sub:

x= 1
2

(
1
t − t

)
√
x2 + 1= 1

2

(
1
t + t

)
=

∫ (
1 + t2

1− t2 + 2t

)
1

2

(
−t−2 − 1

)
dt

=

∫
1

2

(1 + t2)
(
−t−2 − 1

)
1− t2 + 2t

dt

=
1

2

∫
t4 + 2t2 + 1

t4 − 2t3 − t2
dt pol. long div.

=
1

2

∫ (
1 +

2t3 + 3t2 + 1

t2 (t2 − 2t− 1)

)
dt part. fractions

=
1

2

∫ (
1 +

2
√

2

t−
√

2− 1
+

−2
√

2

t+
√

2− 1
+

2

t
+
−1

t2

)
dt

=−
√

2 ln
∣∣∣t+
√

2− 1
∣∣∣+
√

2 ln
∣∣∣t−√2− 1

∣∣∣
+

1

2
t−1 + ln |t|+ 1

2
t+ C t =

√
x2 + 1− x

=−
√

2 ln
(√

x2 + 1− x+
√

2− 1
)

+
√

2 ln
(√

x2 + 1− x−
√

2− 1
)

+ ln
(√

x2 + 1− x
)

+
1

2

(√
x2 + 1− x

)−1
+

1

2

√
x2 + 1− 1

2
x+ C

Last 3 terms
simplify

=−
√

2 ln
(√

x2 + 1− x+
√

2− 1
)

+
√

2 ln
(√

x2 + 1− x−
√

2− 1
)

+ ln
(√

x2 + 1− x
)

+
√
x2 + 1 + C .

Problem 29. Let b2 − 4ac < 0 and a > 0 be (real) numbers. Show that∫ √
(ax2 + bx+ c)dx =

√
aD

 1
2 ln

 2
√
Da

√(
2xa+b

2
√
Da

)2
+1+2xa+b

2
√
Da

+
1
2 (2xa+b)

2
√
Da

√(
2xa+b
2
√
Da

)2
+ 1

 ,

where D =
4ac− b2

4a2
.

7.3.2 Case 2:
√

1− x2

Problem 30. Integrate

1.

∫ √
1− x2dx

answer:

2.

∫ √
2− x2dx

3.

∫ √
−x2 + x+ 1dx

4.

∫ √
2− x− x2dx

5.

∫ √
1− x2
1 + x

dx

6.

∫ √
1− x2
2 + x

dx

Solution. 30.1
Variant I. This integral is possibly fastest to solve directly using a trig substitution. In the next variant of the solution

we show the Euler substitution.
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∫ √
1− x2dx =

∫ √
1− cos2 θd(cos θ) Set x = cos θ, θ ∈ [0, π]

=

∫ √
sin2 θ(− sin θ)dθ θ ∈ [0, π]⇒ sin θ ≥ 0

= −
∫

sin2 θdθ sin2 θ = 1−cos(2θ)
2

= −
∫

1− cos(2θ)

2
dθ

= −θ
2

+
sin(2θ)

4
+ C

= −θ
2

+
2 sin θ cos θ

4
+ C

x=cos θ
θ=arccosx

sin θ=sin (arccosx)

=
√

1− x2

= −arccosx

2
+
x
√

1− x2
2

+ C

=
arcsinx

2
+
x
√

1− x2
2

+K ,

where for the last equality we recall that the

derivative of arcsinx is minus the derivative of arccosx.
Variant II. We show how to do this integral via the Euler substitution x = cos(2 arctan t).

∫ √
1− x2dx =

∫ √
1− cos2 θd(cos θ)

Set
x=cos(2 arctan t)

1
2 arccosx=arctan t

x= 1−t2
1+t2

= 2
1+t2 − 1√

1− x2= 2t
1+t2

=

∫
2t

1 + t2
d

(
1− t2

1 + t2

)
=

∫
2t

1 + t2

(
−4t

(1 + t2)
2

)
dt

Integral rational
function
we skip details

=
−t

t2 + 1
+

2t

(t2 + 1)
2

− arctan t+ C

= −1

2

√
1− x2 +

√
1− x2
t2 + 1

− arctan t+ C

=
1

2

√
1− x2

(
2

t2 + 1
− 1

)
− arctan t+ C

=
x
√

1− x2
2

− 1

2
arccosx+ C

=
x
√

1− x2
2

+
1

2
arcsinx+K,

where for the very last equality we used

the fact that the derivatives of arcsinx and arccosx are negatives of one another.
Variant III. We show how to do this integral geometrically, provided already know the area of a sector of circle. Of

course, here we assume we have already derived the formula for an area of a circle. We warn the reader that if we did use an
integral to derive the formula for sector area, it is possible we are making a circular reasoning argument. The danger is of
course not real we did the integral purely algebraically in the preceding solution variants. In this way, the present solution
Variant is simply a geometric interpretation of the problem.

By the Fundamental Theorem of Calculus, the indefinite integral measures up to a constant the area locked under the
graph of

√
1− x2. This graph is a part of a circle. Therefore, up to a constant,

∫ √
1− t2dt equals

∫ x
0

√
1− t2dt. In turn
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∫ x
0

√
1− t2dt is given by the area highlighted in the picture below.

Px

A

B

arcsin x
P

√

1 − x2

Q

O

Area(A) =
length

( _

PQ
)

2π
π =

length
( _

PQ
)

2
=

arcsinx

2

Area(B) = Area(4OPQ) =
x
√

1− x2
2∫ x

0

√
1− t2dt = Area(A) + Area(B)

=
arcsinx

2
+
x
√

1− x2
2

⇒∫ √
1− x2dx =

arcsinx

2
+
x
√

1− x2
2

+ C .

Solution. 30.5 In this problem solution we use the standard Euler substitution x = cos(2 arctan t). We recall from (8) that

x = cos(2 arctan t) =
1− t2

1 + t2
arccos(x) = 2 arctan t

dx = − 4t

(1 + t2)2
dt√

1− x2 = sin(2 arctan t) =
2t

1 + t2

t =

√
1− x2
x+ 1

.∫ √
1− x2
1 + x

dx=

∫
t

(
− 4t

(1 + t2)
2

)
dt

Set x = 1−t2
1+t2

Use f-las above

=−4

∫
t2

(1 + t2)
2 dt

=−4

∫
1 + t2 − 1

(1 + t2)
2 dt

=−4

∫ (
1

1 + t2
− 1

(1 + t2)
2

)
dt

=−4

(
arctan t− 1

2

(
arctan t+

t

1 + t2

))
+ C

=−2

(
arctan t− t

1 + t2

)
+ C

=−2

(
arctan

(√
1− x2
1 + x

)
− 1

2

√
1− x2

)
+ C

=−2 arctan t+
√

1− x2 + C Use f-las above

=− arccosx+
√

1− x2 + C

=arcsinx+
√

1− x2 +K .
We have included the last equality to remind the student that derivatives of arcsin(x) and arccosx are negatives of one

another.

7.3.3 Case 3:
√
x2 − 1

Problem 31. Integrate

1.

∫ √
x2 − 1dx
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2.

∫ √
x2 − 2dx

3.

∫ √
2x2 + x− 1dx

4.

∫ √
x2 + x− 1dx

7.4 Theory through problems (Optional material)

7.5 Case 1:
√
x2 + 1

7.5.1 x = cot θ

Problem 32. 1. Express x, dx and
√
x2 + 1 via θ and dθ for the trigonometric substitution x = cot θ, θ ∈ (0, π).

2. Express x, dx and
√
x2 + 1 via t and dt for the Euler substitution x = cot(2 arctan t), t > 0. Express t via x.

Solution. 32.1 The trigonometric substitution x = cot θ is given by√
x2 + 1 =

√
cot2 θ + 1

=

√
cos2 θ

sin2 θ
+ 1

=

√
cos2 θ + sin2 θ

sin2 θ

=

√
1

sin2 θ

when θ ∈ (0, π) we have

sin θ ≥ 0 and so
√

sin2 θ = sin θ

=
1

sin θ
= csc θ .

The differential dx can be expressed via dθ from x = cot θ. The substitution x = cot θ can be now summarized as:

x = cot θ
√
x2 + 1 =

1

sin θ
= csc θ

dx = − dθ

sin2 θ
= − csc2 θdθ

θ = arccotx .

Solution. 32.2 We recall that the substitution θ = 2 arctan t transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution θ = 2 arctan t after the substitution x = cot θ:

x = cot θ use θ = 2 arctan t

= cot (2 arctan t) use cot 2z =
cos(2z)

sin(2z)
=

1− tan2 z

2 tan z

=
1− tan2(arctan t)

2 tan(arctan t)

=
1− t2

2t

=
1

2

(
1

t
− t
)

.

We can furthermore compute

√
x2 + 1 =

√
1

4

(
1

t
− t
)2

+ 1

=
1

2

√(
1

t
+ t

)2
√(

1

t
+ t

)2

=
1

t
+ t because t > 0

=
1

2

(
1

t
+ t

)
.

(3)
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The differential dx can via dx as follows.

dx = d

(
1

2

(
1

t
− t
))

= −1

2

(
1

t2
− 1

)
.

Finally, we can subtract x =
1

2

(
1

t
− t
)

from
√
x2 + 1 =

1

2

(
1

t
+ t

)
to get that

t =
√
x2 + 1− x .

The Euler substitution x = cot θ = cot(arctan 2t) can be now summarized as:

x =
1

2

(
1

t
− t
)

√
x2 + 1 =

1

2

(
1

t
+ t

)
dx = −1

2

(
1

t2
+ 1

)
dt

t =
√
x2 + 1− x .

(4)

Problem 33. Let the variables x and t be related via
√
x2 + 1 = x+ t.

1. Express x via t.

2. Express
√
x2 + 1 via t alone.

3. Express dx via t and dt.

Solution. 33.1. √
x2 + 1 = x+ t square both sides
x2 + 1 = x2 + 2xt+ t2

−2xt = t2 − 1

x =
1

2

(
1

t
− t
)

.

Solution. 33.2.
Use Problem 33.1 to get: √

x2 + 1 = x+ t =
1

2

(
1

t
− t
)

+ t =
1

2

(
1

t
+ t

)
.

7.5.2 x = tan θ

Problem 34. 1. Express x, dx and
√
x2 + 1 via θ and dθ for the trigonometric substitution x = tan θ, θ ∈

(
−π2 ,

π
2

)
.

2. Express x, dx and
√
x2 + 1 via t and dt for the Euler substitution x = tan(2 arctan t), t ∈ (−1, 1). Express t via x.

Solution. 34.1 The trigonometric substitution x = tan θ is given by√
x2 + 1 =

√
tan2 θ + 1

=

√
sin2 θ

cos2 θ
+ 1

=

√
sin2 θ + cos2 θ

cos2 θ

=

√
1

cos2 θ

when θ ∈
(
−π

2
,
π

2

)
we have

cos θ > 0 and so
√

cos2 θ = cos θ

=
1

cos θ
= sec θ .
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The differential dx can be expressed via dθ from x = tan θ. The substitution x = tan θ can be now summarized as:

x = tan θ
√
x2 + 1 =

1

cos θ
= sec θ

dx =
dθ

cos2 θ
= sec2 θdθ

θ = arctanx .

Solution. 34.2 We recall that the substitution θ = 2 arctan t transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution θ = 2 arctan t after the substitution x = tan θ:

x = tan θ use θ = 2 arctan t

= tan (2 arctan t) use: tan 2z =
sin(2z)

cos(2z)
=

2 tan z

1− tan2 z

=
2 tan(arctan t)

1− tan2(arctan t)

=
2t

1− t2
.

We can furthermore compute√
x2 + 1 =

√(
2t

1− t2

)2

+ 1

=

√
4t2 + (1− t2)2

(1− t2)2

=

√
(1 + t2)2

(1− t2)2

√
(1− t2)2 = 1− t2 because |t| < 1

=
1 + t2

1− t2

=
2− (1− t2)

1− t2
= −1 +

2

1− t2
.

(5)

From
√
x2 + 1 = −1 +

2

1− t2
and x =

2t

1− t2
we can express t via x:√

x2 + 1 = −1 +
2

1− t2

= −1 +
1

t

(
2t

1− t2

)
use x =

2t

1− t2
= −1 +

x

t
1 +

√
x2 + 1 =

x

t
t =

x

1 +
√
x2 + 1

=
x

1 +
√
x2 + 1

(
1−
√
x2 + 1

1−
√
x2 + 1

)
=

x(1−
√
x2 + 1)

1− x2 − 1

=

√
x2 + 1− 1

x
.

The differential dx can expressed via dt from x = 1 +
2

t2 − 1
. The Euler substitution x = tan θ = tan(2 arctan t) can now be

summarized as follows.

x =
2t

1− t2√
x2 + 1 = −1 +

2

1− t2

dx =
2(1 + t2)

(1− t2)2
dt

t =

√
x2 + 1− 1

x
.

(6)
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Problem 35. Let the variables x and t be related via
√
x2 + 1 = x

t − 1.

1. Express x via t.

2. Express
√
x2 + 1 via t alone.

3. Express dx via t and dt.

7.6 Case 2:
√
1− x2

7.6.1 x = cos θ

Problem 36. 1. Express x, dx and
√

1− x2 via θ and dθ for the trigonometric substitution x = cos θ, θ ∈ [0, π].

2. Express x, dx and
√

1− x2 via t and dt for the Euler substitution x = cos(2 arctan t), t ≥ 0. Express t via x.

Solution. 36.1 The trigonometric substitution x = cos θ is given by√
−x2 + 1 =

√
1− cos2 θ

=
√

sin2 θ
when θ ∈ [0, π] we have

sin θ ≥ 0 and so
√

sin2 θ = sin θ
= sin θ .

The differential dx can be expressed via dθ from x = cos θ. The substitution x = cos θ can be now summarized as:

x = cos θ√
−x2 + 1 = sin θ

dx = − sin θdθ
θ = arccosx .

Solution. 36.2 We recall that the substitution θ = 2 arctan t transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution 2 arctan t after the substitution x = cos θ:

x = cos θ use θ = 2 arctan t

= cos(2 arctan t) use cos(2z) =
1− tan2 z

1 + tan2 z

=
1− tan2(arctan t)

1 + tan2(arctan t)

=
1− t2

1 + t2
.

We can furthermore compute

√
−x2 + 1 =

√
1−

(
1− t2
1 + t2

)2

=

√
(1 + t2)2 − (1− t2)2

(1 + t2)2

=

√
4t2

(1 + t2)2

√
4t2 = 2t because t ≥ 0

=
2t

1 + t2
.

(7)

The differential dx can be computed from x = 1−t2
1+t2 . Finally, we can express t via x with a little algebra:
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x =
1− t2

1 + t2
(1 + t2)x = 1− t2
t2(x+ 1) = 1− x

t2 =
1− x
1 + x

t =

√
1− x
1 + x

here we use t > 0

t =

√
1− x√
1 + x

√
1 + x√
1 + x

t =

√
−x2 + 1

x+ 1
.

The Euler substitution x = cos(2 arctan t) can be now summarized as:

x =
1− t2

1 + t2√
−x2 + 1 =

2t

1 + t2

dx = − 4t

(t2 + 1)2
dt

t =

√
−x2 + 1

x+ 1
.

(8)

Problem 37. Let the variables x and t be related via
√
−x2 + 1 = (1− x)t.

1. Express x via t.

2. Express
√
−x2 + 1 via t alone.

3. Express dx via t and dt.

Solution. 37.1. √
−x2 + 1 = (1− x)t square both sides

(1− x)(1 + x) = (1− x)2t2 divide by (1− x)
1 + x = (1− x)t2

x(1 + t2) = t2 − 1

x =
t2 − 1

t2 + 1
= 1− 2

t2 + 1
.

Solution. 37.2.
Use Problem 37.1 to get √

−x2 + 1 = (1− x)t =

(
1−

(
1− 2t

t2 + 1

))
t =

2t

t2 + 1
.

7.6.2 x = sin θ

Problem 38. 1. Express x, dx and
√

1− x2 via θ and dθ for the trigonometric substitution x = sin θ, θ ∈
[
−π2 ,

π
2

]
.

2. Express x, dx and
√

1− x2 via t and dt for the Euler substitution x = sin(2 arctan t), t ∈ [−1, 1]. Express t via x.

Solution. 38.1 The trigonometric substitution x = sin θ is given by√
−x2 + 1 =

√
1− sin2 θ

=
√

cos2 θ
when θ ∈

[
−π2 ,

π
2

]
we have

cos θ ≥ 0 and so
√

cos2 θ = cos θ
= cos θ .
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The differential dx can be expressed via dθ from x = sin θ. The substitution x = sin θ can be now summarized as:

x = sin θ√
−x2 + 1 = sin θ

dx = cos θdθ
θ = arcsinx .

Solution. 38.2 We recall that the substitution θ = 2 arctan t transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution 2 arctan t after the substitution x = sin θ:

x = sin θ use θ = 2 arctan t

= sin(2 arctan t) use sin(2z) =
2 tan z

1 + tan2 z

=
2 tan(arctan t)

1 + tan2(arctan t)

=
2t

1 + t2
.

We can furthermore compute

√
−x2 + 1 =

√
1−

(
2t

1 + t2

)2

=

√
(1 + t2)2 − 4t2

(1 + t2)2

=

√
(1− t2)2

(1 + t2)2

√
(1− t2)2 = 1− t2 because |t| ≤ 1

=
1− t2

1 + t2

=
2− (1 + t2)

1 + t2

= −1 +
2

1 + t2
.

(9)

The differential dx can be computed from x = 2t
1+t2 . Finally, we can express t via x with a little algebra:√

−x2 + 1 = −1 +
2

1 + t2

= −1 +
1

t

(
2t

1 + t2

)
use x = 2t

1+t2

= −1 +
x

t
+1 to both sides

x

t
= 1 +

√
−x2 + 1

t =
x

1 +
√
−x2 + 1

=
x

(1 +
√
−x2 + 1)

(1−
√
−x2 + 1)

(1−
√
−x2 + 1)

=
1−
√
−x2 + 1

x
.

The Euler substitution x = sin(2 arctan t) can be now summarized as:

x =
2t

1 + t2√
−x2 + 1 = −1 +

2

1 + t2

dx = 2

(
1− t2

(1 + t2)2

)
dt

t =
1−
√
−x2 + 1

x
.

Problem 39. Let the variables x and t be related via
√
−x2 + 1 = 1− xt.
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1. Express x via t.

2. Express
√
−x2 + 1 via t alone.

3. Express dx via t and dt.

7.7 Case 3:
√
x2 − 1

7.7.1 x = sec θ

Problem 40. 1. Express x, dx and
√
x2 − 1 via θ and dθ for the trigonometric substitution x = csc θ, θ ∈

[
0, π2

]
∪
[
π, 3π2

)
.

2. Express x, dx and
√

1− x2 via t and dt for the Euler substitution x = sec(2 arctan t), t ∈ (−∞,−1) ∪ [1, 0). Express t
via x.

Solution. 40.1 The trigonometric substitution x = sec θ is given by

√
x2 − 1 =

√
sec2 θ − 1 =

√
1

cos2 θ
− 1

=

√
sin2 θ

cos2 θ
=
√

tan2 θ
when θ ∈ θ ∈

[
0, π2

)
∪
[
π, 3π2

)
we have

tan θ ≥ 0 and so
√

tan2 θ = tan θ
= tan θ .

The differential dx can be expressed via dθ from x = sec θ. The substitution x = sec θ can be now summarized as:

x = sec θ =
1

cos θ√
x2 − 1 = tan θ

dx =
sin θ

cos2 θ
dθ = sec θ tan θdθ

θ = sec-1 x .

Solution. 40.2 We recall that the substitution θ = 2 arctan t transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution 2 arctan t after the substitution x = sec θ:

x = sec θ =
1

cos θ
use θ = 2 arctan t

=
1

cos(2 arctan t)
use cos(2z) =

1− tan2 z

1 + tan2 z

=
1 + tan2(arctan t)

1− tan2(arctan t)

=
1 + t2

1− t2
= −1 +

2

1− t2
.

We can furthermore compute

√
x2 − 1 =

√(
1 + t2

1− t2

)2

− 1

=

√
(1 + t2)2 − (1− t2)2

(1− t2)2

=

√
4t2

(1− t2)2
t and 1− t2 have the same
sign for t ∈ (−∞,−1) ∪ [0, 1)

=
2t

1− t2
.

(10)
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The differential dx can be computed from x = 1+t2

1−t2 . Finally, we can express t via x with a little algebra:

x =
1 + t2

1− t2
(1− t2)x = 1 + t2

(1 + x)t2 = x− 1

t2 =
x− 1

x+ 1

t =


√

x−1
x+1 x > 1

−
√

x−1
x+1 x < −1

because when x < −1,
we have t ∈ (−∞,−1]

t =

{ √
x2−1
x+1 x > 1

−
√
x2−1
x+1 x < −1

.

The Euler substitution x = sec(2 arctan t) can be now summarized as:

x =
1 + t2

1− t2√
x2 − 1 =

2t

1− t2
dx =

4t

(1− t2)2
dt

t = ±
√
x2 − 1

x+ 1
.

Problem 41. Let the variables x and t be related via
√
x2 − 1 = (x+ 1)t.

1. Express x via t.

2. Express
√
x2 − 1 via t alone.

3. Express dx via t and dt.

Solution. 41.1. √
x2 − 1 = (x+ 1)t square both sides

(x− 1)(x+ 1) = (x+ 1)2t2 divide by (x+ 1)
x− 1 = (x+ 1)t2

x(1− t2) = 1 + t2

x =
1 + t2

1− t2
= −1 +

2

1− t2

Solution. 41.2.
We use Problem 41.1 to get √

x2 − 1 = (x+ 1)t =

(
−1 +

2

1− t2
+ 1

)
t =

2t

1− t2

7.7.2 x = csc θ

Problem 42. 1. Express x, dx and
√

1− x2 via θ and dθ for the trigonometric substitution x = csc θ, θ ∈
[
0, π2

]
∪
[
π, 3π2

)
.

2. Express x, dx and
√

1− x2 via t and dt for the Euler substitution x = csc(2 arctan t), t ∈ (−∞,−1) ∪ [0, 1). Express t
via x.

Solution. 42.1 The trigonometric substitution x = csc θ is given by√
x2 − 1 =

√
1

sin2 θ
− 1

=

√
cos2 θ

sin2 θ
=
√

cot2 θ
when θ ∈ θ ∈

[
0, π2

)
∪
[
π, 3π2

)
we have

cot θ ≥ 0 and so
√

cot2 θ = tan θ
= cot θ .

40



The differential dx can be expressed via dθ from x = csc θ. The substitution x = csc θ can be now summarized as:

x = csc θ√
x2 − 1 = cot θ

dx = − cos θ

sin2 θ
dθ = − csc θ cot θdθ

θ = csc-1 x .

Solution. 42.2 We recall that the substitution θ = 2 arctan t transforms a trigonometric integral into an integral of a rational
function. We now apply the substitution 2 arctan t after the substitution x = csc θ:

x = csc θ =
1

sin θ
use θ = 2 arctan t

=
1

sin(2 arctan t)
use sin(2z) =

2 tan z

1 + tan2 z

=
1 + tan2(arctan t)

2 tan(arctan t)

=
1 + t2

2t

=
1

2

(
1

t
+ t

)
.

We can furthermore compute

√
x2 − 1 =

√(
1 + t2

2t

)2

− 1

=

√
(1 + t2)2 − 4t2

4t2

=

√
(1− t2)2

4t2
1− t2

2t
> 0 when t ∈ (−∞,−1) ∪ [0, 1)

=
1− t2

2t

=
1

2

(
1

t
− t
)

.

(11)

The differential dx can be computed from x = 1
2

(
1
t − t

)
. Finally, we can express t via x with a little algebra:√

x2 − 1 =
1− t2

2t√
x2 − 1 =

2− (1 + t2)

2t
use x =

1 + t2

2t√
x2 − 1 =

1

t
− x

1

t
=

√
x2 − 1 + x

t =
1√

x2 − 1 + x
=

1

(
√
x2 − 1 + x)

(−
√
x2 − 1 + x)

(−
√
x2 − 1 + x)

t = x−
√
x2 − 1

The Euler substitution x = cos(2 arctan t) can be now summarized as:

x =
1

2

(
1

t
+ t

)
√
−x2 + 1 =

1

2

(
1

t
− t
)

dx = −1

2

(
1

t2
+ 1

)
dt

t = x−
√
x2 − 1 .

Problem 43. Let the variables x and t be related via
√
x2 − 1 = 1

t − x.

1. Express x via t.

2. Express
√
x2 − 1 via t alone.

3. Express dx via t and dt.
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8 L’Hospital’s rule

Problem 44. Compute the limits. The answer key has not been fully proofread, use with caution.

1. lim
x→0

sinx

x
. answer:1

2. lim
x→0

x

ln(1 + x)
. answer:1

3. lim
x→0

x2

x− ln(1 + x)
. answer:2

4. lim
x→0

x2

sinx ln(1 + x)
. answer:1

5. lim
x→0

sin2 x

(ln(1 + x))
2 . answer:1

6. lim
x→0

cosx− 1

sinx ln(1 + x)
. answer:−1

2

7. lim
x→0

arctanx− x
x3

. answer:−1
3

8. lim
x→0

arcsinx− x
x3

. answer:1
6

9. lim
x→1

x

x− 1
− 1

lnx
. answer:1

2

10. lim
x→0

cos(nx)− cos(mx)

x2
. answer:m2−n2

2

11. (Optional) lim
x→0

arcsinx− x− 1
6x

3

sin5 x
. answer:3

40

Problem 45. Find the limit.

1. lim
x→0

sinx− x
arcsinx− x

.

answer:−1

2. lim
x→1

sin (πx) lnx

cos(πx) + 1
.

answer:−2
π

3. lim
x→0

sinx− x
arctanx− x

.

answer:1
2

4. lim
x→∞

x sin

(
2

x

)
.

answer:2

Solution. 45.2 The limit is of the form “ 0
0” so we are allowed to use L’Hospital’s rule.

lim
x→1

sin (πx) lnx

cos(πx) + 1
= lim

x→1

(sin (πx) lnx)
′

(cos(πx) + 1)
′

= lim
x→1

(
π cos (πx) lnx+ sin (πx) 1

x

)
(−π sin(πx))

type “ 0
0”, L’Hospital’s rule

= lim
x→1

(
π cos (πx) lnx+ sin (πx) 1

x

)′
(−π sin(πx))

′

= lim
x→1

−π2 sin (πx) ln (x) + 2π cos (πx)x−1 − sin (πx)x−2

(−π2 cos(πx))

=
−π2 sin (π) ln(1) + 2π cos (π)− sin (π)

(−π2 cos(π))

= − 2

π
.

Solution. 45.3 Solution I.

lim
x→0

sinx− x
arctanx− x

= lim
x→0

cosx− 1
1

1+x2 − 1
L’Hospital rule

= lim
x→0

− sinx
−2x

(1+x2)2

L’Hospital rule again

= lim
x→0

(1 + x2)2

2

sinx

x

= lim
x→0

(1 + x2)2

2
lim
x→0

sinx

x

=
1

2
.
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Solution II.

lim
x→0

sinx− x
arctanx− x

= lim
x→0

(
x− x3

3! + x5

5! − . . .
)
− x(

x− x3

3 + x5

5 − . . .
)
− x

use the Maclaurin series of sin, arctan

= lim
x→0

−x
3

6 + x5
(
1
5! − . . .

)
−x3

3 + x5
(
1
5 − . . .

) The expressions in parenthesis
are continous functions in x

= lim
x→0

− 1
6 + x2

(
1
5! − . . .

)
− 1

3 + x2
(
1
5 − . . .

)
=
− 1

6 + 0
1
3 + 0

=
1

2
.

Solution. 45.4.

lim
x→∞

x sin

(
2

x

)
= lim

x→∞

sin
(
2
x

)
1
x

indeterminate form
Use L’Hospital’s rule

= lim
x→∞

cos
(
2
x

) (
− 2
x2

)
− 1
x2

= lim
x→∞

2 cos
(x

2

)
= 2 .

Problem 46. Evaluate the limit, or show that it does not exist.

1. lim
x→0

x2

1− cosx

answer:2 2. lim
x→∞

x tan

(
1

x

)

answer:1

3. lim
x→0+

x
√
x

answer:1

9 Improper Integrals

Problem 47. Determine whether the integral is convergent or divergent. Motivate your answer. The answer key has not
been proofread, use with caution.

1.

∞∫
2

1

(x− 1)
3
2

dx. answer:convergent

2.

1∫
−1

1
5
√

1 + x
dx. answer:convergent

3.

∞∫
1

1
5
√

1 + x
dx. answer:divergent

4.

∞∫
−1

1
5
√

1 + x
dx. answer:divergent

5.

0∫
−∞

1

2− 3x
dx. answer:divergent

6.

0∫
−∞

1

(2− 3x)2
dx. answer:convergent

7.

0∫
−∞

1

(2− 3x)1.00000001
dx. answer:convergent

8.

1
2∫
−2

1

2x− 1
dx. answer:divergent

9.

∞∫
−5

e−3xdx. answer:convergent

10.

5∫
−∞

2xdx. answer:convergent

11.

∞∫
−∞

x3dx. answer:divergent

12.

∞∫
−∞

xe−x
2

dx. answer:convergent
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13.

∞∫
0

√
xe−

√
xdx. answer:convergent

14.

∞∫
0

sin2 xdx. answer:divergent

15.

5∫
0

1

x2 + x− 2
dx. answer:divergent

16.

∞∫
0

1

x2 + x+ 1
dx. answer:convergent

17.

∞∫
2

1

x2 − x− 1
dx. answer:convergent

18.

∞∫
0

1

x2 − x− 1
dx. answer:divergent

19.

∞∫
−∞

x2

x4 + 2
dx. answer:convergent

Solution. 47.19 The integrand is a rational function and therefore we can solve this problem by finding the indefinite
integral and then computing the limit. We would need to start by factoring x4 + 2 into irreducible quadratic factors - that
is already quite laborious:

x4 + 2 =
(
x2 +

4
√

8x+
√

2
)(

x2 − 4
√

8x+
√

2
)

.

The problem asks us only to establish the convergence of the integral; it does not ask us to compute its actual numerical
value. Therefore we can give a much simpler solution. The function is even and therefore it suffices to establish whether
∞∫
0

x2

x4 + 2
dx is convergent.

We have that
∞∫
0

x2

x4 + 2
dx =

1∫
0

x2

x4 + 2
dx+

∞∫
1

x2

x4 + 2
dx .

The function x2

x4+2 is continuous so
1∫
0

x2

x4+2dx integrates to a number, which does not affect the convergence of the above

expression. Therefore the convergence of our integral is governed by the convergence of
∞∫
1

x2

x4+2dx. To establish that that

integral is convergent, we use the comparison theorem as follows.

∞∫
1

x2

x4 + 2
dx ≤

∞∫
1

x2

x4
dx

we have that x4 + 2 > x4

and therefore
x2

x4 + 2
≤ x2

x4

=

∫ ∞
1

x−2dx

= lim
t→∞

[
− 1

x

]t
1

= lim
t→∞

1− 1

t
= 1 .

In this way we showed

∫ ∞
1

x2

x4 + 2
dx ≤ 1. Therefore, as

x2

x4 + 2
≥ 0 is positive, we can apply the comparison theorem to

get that

∫ ∞
1

x2

x4 + 2
dx is convergent.

Solution. 47.13 It is possible to show that this integral is convergent by using the comparison theorem. However, we shall
use direct integration instead. First, we solve the indefinite integral:
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∫ √
xe−

√
xdx =

∫ √
xe−

√
x 2
√
xdx

2
√
x

use d
√
x = dx

2
√
x

=

∫ √
xe−

√
x
(
2
√
xd
√
x
)

Set
√
x = u

= 2

∫
u2e−udu

= 2

(
−
∫
u2d

(
e−u

))
integrate by parts

= 2

(
−u2e−u +

∫
e−ud

(
u2
))

= 2

(
−u2e−u +

∫
2ue−udu

)
= 2

(
−u2e−u −

∫
2ude−u

)
integrate by parts again

= 2

(
−u2e−u − 2ue−u +

∫
2e−udu

)
= 2

(
−u2e−u − 2ue−u − 2e−u

)
+ C

= 2
(
−xe−

√
x − 2

√
xe−

√
x − 2e−

√
x
)

+ C

Therefore

∞∫
0

√
xe−

√
xdx = lim

t→∞
2
[
−xe−

√
x − 2

√
xe−

√
x − 2e−

√
x
]∞
0

= 4 + lim
t→∞

4
(
−te−

√
t −
√
te−
√
t − e−

√
t
)

Set u =
√
t

= 4− 4 lim
u→∞

(
u2e−u + ue−u + e−u

)
= 4− 4 lim

u→∞

u2 + u+ 1

eu
use L’Hospital’s rule for limit, see below

= 4 ,

and the integral converges to 4. In the above computation we used the following limit computation

lim
u→∞

u2 + u+ 1

eu
= lim

u→∞

2u+ 1

eu
Apply L’Hospital’s rule

= lim
u→∞

2

eu
= 0 .

Problem 48. Determine whether the integral is convergent or divergent. Motivate your answer. The answer key has not
been proofread, use with caution.

1.

∞∫
100

1

x lnx
dx. answer:divergent

2.

∞∫
100

1

x(lnx)2
dx. answer:convergent

3.

1∫
0

lnxdx. answer:convergent

4.

1∫
0

lnx√
x

dx. answer:convergent

5.

2∫
0

x3 lnxdx. answer:convergent

6.

1∫
0

e
1
x

x2
dx. answer:divergent

7.

0∫
−1

e
1
x

x2
dx. answer:convergent

8.

∞∫
0

sinx2dx (This problem is more difficult and may re-

quire knowledge of sequences to solve). answer:convergent

Problem 49. Determine if the integral is convergent or divergent. If convergent, compute its value.
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1.

2∫
1

x√
x2 − 1

dx answer:
√

3

2.

1∫
0

x2 lnxdx answer:−1
9

3.

∞∫
0

e−
√
x

√
x

dx answer:2

4.

∞∫
100

1

x lnx
dx answer:∞-theintegralisdivergent

5.

1∫
0

1

x lnx
dx answer:−∞-theintegralisdivergent

6.

∞∫
100

1 + e−x

x lnx
dx answer:∞-theintegralisdivergent

Solution. 49.2
1∫

0

x2 lnxdx =

1∫
0

lnxd

(
x3

3

)
Integrate by parts

=

[
x3

3
lnx

]1
0

−
∫
x3

3
d(lnx)

=

[
x3

3
lnx

]1
0

−
1∫

0

x2

3
dx

=

[
x3

3
lnx− x3

9

]1
0

=
1

3
ln 1− 1

9
−
(

lim
x→0

x3 lnx

3
− 0

)
= −1

9
− lim
x→0

x3 lnx

3

= −1

9
− lim
x→0

lnx
3
x3

Use L’Hospital’s rule

= −1

9
− lim
x→0

1
x

− 9
x4

= −1

9
− lim
x→0

x3

−9

= −1

9
.

Solution. 49.3
∞∫
0

e−
√
x

√
x

dx = 2

∞∫
x=0

e−
√
xd
√
x

=
[
−2e−

√
x
]∞
x=0

= lim
t→∞

−2e−
√
x −

(
−2e−

√
0
)

= 2 .

Solution. 49.4
∞∫

100

1

x lnx
dx =

∞∫
x=100

1

lnx
d(lnx)

=

∞∫
x=100

d (ln(lnx))

= [ln(lnx)]
∞
100

= lim
t→∞

ln(ln t)− ln(ln 100)

= ∞ .

The integral diverges to ∞.
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Solution. 49.6
∞∫

100

1 + e−x

x lnx
dx >

∞∫
100

1

x lnx
dx

Problem 49.4
= ∞ .

Therefore by the comparison test, our integral diverges to ∞.

Problem 50. Determine if the integral is convergent or divergent. If it is convergent, compute the value of the integral.

1.

∞∫
1

x2

x3 + 1
dx answer:∞-theintegraldiverges.

2.

∞∫
1

1

x2 + 1
dx answer:π

4

3.

8∫
6

4

(x− 6)3
dx answer:∞-theintegraldiverges.

10 Sequences

10.1 Understanding sequence notation

Problem 51. Give a simple sequence formula that matches the pattern below.

1.

(
1,

1

3
,

1

5
,

1

7
,

1

9
, . . .

)
.

answer:an=1
2n−1

2.

(
−1,

1

5
,− 1

25
,

1

125
,− 1

625
,

1

3125
. . .

)
answer:an=−(−1

5)n−1

3.

(
−5, 2,−4

5
,

8

25
,− 16

125
,

32

625
, . . .

)

answer:an=−5(−2
5)n−1

4. (4, 7, 10, 13, 16, 19, . . . )

answer:an=3n+1

5.
(
−2, 34 ,−

4
9 ,

5
16 ,−

6
25 ,

7
36 , . . .

)
answer:an=(−1)n(n+1

n2

)

6. (0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, 1, . . . )

answer:an=cos(nπ2)

Problem 52. List the first 5 elements of the sequence.

1. an+1 =
1

2

(
an +

3

an

)
, a1 = 1.

2. an = an−1 + an−2, a1 = 1, a2 = 1.

3. an =

(
1
2 − n

)
n

an−1, a0 = 1.

4. an = an−1 + 2n+ 1, a0 = 1.

5. an :=
1

n
an−1, a1 = 1.

Problem 53. List the first 4 elements of the sequence.

1. an =
(−1)n

n
.

answer:(a1,a2,a3,a4,a5)=(−1,1
2
,−1

3
,1
4)

2. an =
1

n!
.

answer:(a1,a2,a3,a4,a5)=(1,1
2
,1
6
,1
24)

3. an = cos(πn).

answer:(a1,a2,a3,a4,a5)=(−1,1,−1,1)

4. an =
(−1)n

2n+ 1
.

answer:(a1,a2,a3,a4,a5)=(−1
3
,1
5
,−1

7
,1
9)

5. an =

√
5

5

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)

answer:(a1,a2,a3,a4,a5)=(1,1,2,3)

10.2 Convergence

Problem 54. Determine if the sequence is convergent or divergent. If convergent, find the limit of the sequence.
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1. an = n.

answer:divergent

2. an = 2n.

answer:divergent

3. an = 1.0001n.

answer:divergent

4. an = 0.999999n.

answer:convergent,lim
n→∞

an=0

5. an = n−
√
n+ 1

√
n+ 2

answer:convergent,limn→∞an=−3
2

6. an =
lnn

n
.

answer:convergent,limn→∞an=0

7. an =
lnn
10
√
n

.

answer:convergent,limn→∞an=0

8. an =
1

n
.

answer:convergent,limn→∞an=0

9. an =
1

n!
.

answer:convergent,limn→∞an=0

10. an =
nn

n!
.

answer:divergent

11. an = cosn.

answer:divergent

12. an = cos

(
1

n

)

answer:convergent,limn→∞an=1

13. an =

(
n+ 1

n

)n
.

answer:convergent,limn→∞an=e

14. an =

(
2n+ 1

n

)n
.

answer:divergent

15. an =

(
n+ 1

n

)2n

.

answer:convergent,limn→∞an=e2

16. an =

(
n+ 1

2n

)n
.

answer:convergent,limn→∞an=0

Problem 55. Find the limit of the sequence or prove that the sequence is divergent.

1. an =

(
n

n− 1

)2n

. answer:convergent,lim
n→∞

an=e2

2. an =
n!

nn
. answer:convergent,lim
n→∞

an=0

11 Series

11.1 Some explicit series summations

11.1.1 Geometric series

Problem 56. Express the infinite decimal number as a rational number.

1. 1.6 = 1.6666 . . .

answer:5
3

2. 1.3 = 1.3333 . . .

answer:4
3

3. 2.16 = 2.16161616 . . .

answer:214
99

4. 2014.2014 = 2014.2014201420142014 . . .

answer:20140000
9999

Problem 57. Express the infinite decimal number as a rational number.

1. 1.19 = 1.191919 . . . . answer:118
99 2. 0.09 = 0.0909090909 . . . . answer:1

11

Problem 58. Express the sum of the series as a rational number.

1.

∞∑
n=1

2n + 3n

5n

answer:13
6

2.

∞∑
n=0

2n + 5n

10n

answer:13
4
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3.
∞∑
n=1

5n − 3n

7n

answer:7
4

4.
∞∑
n=1

3n+1 + 7n−1

21n

answer:4
7

Solution. 58.1

∞∑
n=1

2n + 3n

5n
=

∞∑
n=1

(
2

5

)n
+

∞∑
n=1

(
3

5

)n

=
2

5

∞∑
n=0

(
2

5

)n
+

3

5

∞∑
n=0

(
3

5

)n Use geometric series sum f-la:
∞∑
n=0

rn = 1
1−r ,

provided |r| < 1

=
2

5

1(
1− 2

5

) +
3

5

1(
1− 3

5

)
=

13

6
.

Solution. 58.2
∞∑
n=0

2n + 5n

10n
=

∞∑
n=0

(
1

5n
+

1

2n

)
use

∞∑
n=0

rn = 1
1−r , for |r| < 1

=
1

1− 1
2

+
1

1− 1
5

=
13

4
.

Solution. 58.4

∞∑
n=1

3n+1 + 7n−1

21n
=

∞∑
n=1

(
3

3n

21n
+

1

7

7n

21n

)
= 3

∞∑
n=1

(
1

7

)n
+

1

7

∞∑
n=1

(
1

3

)n
=

3

7

∞∑
n=0

(
1

7

)n
+

1

21

∞∑
n=0

(
1

3

)n
use

∑∞
n=0 r

n = 1
1−r , |r| < 1

=
3

7

1(
1− 1

7

) +
1

21

1(
1− 1

3

)
=

4

7
.

11.1.2 Telescoping series

Problem 59. Sum the telescoping series (a sum is “telescoping” if it can be broken into summands so that consecutive
terms cancel).

1.

∞∑
n=0

−6

9n2 + 3n− 2
. answer:2

2.

∞∑
n=3

3

n2 − 3n+ 2
. answer:3

3.

∞∑
n=2

ln

(
1− 1

n2

)
. (Hint: Use the properties of the logarithm to aim for a telescoping series).

answer:−ln2
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Solution. 59.2

∞∑
n=3

3

n2 − 3n+ 2
=

∞∑
n=3

(
3

n− 2
− 3

n− 1

)
use partial fractions, see below

= 3

∞∑
n=3

(
1

n− 2
− 1

n− 1

)

= 3

(1− 1

2

)
n=3

+

(
1

2
− 1

3

)
n=4

+

(
1

3
− 1

4

)
n=5

+ . . .


= 3 lim

n→∞

(
1− 1

n− 1

)
= 3 .

In the above we used the partial fraction decomposition of
3

n2 − 3n+ 2
. This decomposition is computed as follows.

3

n2 − 3n+ 2
=

3

(n− 1) (n− 2)

We need to find Ai’s so that we have the following equality of rational functions. After clearing denominators, we get the
following equality.

3 = A1(n− 2) +A2(n− 1)

After rearranging we get that the following polynomial must vanish. Here, by “vanish” we mean that the coefficients of the
powers of x must be equal to zero.

(A2 +A1)n+ (−A2 − 2A1 − 3)

In other words, we need to solve the following system.

−2A1 −A2 = 3
A1 +A2 = 0

System status Action
−2A1 −A2 = 3
A1 +A2 = 0

Selected pivot column 2. Eliminated the non-zero entries in the pivot column.

A1 +A2

2 = − 3
2

A2

2 = 3
2

Selected pivot column 3. Eliminated the non-zero entries in the pivot column.

A1 = −3
A2 = 3

Final result.

Therefore, the final partial fraction decomposition is the following.

3

n2 − 3n+ 2
=

−3

(n− 1)
+

3

(n− 2)
.

Solution. 59.3.
∞∑
n=2

ln

(
1− 1

n2

)
=

∞∑
n=2

(
ln

(
1− 1

n

)
+ ln

(
1 +

1

n

))
=

∞∑
n=2

(
ln

(
n− 1

n

)
+ ln

(
n+ 1

n

))
=

∞∑
n=2

(ln(n− 1)− 2 ln(n) + ln(n+ 1))

= (ln 1− 2 ln 2 +��ln 3) + (ln 2����−2 ln 3 +��ln 4)
+ (��ln 3����−2 ln 4 +��ln 5) +��. . . . . .

= lim
n→∞

(− ln 2− lnn+ ln(n+ 1))

= lim
n→∞

(
− ln 2 + ln

(
n+ 1

n

))
= − ln 2 .
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Problem 60. Use partial fractions to sum the telescoping series (a sum is “telescoping” if it can be broken into summands
so that consecutive terms cancel).

1.

∞∑
n=1

1

n2 + n

answer:1

2.

∞∑
n=2

2n+ 1

n4 + 2n3 − n2 − 2n

answer:1
3

3.

∞∑
n=1

2n

n4 − 3n2 + 1

answer:−1

4.

∞∑
n=3

n2 + n+ 2

n4 − 5n2 + 4

answer:3
4

Solution. 4
The partial fractions decomposition algorithm shows that

n2 + n+ 2

n4 − 5n2 + 4
=

1

3

(
2

n− 2
− 2

n− 1
+

1

n+ 1
− 1

n+ 2

)
.

We omit the details of the partial fraction decomposition as it is quite laborious, but otherwise straightforward. Therefore

∞∑
n=3

n2 + n+ 2

n4 − 5n2 + 4
=

1

3

∞∑
n=3

(
2

n− 2
− 2

n− 1
+

1

n+ 1
− 1

n+ 2

)
=

2

3

∞∑
n=3

(
1

n− 2
− 1

n− 1

)
+

1

3

∞∑
n=3

(
1

n+ 1
− 1

n+ 2

)
=

2

3

((
1−

�
��1

2

)
+

(
�
��1

2
−

�
��2

3

)
+��. . .+

(
�

�
�1

n− 2
− 1

n− 1

)
+ . . .

)

+
1

3

((
1

4
−

�
��1

5

)
+

(
�
��1

5
−

�
��1

6

)
+��. . .+

(
�

�
�1

n+ 1
− 1

n+ 2

)
+ . . .

)
= lim

n→∞

2

3

(
1− 1

n− 1

)
+ lim
n→∞

1

3

(
1

4
− 1

n+ 2

)
=

2

3
+

1

3
· 1

4

=
3

4
.

11.2 Series convergence tests

11.2.1 Basic tests

Problem 61. Find whether the series is convergent or divergent using an appropriate test.

1.

∞∑
n=1

(−1)n lnn.

2.

∞∑
n=2

(−1)n

lnn
.

Solution. 61.1. lim
n→∞

(−1)n lnn does not exist and therefore the sum is not convergent.

Solution. 61.2. For n > 2, we have that lnn is a positive increasing function and therefore 1
lnn is a decreasing positive

function. Furthermore lim
n→∞

1

lnn
= 0. Therefore the series is convergent by the alternating series test.

11.2.2 Integral and comparison tests

Problem 62. Use integral test, the comparison test or the limit comparison test to determine whether the series is convergent
or divergent. Justify your answer.
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1.

∞∑
n=1

1

2n+ 1
.

answer:divergent

2.

∞∑
n=1

1

2n2 + n3
.

answer:convergent

3.

∞∑
n=1

n2 + 3

3n5 + n

answer:convergent,canuselimitcomparisontest

4.

∞∑
2

1

n lnn

5.

∞∑
n=2

1

(2n+ 1) ln(n)
.

answer:divergent

6.

∞∑
n=2

1

n(lnn)2

answer:convergent,canuseintegraltest

7.

∞∑
n=2

1

(2n+ 1)(ln(n))2
.

answer:convergent

8. Determine all values of p, q r for which the series

∞∑
n=30

1

np(lnn)q(ln(lnn))r

is convergent.

Solution. 62.4. ∫ ∞
2

1

x lnx
dx = lim

t→∞

∫ t

2

1

x lnx
dx

= lim
t→∞

∫ t

2

1

lnx
d(lnx)

= lim
t→∞

∫ t

2

d(ln(lnx))

= lim
t→∞

[ln(lnx)]
x=t
x=2

= lim
t→∞

(ln(ln t)− ln(ln 2))

= ∞,
therefore the integral is divergent (and diverges to +∞).

The function 1
x ln x is decreasing, as for x > 2, it is the quotient of 1 by increasing positive functions. 1

x ln x tends to 0 as

x→∞, and therefore the integral criterion implies that
∞∑
2

1
n lnn is divergent.

Solution. 62.5
The integral criterion appears to be of little help: the improper integral

∫
1

(2x+1) ln xdx cannot be integrated algebraically

with any of the techniques we have studied so far. Therefore it makes sense to try to solve this problem using a comparison
test.

The “dominant term”1 of the denominator of 1
(2n+1) lnn = 1

2n lnn+lnn is 2n lnn. Therefore it makes sense to compare -

or limit-compare - with 1
n lnn .

We will use the Limit Comparison Test for the series
∞∑
n=2

an =
∞∑
n=2

1
(2n+1) lnn and

∞∑
n=2

bn =
∞∑
n=2

1
n lnn . Both an and bn are

positive (for n > 2) and therefore the Limit Comparison Test applies.

lim
n→∞

an
bn

= lim
n→∞

1
(2n+1) lnn

1
n lnn

= lim
n→∞

n

2n+ 1
= lim
n→∞

1

2 + 1
n

=
1

2
.

Since lim
n→∞

an
bn

= 1
2 6= 0, the Limit Comparison Test implies that the series

∑∞
n=2 an has same convergence/divergence

properties as the series
∑∞
n=2 bn. In Problem 62.4 we demonstrated that the series

∞∑
n=2

bn is divergent; therefore the series

∞∑
n=2

an =
∞∑
n=2

1
(2n+1) lnn is divergent as well.

11.2.3 Root, ratio tests

Problem 63. Establish whether the series is convergent or divergent. Use the ratio or root tests. Show all your work. The
answer key has not been proofread, use with caution.

1.

∞∑
n=0

(−1)nn23−n answer:convergent,straightforwardwithratiotest

1since we do not speak of rational functions, here the expression “dominant term” is used informally
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2.

∞∑
n=1

(
n+ 1

4n

)n

answer:convergent,straightforwardwithroottest

3.

∞∑
n=1

(
4n+ 1

n

)n

answer:divergent,straightforwardwithroottest

4.

∞∑
n=1

nn

4nn!

answer:convergent,useratiotest

5.

∞∑
n=1

(4n)n

n!

answer:divergent,useratiotest

Solution. 63.1 We proceed with the ratio test; the alternating series test works too, however that approach is a lot less
straightforward and we leave it to the reader.

Let the nth term of the series be an = (−1)nn23−n. The ratio test states that if the limit limn→∞

∣∣∣an+1

an

∣∣∣ exists and is

less than 1, then the series is convergent, and if the limit exists and is greater than 1, then then the series is divergent.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+13−n−1(n+ 1)2

(−1)n3−nn2

∣∣∣∣
= lim

n→∞

∣∣∣∣∣13
(

1 +
1

n

)2
∣∣∣∣∣

= 1
3 < 1 .

Therefore the series is convergent by the ratio test.

Solution. 63.5 The series can quickly be shown to be divergent by showing that lim
n→∞

(4n)n

n! =∞. Nonetheless we will use

the ratio test, as it provides insight to what happens when we replace the constant 4 with another constant. In order to
establish the divergence of

∞∑
n=1

(4n)n

n!
,

we shall use the ratio test. We recall that the ratio test states that if lim
n→∞

an+1

an
exists and is equal to L, then if L > 1 the

series is divergent and if L < 1 the series is convergent (if L = 1 the test is inconclusive).
We compute:

lim
n→∞

an+1

an
= lim

n→∞

∣∣∣∣ (4n+ 4)n+1n!

(n+ 1)!(4n)n

∣∣∣∣
= lim

n→∞

∣∣∣∣ (4n+ 4)(4n+ 4)n

(n+ 1)(4n)n

∣∣∣∣
=

(
lim
n→∞

4n+ 4

n+ 1

)(
lim
n→∞

(
n+ 1

n

)n)
= 4e > 1 ,

and therefore the series is divergent.

Problem 64. Except for x = ±e, use the ratio test to determine all real values of x for which

∞∑
n=0

xn
n!

nn

is convergent. You are expected to use in your solution the fact that

lim
x→0

(
1 +

x

n

)n
= ex .

11.3 Problems collection, all techniques

Problem 65. Determine if the series converges or diverges. Present a detailed motivation for your answer.

1.

∞∑
n=1

(2n+ 1)n

n2n

answer:converges,roottest
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2.

∞∑
n=1

1

n
√
n2 + 1

answer:converges,comparisontest

3.

∞∑
n=1

(−1)n
√
n

n+ 5

answer:converges,alternatingseriestest

4.

∞∑
n=1

3n2 + 4

10n2 + 1

answer:diverges,summandsdonottendto0

5.

∞∑
n=1

(n!)2

(n+ 1)!

answer:diverges,ratiotest,alternatively,summandstendto∞

6.

∞∑
n=1

1

en2 answer:converges,comparisontest

12 Power series, Taylor and Maclaurin series

12.1 Interval of convergence

Problem 66. Determine the interval of convergence for the following power series.

1.

∞∑
n=1

(x− 2)n

3
√
n+ 1

.

answer:x∈[1,3)

2.

∞∑
n=1

10nxn

n3
.

answer:x∈[−1
10
,1
10]

3.

∞∑
n=1

10n(x− 1)n

n3

answer:x∈[0.9,1.1]

4.

∞∑
n=0

(−1)n
(x+ 1)n

2n+ 1

answer:x∈(−2,0]

5.

∞∑
n=0

(−1)n
(x− 3)n

2n+ 1
.

answer:x∈(2,4]

6.

∞∑
n=0

xn

n!

answer:convergesforallx

7.

∞∑
n=0

(n+ 1)xn

answer:convergesfor|x|<1

8.

∞∑
n=1

xn

n

answer:convergesfor|x|∈[−1,1).

9.

∞∑
n=1

(−1)n
x2n+1

2n+ 1

answer:convergesfor|x|∈(−1,1] .

10.

∞∑
n=1

( 1
2

n

)
xn, where we recall that the binomial coefficient

(
q

n

)
stands for

q(q − 1) . . . (q − n+ 1)

n!
.

answer:convergesforx∈(−1,1].

54



Solution. 66.1. We apply the Ratio Test to get that lim
n→∞

∣∣∣an+1

an

∣∣∣ = |x− 2|. Therefore the power series converges at least on

the interval (1, 3). When x = 3, the series becomes
∞∑
n=1

1
3
√
n+1

, which diverges - this can be seen, for example, by comparing

to the p-series 1√
n

. When x = 1, the series becomes
∞∑
n=1

(−1)n

3
√
n+1

, which converges by the Alternating Series Test. Our final

answer x ∈ [1, 3).

12.2 Taylor, Maclaurin series

Problem 67. 1. Find the Maclaurin series for xex
3

.

answer:
∞∑
n=0

x3n+1

n!

2. Use your series to find the Maclaurin series of

∫
xex

3

dx.

answer:

C+
∞∑
n=0

x3n+2

(3n+2)n!

notetheintegral
can’tbeintegratedwithelementary
functions.

Problem 68. Find the Maclaurin series of the function. The answer key has not been proofread, use with caution.

1. 1
2x+3 .

answer:1
3

(1−2x
3

+(2x
3)2−(2x

3)3+...)=
∞∑
0

(−1)n

3(2
3)nxn

2. 1
(1−x)2 .

answer:1+2x+3x2+4x3+···=
∞∑
n=0

(n+1)xn

3. 1
(1−x)3 .

answer:1
2(2+6x+12x+···+n(n−1)xn−2+...)=

∞∑
n=0

(n+1)(n+2)
2

xn

4. xe−2x.

answer:
∞∑
n=0

(−1)n2nxn+1=
∞∑
n=1

(−1)n−12n−1xn

Problem 69. Compute the Maclaurin series of the function. Please post on piazza if you discover errors in the answer key.

1. ex.

answer:
∞∑
n=0

xn

n!

2. e2x.

answer:e
2x

=
∞∑
n=0

2nxn

n!

3. ex
2

.

answer:e
x2

=
∞∑
n=0

x2n

n!

4. e−3x
2

.

answer:e−3x2
=
∞∑
n=0

(−1)n3nx2n

n!

5. x2e2x.

answer:e
2x

=
∞∑
n=0

2nxn+2

n!

6. sinx.

answer:sinx=
∞∑
n=0

(−1)
nx2n+1

(2n+1)!

7. cosx.

answer:cosx=
∞∑
n=0

(−1)
nx2n

(2n)!

8. sin(2x).

answer:sin(2x)=
∞∑
n=0

(−1)
n22n+1x2n+1

(2n+1)!

9. cos(2x).

answer:cos(2x)=
∞∑
n=0

(−1)
n
2
2nx2n

(2n)!

10. cos2(x).

answer:cos
2
x=

1

2
+
∞∑
n=0

(−1)
n
2
2n−1x2n

(2n)!

11. x sinx.

answer:xsinx=
∞∑
n=0

(−1)
nx2n+2

(2n+1)!

Problem 70. Compute the Maclaurin series of the function. Please post on piazza if you see errors in the answer key.
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1.
1

3− x
.

answer:
∞∑
n=0

xn

3n+1

2.
1

3− 2x
.

answer:
∞∑
n=0

2n

3n+1
x
n

3.
1

1 + x2
.

answer:
∞∑
n=0

(−1)
n
x
2n

4.
1

1− 2x2
.

answer:
∞∑
n=0

2
n
x
2n

5.
1

x2 − 1
.

answer:−
∞∑
n=0

x
2n

6.
1
2

x− 1
−

1
2

x+ 1
.

answer:sameas70.5

7.
1

(1− x)2
.

answer:
∞∑
n=0

(n+1)x
n

8.
1

(1− x)3
.

answer:
1

2

∞∑
n=0

(n+1)(n+2)x
n

=
∞∑
n=0

(n+2

2

)xn

9. ln(1 + x).

answer:
∞∑
n=1

(−1)
n+1xn

n

10. ln(1− x).

answer:−
∞∑
n=1

xn

n

11. ln(1− 3x).

answer:−
∞∑
n=0

3nxn

n

12. ln(1− 3x2).

answer:−
∞∑
n=1

3nx2n

n

13. ln(3− 2x2).

answer:ln3−
∞∑
n=1

(2

3

)nx2n

n

14. x ln(3− 2x2).

answer:xln3−
∞∑
n=1

(2

3

)nx2n+1

n

15. arctanx.

answer:
∞∑
n=0

(−1)nx2n+1

2n+1

16. arctan(2x).

answer:
∞∑
n=0

(−1)n22n+1x2n+1

2n+1

17. arctan
(
2x2
)
.

answer:
∞∑
n=0

(−1)n22n+1x4n+2

2n+1

Solution. 70.13. We solve this problem by using algebraic manipulations and substitutions to reduce it to the already

studied power series expansion of ln(1− y) = −
∞∑
n=1

yn

n .

ln
(
3− 2x2

)
= ln

(
3

(
1− 2

3
x2
))

= ln 3 + ln

(
1− 2

3
x2
)

Set y = 2
3x

2

= ln 3 + ln(1− y)

= ln 3−
∞∑
n=1

yn

n
Substitute back y = 2

3x
2

= ln 3−
∞∑
n=1

(
2

3

)n
x2n

n
.

Problem 71. Compute the Maclaurin series of (
1

(1− x)k

)
,

where n ≥ 1 is an integer.
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Solution. 71 We have that

d

dx

(
1

1− x

)
=

(1− x)′

(1− x)2
=

1

(1− x)2

d2

dx2

(
1

1− x

)
=

d

dx

(
1

(1− x)2

)
= −2

(1− x)′

(1− x)3
=

2

(1− x)3

d3

dx3

(
1

1− x

)
=

d

dx

(
2

(1− x)3

)
= 2(−3)

(1− x)′

(1− x)4
=

2 · 3
(1− x)4

...

dk−2

dxk−2

(
1

1− x

)
=

(k − 2)!

(1− x)k−1

dk−2

dxk−2

(
1

1− x

)
=

d

dx

(
(k − 2)!

(1− x)k−1

)
=

(k − 1)!

(1− x)k

...

We can now compute Maclaurin series as follows:

Mc

(
1

(1− x)k

)
= Mc

(
1

(k − 1)!

dk−1

dxk−1

(
1

(1− x)

))
=

1

(k − 1)!

dk−1

dxk−1

(
Mc

(
1

1− x

))
=

1

(k − 1)!

dk−1

dxk−1

( ∞∑
n=0

xn

)

=
1

(k − 1)!

( ∞∑
n=0

n(n− 1) . . . (n− k + 2)xn−k+1

)
Recall

(
n
k

)
= n(n−1)...(n−k+1)

k!

=

∞∑
n=0

(
n

k − 1

)
xn−k+1 Set n− k + 1 = m

=

∞∑
m=−k+1

(
m+ k − 1

k − 1

)
xm first k − 2 summands are zero

=

∞∑
m=0

(
m+ k − 1

k − 1

)
xm

Problem 72. Compute the Maclaurin series of
(1 + x)q ,

where q ∈ R is an arbitrary real number.

Solution. 72 Since q does not have to be an integer, we cannot directly relate its power series to the power series of 1
1+x or

its derivatives. We therefore compute the Maclaurin series directly using their definition.

d
dx ((1 + x)q) = q(1 + x)q−1

d2

dx2 ((1 + x)q) = q(q − 1)(1 + x)q−2

...
dn

dxn ((1 + x)q) = q(q − 1)(q − 2) . . . (q − n+ 1)(1 + x)q−n .

Therefore dn

dxn ((1 + x)q)|x=0 = q(q − 1)(q − 2) . . . (q − n+ 1)(1 + 0)q−n = q(q − 1)(q − 2) . . . (q − n+ 1). Therefore

Mc ((1 + x)q) =

∞∑
n=0

1

n!

dn

dxn
((1 + x)q)|x=0 x

n

=

∞∑
n=0

q(q − 1)(q − 2) . . . (q − n+ 1)

n!
xn =

∞∑
n=0

(
q

n

)
xn .

(12)

For the last equality we recall the definition of binomial coefficient
(
q
n

)
= q(q−1)...(q−n+1)

n! and that it allows for q to be an
arbitrary complex number . The above formula is a generalization of the Newton binomial formula.

Problem 73. Compute the Maclaurin series of the function.
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1.
√

1 + x.

answer:
∞∑
n=0

(1
2
n)xn

2.
1√

1 + x
.

answer:
∞∑
n=0

(−1
2
n)xn

3.
1√

1− x2
.

answer:
∞∑
n=0

(−1)n(−1
2
n)x2n

4. arcsinx.

answer:
∞∑
n=0

(−1)n(−1
2
n)x2n+1

2n+1

Solution. 73.1 This problem follows directly from the formula (1 + x)q =
∞∑
n=0

(
q
n

)
xn.

Mc
(√

1 + x
)

= Mc
(

(1 + x)
1
2

)
=

∞∑
n=0

( 1
2

n

)
xn .

Solution. 73.2 This problem can be solved by computing the derivative of the preceding problem. However, it is easier to
simply apply the generalized Newton Binomial formula.

Mc
(

(1 + x)−
1
2

)
=

∞∑
n=0

(
− 1

2

n

)
xn .

Solution. 73.3 This problem is solved by replacing x with −x2 in Problem 73.2. To avoid the possible confusion, we carry
out the substitution by introducing an intermediate variable y.

Mc
((

1− x2
)− 1

2

)
= Mc

(
(1 + y)

− 1
2

)
Set y = −x2

=

∞∑
n=0

(
− 1

2

n

)
yn Substitute back y = −x2

=

∞∑
n=0

(−1)n
(
− 1

2

n

)
x2n .

Solution. 73.4 We have that d
dx (arcsinx) = 1√

1−x2
, and the Maclaurin series of 1√

1−x2
were computed in Problem 73.3.

The power series of arcsinx are therefore obtained via integration.

d

dx
Mc(arcsinx) = Mc

(
d

dx
(arcsinx)

)
= Mc

(
1√

1− x2

)
use Problem 73.3

=

∞∑
n=0

(−1)n
(
− 1

2

n

)
x2n

Mc (arcsinx) =

∫ ( ∞∑
n=0

(−1)n
(
− 1

2

n

)
x2n

)
dx

= C +

∞∑
n=0

(−1)n
(
− 1

2

n

)∫
x2ndx

= C +

∞∑
n=0

(−1)n
(
− 1

2

n

)
x2n+1

2n+ 1
C = 0 since arcsin 0 = 0

=

∞∑
n=0

(−1)n
(
− 1

2

n

)
x2n+1

2n+ 1
.

Problem 74. Find the Taylor series of the function at the indicated point.

1. 1
x2 at a = −1.

answer:1+2(x+1)+3(x+1)
2

+···=
∞∑
n=0

(n+1)(x+1)
n

2. ln
(√
x2 − 2x+ 2

)
at a = 1.

answer:
∞∑
n=1

(−1)
n+1(x−1)2n

2n
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3. Write the Taylor series of the function lnx around a = 2.

answer:ln2+
∞∑
n=1

(−1)n+1

2n
(x−2)

n

Solution. 74.2

ln
(√

x2 − 2x+ 2
)

=
1

2
ln
(
(x− 1)2 + 1

)
use ln(1 + y) =

∞∑
n=1

(−1)n+1 y
n

n , |y| < 1

=
1

2

∞∑
n=1

(−1)n+1

(
(x− 1)2

)n
n

=

∞∑
n=1

(−1)n+1 (x− 1)2n

2n
.

Although the problem does not ask us to do this, we will determine the interval of convergence of the series for exercise.

If we use the fact that ln(1 + y) =
∞∑
n=1

(−1)n+1 y
n

n holds for −1 < y ≤ 1, it follows immediately that the above equality

holds for 0 < (x− 1)2 ≤ 1, which holds for x ∈ [0, 2]. Let us however compute the interval of convergence without using the
aforementioned fact.

Let an be the nth term of our series, i.e., let

an = (−1)n+1 (x− 1)2n

2n
.

We use the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+2(x− 1)2n+2

(2n+ 2)

2n

(−1)n+1(x− 1)2n

∣∣∣∣
= lim

n→∞
(x− 1)2

n

n+ 1
= (x− 1)2 .

By the ratio test, the series is divergent for (x − 1)2 > 1, i.e., for |x − 1| > 1, and convergent for (x − 1)2 < 1, i.e., for
|x − 1| < 1. The ratio test is inconclusive at only two points: x − 1 = 1, i.e., x = 2 and x − 1 = −1, i.e., x = 0. At both

points the series becomes

∞∑
n=1

(−1)n+1 22n

2n
and the series is convergent at both points by the alternating series test.

Solution. 74.3 This solution is similar to the solution of 74.2, but we have written it in a concise fashion suitable for test
taking.

Denote Taylor series at a by Ta and recall that the Maclaurin series of are just T0, the Taylor series at 0.

T2(lnx) = T2(ln ((x− 2) + 2))

= T2

(
ln

(
2

(
x− 2

2
+ 1

)))
= T2

(
ln 2 + ln

(
1 +

x− 2

2

))
T0(ln(1 + y)) =

∞∑
n=1

(−1)n+1yn

n

= ln 2 +

∞∑
n=1

(−1)n+1
(
x−2
2

)
n

= ln 2 +

∞∑
n=1

(−1)n+1

2n
(x− 2)n .

Problem 75. Find the Taylor series around the indicated point. The answer key has not been proofread, use with caution.

1. 1
x at a = 1. answer:1−(x−1)+(x−1)

2
−(x−1)

3
+···=

∞∑
n=0

(−1)
n
(x−1)

n

2. 1
x2 at a = 1. answer:1−2(x−1)+3(x−1)

2
−4(x−1)

3
+···=

∞∑
n=0

(n+1)(−1)
n
(x−1)

n

12.3 Example of differentiable function not equal to its Maclaurin series

Problem 76. Let f(x) be defined as

f(x) :=

{
e−

1
x2 if x > 0

0 otherwise.
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1. Prove that if R(x) is an arbitrary rational function,

lim
x→0
x>0

R(x)e−
1
x2 = 0

2. Prove that f(x) is differentiable at 0 and f ′(0) = 0.

3. Prove that the Maclaurin series of f(x) are 0 (but f(x) is clearly a non-zero function).

13 Complex numbers

Problem 77. Carry out the operations. For some of the problems you may want to review the Newton Binomial formula.

1. (5 + 3i)2.

answer:30i+16

2.
5 + 3i

2− 3i
.

answer:21
13
i+1

13

3. (5 + 3i)−2.

answer:−15
578

i+4
289

4. (1 + i)3.

answer:2i−2

5. (1 + i)4.

answer:−4

6. (1 + i)5.

answer:−4i−4

7. (1 + i)−5.

answer:1
8
i−1

8

Solution. 77.6. By the Newton Binomial formula, we have that

(1 + i)5 = 1 + 5i+ 10i2 + 10i3 + 5i4 + i5 = 1− 10 + 5 + i(5− 10 + 1) = −4− 4i.

Solution. 77.7. Using the preceding example, we have that

(1 + i)−5 =
1

(1 + i)5
=

1

−4− 4i
=

−4 + 4i

(−4− 4i)(−4 + 4i)
=
−4 + 4i

32
= −1

8
+

1

8
i .

Problem 78. Plot the number z on the complex plane (you may use one drawing only for all the numbers). Find all real
numbers ϕ and ρ for which z = eρ+iϕ. Your answer may contain expressions of the form arcsinx, arccosx, arctanx, lnx,
only if x is a real number.

1. z = 1 + i
√

3.

answer:z=e
ln2+i(π3+2kπ),k∈Z

2. z = −2− 3i.

answer:z=e
1
2

ln(13)+i(arctan(3
2)+2kπ),k∈Z

3. z = 1− i
√

3.

answer:z=e
ln2+i(−π3+2kπ),k∈Z

4. z = 1 + i.

answer:z=e
1
2

ln2+i(π4+2kπ),k∈Z

5. z = −1− i.

answer:z=e
1
2

ln2+i(5π
4

+2kπ),k∈Z

6. z =
√
3+i
4 .

answer:z=e
−ln2+i(π6+2kπ),k∈Z

7. z = −i.

answer:z=e
i(−π2+2kπ),k∈Z

8. z = 3 + 4i.

answer:z=e
ln5+i(arctan(4

3)+2kπ),k∈Z

Solution. 78.1.
Solution I. We have that

|z| =
√
zz̄ =

√(
1 + i

√
3
)(

1− i
√

3
)

=

√
12 +

√
3
2

=
√

4 = 2 .

Recall that eρ+iϕ = eρ(cosϕ+ i sinϕ) and therefore

cosϕ =
|z| cosϕ

|z|
=

Re z

|z|
=

1

2

sinϕ =
|z| sinϕ
|z|

=
Im z

|z|
=

√
3

2

tanϕ =
sinϕ

cosϕ
=

√
3

3
.
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Therefore ϕ is of the form ϕ = arctan
(√

3
3

)
= π

3 + kπ. However ϕ cannot be of the form π
3 + (2k + 1)π because

cos
(
π
3 + (2k + 1)π

)
= − 1

2 . On the other hand, sin
(
π
3 + 2kπ

)
=
√
3
2 and cos

(
π
3 + 2kπ

)
= 1

2 ). Therefore

ϕ =
π

3
+ 2kπ, for all k ∈ Z

(Recall that Z denotes the integers).
As studied in class eρ = |z| = 2, and therefore ρ = ln(eρ) = ln |z| = ln 2. Therefore we get the answer

1 + i
√

3 = eln 2+i(π3 +2kπ)

for all k ∈ Z. To finish the task we need to plot the number z.

Re z

Im z

i

1

•

•

•
z

|z|

z = 1 + i
√
3•

−2− 3i•

ϕ = π

3

Solution II. We draw the number z as above. We compute that sinϕ = Im z
|z| =

√
3
2 , cosϕ = Re z

|z| = 1
2 . Therefore we have

that
1 + i

√
3 = eln |1+i

√
3|+i(π3 +2kπ) = eln 2+i(π3 +2kπ) .

Solution. 78.2.
We draw the number as indicated on the figure. We compute that sinϕ = − 3√

13
, cosϕ = − 2√

13
, tanϕ = 3

2 . By the

convention of our course, arctanϕ ∈
(
−π2 ,

π
2

)
. Therefore ϕ =

(
arctan

(
3
2

)
+ π

)
+ 2kπ for all k ∈ Z. Finally, we get

−2− 3i = eln |−2−3i|+i((arctan( 3
2 )+π)+2kπ) = eln

√
13+i((arctan( 3

2 )+π)+2kπ)

= e
1
2 ln 13+i((arctan( 3

2 )+π)+2kπ) .

Problem 79. Find all complex solutions of the equation. The answer key has not been proofread. Use with caution.

1. z3 = i.

answer:

Re

Im

−

√

3
2

+i
2

√

3
2

+i
2

−i

polarformvalue

cos(5π
6)+isin(5π

6)−
√

3
2

+i
2

cos(π6)+isin(π6)√
3

2
+i

2

cos(−π2)+isin(−π2)−i

2. z3 = − i
8

. answer:

Re

Im

√

3
4

−i
4

−

√

3
4

−i
4

i
2polarformvalue

1
2(cos(−5π

6)+isin(−5π
6))−

√
3

4−i
4

1
2(cos(−π6)+isin(−π6))√

3
4−i

4
1
2(cos(π2)+isin(π2))i

2

3. z4 = −16.

answer:±
√

2±
√

2i(inallfourcombinations).
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4. z3 = −27.

answer:3
2

+3
√

3
2
i,3

2−3
√

3
2
i,−3.

5. z8 = 1.

answer:±
√

2
2±

√
2

2
i(allfourcombinations),±i,±1(total8values).

Solution. 79.1. Let z = |z|(cos θ + i sin θ) be the polar form of |z| for which θ ∈ (−π, π]. We have |z|3 = |i| = 1. Therefore
|z| = 1.

We can write i in polar form as i = cos
(π

2

)
+ i sin

(π
2

)
. Therefore

z3 = i use de Moivre’s formula
|z|3 (cos(3θ) + i sin(3θ)) = cos

(
π
2

)
+ i sin

(
π
2

)
use |z| = 1

cos(3θ) + i sin(3θ) = cos
(
π
2

)
+ i sin

(
π
2

) when sines and cosines
coincide the angles differ
by even multiple of π

3θ = π
2 + 2kπ, k − integer

θ = π
6 + k 2π

3 θ ∈ (−π, π]⇒ k = −1, 0, or 1
θ = −π2 ,

π
6 , or 5π

6 .

To find out the values of z in non-polar form, we simply plot the numbers z = (cos θ + i sin θ). The three complex
solutions lie on a circle of radius 1; the numbers form an equilateral triangle, as shown on the picture. To find the actual
values for these complex numbers, we use known values of the trigonometric functions. Our final answer is as follows.

Re

Im

b
−

√

3
2

+ i
2

b √
3

2
+ i

2

b
−i

polar form value

cos
(
5π
6

)
+ i sin

(
5π
6

)
−
√
3
2 + i

2

cos
(
π
6

)
+ i sin

(
π
6

) √
3
2 + i

2
cos
(
−π2
)

+ i sin
(
−π2
)

−i

Solution. 79.2
Let z = |z|(cos θ + i sin θ) be the polar form of |z| for which θ ∈ (−π, π]. We have |z|3 =

∣∣ i
8

∣∣ = 1
8 . Since |z| is a positive

real number it follows that |z| = 3

√
1

8
=

1

2
.

We can write − i
8

in polar form as − i
8

=
1

8

(
cos
(
−π

2

)
+ i sin

(
−π

2

))
. Therefore

z3 = −i
8 use de Moivre’s formula

|z|3 (cos(3θ) + i sin(3θ)) = 1
8

(
cos
(
−π2
)

+ i sin
(
−π2
))

use |z| = 1
2

cos(3θ) + i sin(3θ) = cos
(
−π2
)

+ i sin
(
−π2
) when sines and cosines

coincide the angles differ
by even multiple of π

3θ = −π2 + 2kπ, k − integer
θ = −π6 + k 2π

3 θ ∈ (−π, π]⇒ k = −1, 0, or 1
θ = − 5π

6 ,−
π
6 , or π

2 .

To find out the values of z in non-polar form, we simply plot the numbers z = 1
2 (cos θ+ i sin θ). The three complex solutions

lie on a circle of radius 1
2 ; the numbers form an equilateral triangle, as shown on the picture. To find the actual values for

these complex numbers, we use known values of the trigonometric functions. Our final answer is as follows.

Re

Im

√

3
4

−
i
4

−

√

3
4

−
i
4

i
2

polar form value
1
2

(
cos
(
− 5π

6

)
+ i sin

(
− 5π

6

))
−
√
3
4 −

i
4

1
2

(
cos
(
−π6
)

+ i sin
(
−π6
)) √

3
4 −

i
4

1
2

(
cos
(
π
2

)
+ i sin

(
π
2

))
i
2

Problem 80. Express the number in polar form and compute the indicated power. The answer key has not been proofread,
use with caution.
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1. z =
√

3 + i, find z3.

answer:z=
√

3+i=2(cos(π6)+isin(π6)),z3=8(cos(π2)+isin(π2))=8i.

2. z =
√

3i− 1, find z10.

answer:z=2(cos(2π
3)+isin(2π

3)),z10=210(−1
2

+

√
3

2
i)=−512+512

√
3i.

3. z = −1− i, find z21.

answer:z=
√

2(cos(5
4
π)+sin(5

4
π)),z21=1024+1024i.

Problem 81. The de Moivre follows directly from Euler’s formula and states that (cos(nα) + i sin(nα)) = (cosα+ i sinα)n.
Expand the indicated expression and use it to express cos(nα) and sin(nα) via cosα and sinα.

You may want to use the Newton binomial formulas (derived, say, via Pascal’s triangle). The formulas you may want
to use are:

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4 .

1. Expand (cosα+ i sinα)2. Express cos(2α) and sin(2α) via cosα and sinα.

answer:
cos(2α)=cos2α−sin2α
sin(2α)=2sinαcosα.

2. Expand (cosα+ i sinα)3. Express cos(3α) and sin(3α) via cosα and sinα.

answer:
cos(3α)=cos3α−3cosαsin2α

sin(3α)=−sin3α+3sinαcos2α.

3. Expand (cosα+ i sinα)4. Express cos(4α) and sin(4α) via cosα and sinα.

answer:
cos(4α)=cos4α−6cos2αsin2α−sin4α

sin(4α)=4sinαcos3α−4sin3αcosα.

14 Curves

Problem 82. Match the graphs of the parametric equations x = f(t), y = g(t) with the graph of the parametric curve

γ

∣∣∣∣ x = f(t)
y = g(t)

1.
1

answer:matchesto3

2.

1

answer:matchesto1

3. 1 answer:matchesto2

1.
t

x

1 t

y

1

2.

t

x

1

t

y

1

3. t

x

1
t

y

1

14.1 Curves in polar coordinates

Problem 83. Match the graph of the curve to its graph in polar coordinates and to its polar parametric equations.

1. answer:matches2,6
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2. answer:matches3,5

3. answer:matches5,2

4. answer:matches6,3

5. answer:matches4,1

6. answer:matches1,4

1.

2.

3.

4.

5.

6.

1. r = 1 + sin(θ) + cos(θ)

2. r = θ, θ ∈ [−π, π].

3. r = cos(3θ), θ ∈ [0, 2π].

4. r = 1
4

√
θ, θ ∈ [0, 10π].

5. r = 2 + sin(5θ).

6. r = 2 + cos(3θ).

Problem 84.

1. Sketch the curve given in polar coordinates by r = 2 sin θ. What kind of a figure is this curve? Find an equation
satisfied by the curve in the (x, y)-coordinates.

2. Sketch the curve given in polar coordinates by r = 4 cos θ. What kind of a figure is this curve? Find an equation
satisfied by the curve in the (x, y)-coordinates.

3. Sketch the curve given in polar coordinates by r = 2 sec θ. What kind of a figure is this curve? Find an equation
satisfied by the curve in the (x, y)-coordinates. answer:thecurveisthelinex=2

4. Sketch the curve given in polar coordinates by r = 2 csc θ. What kind of a figure is this curve? Find an equation
satisfied by the curve in the (x, y)-coordinates.

5. Sketch the curve given in polar coordinates by r = 2 sec
(
θ + π

4

)
. What kind of a figure is this curve? Find an equation

satisfied by the curve in the (x, y)-coordinates. answer:thecurveistheliney=x−2
√

2

6. Sketch the curve given in polar coordinates by r = 2 csc
(
θ + π

6

)
. What kind of a figure is this curve? Find an equation

satisfied by the curve in the (x, y)-coordinates.

Solution. 84.3. Recall from trigonometry that if we draw a unit circle as shown below, sec θ is given by the signed distance
as indicated on the figure. Therefore it is clear that the curve given in polar coordinates by y = sec θ is the vertical line
passing through x = 1. Analogous considerations can be made for a circle of radius 2, from where it follows that y = 2 sec θ
is the vertical line passing through x = 2.

Alternatively, we can find an equation in the (x, y)-coordinates of the cuve by the direct computation:

x = r cos θ = 2 sec θ cos θ = 2 .
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θ

sec θ

Solution. 84.5.
Approach I. Adding an angle α to the angle polar coordinate of a point corresponds to rotating that point counterclockwise
at an angle α about the origin. Therefore a point P with polar coordinates P

(
2 sec

(
θ + π

4

)
, θ
)

is obtained by rotating at

an angle −π4 the point Q with polar coordinates Q
(
2 sec

(
θ + π

4

)
, θ + π

4

)
. The point P lies on the curve with equation

r = 2 sec
(
θ + π

4

)
and the point Q lies on the curve with equation r = 2 sec θ - the latter curve is the curve from problem

84.3. Thus the curve in the current problem is obtained by rotating the curve from 84.3 at an angle of −π4 . As the curve
in Problem 84.3 is the vertical line x = 2, the curve in the present problem is also a line. Rotation at an angle of −π4 of a

vertical line yields a line with slope 1. When θ = 0, x = 2√
2

2

= 2
√

2, y = 0 and the curve passes through (2
√

2, 0). We know

the slope of a line and a point through which it passes; therefore the (x, y)-coordinates of our curve satisfy

y = x− 2
√

2 .

Approach II. We compute

x = r cos θ =
2 cos θ

cos(θ + π
4 )

multiply by cos
(
π
4

)
=
√
2
2

y = r sin θ =
2 sin θ

cos(θ + π
4 )

multiply by − sin
(
π
4

)
= −

√
2
2

add the above

x cos
(
π
4

)
− y sin

(
π
4

)
= 2

cos θ cos
(
π
4

)
− sin θ sin

(
π
4

)
cos
(
θ + π

4

) use cos(α+ β) = cosα cosβ − sinα sinβ

√
2
2 (x− y) = 2

cos
(
θ + π

4

)
cos
(
θ + π

4

) = 2

y = x− 2
√

2,

and therefore our curve is the line given by the equation above.

14.2 Curve tangents

Problem 85. Find the values of the parameter t for which the curve has horizontal and vertical tangents.

1. y = t2 − t+ 1, x = t2 + t− 1

2. x = t3 − t2 − t+ 1, y = t2 − t− 1.

3. x = cos(t), y = sin(3t)

4. x = cos(t) + sin(t) , y = sin(t).

Problem 86. Show that the parametric curve has multiple tangents at the point and find their slopes.
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1. x = cos t, y = 2 sin(2t), two tangents at (x, y) = (0, 0).

2. x = cos t sin(3t), y = sin(t) sin(3t), six tangents at

(x, y) = (0, 0).

3. x = cos t, y = sin(3t), find the two points at which the
curve has double tangent and find the slopes of both

pairs of tangents.

4. x = t3 − t2 − t + 1, y = t2 − t − 1, find a point where
the curve has double tangent and find the slopes of the
tangents.

14.3 Curve lengths

Problem 87. Plot the curve. Set up an integral that expresses its length. Find the length of the curve.

1. y =
√
x, x ∈ [1, 2].

2. y = x2, x ∈ [1, 2].

3. γ :

∣∣∣∣ x(t) = 1
t + t3

3
y(t) = 2t

, t ∈ [1, 2] .

4. x =
√
t− 2t and y =

8

3
t
3
4 from t = 1 to t = 4.

Solution. 87.4. The length of the parametric curve is given by

L =

∫ 4

1

√(
dx

dt

)2

+

(
dy

dt

)2

dt .

We have that
dx

dt
=

1

2
√
t
− 2

dy

dt
= 2t−

1
4(

dx

dt

)2

=
1

4t
− 2√

t
+ 4(

dy

dt

)2

= 4t−
1
2 =

4√
t(

dx

dt

)2

+

(
dy

dt

)2

=
1

4
t+ 2

√
t+ 4 =

(
1

2

√
t+ 2

)2

.

1
2

√
t+ 2 is positive and

√(
1
2

√
t+ 2

)2
= 1

2

√
t+ 2. So the integral becomes

L =

∫ 4

1

(
1

2

√
t+ 2

)
dt =

[√
t+ 2t

]t=4

t=1
= (2 + 8)− (1 + 2) = 7 .

Problem 88. Set up an integral that expresses the length of the curve and find the length of the curve.

1.

∣∣∣∣ x(t) = et + e−t

y(t) = 5− 2t
, t ∈ [0, 3]
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answer:e3−e−3

2.

∣∣∣∣ x(t) = sin t+ cos t
y(t) = sin t− cos t

, t ∈ [0, π]

answer:
√

2π

14.4 Area under curve

Problem 89. Give a geometric definition of the cycloid curve using a circle of radius 1. Using that definition, derive
equations for the cycloid curve. Find area locked between one “arch” of the cycloid curve and the x axis.

14.5 Area locked by curve

Problem 90. 1. The curve given in polar coordinates by r = 1 + sin 2θ is plotted below by computer. Find the area lying

outside of this curve and inside of the circle x2 + y2 = 1. answer:a=2−π
4

2. The curve given in polar coordinates by r = cos(2θ) is plotted below by computer. Find the area lying inside the curve

and outside of the circle x2 + y2 = 1
4 .

answer:π
6

+

√
3

4

3. Below is a computer generated plot of the curve r = sin(2θ). Find the area locked inside one petal of the curve and

outside of the circle x2 + y2 =
1

4
.

Solution. 90.1. A computer generated plot of the two curves is included below. The circle x2 +y2 = 1 has one-to-one polar
representation given by r = 1, θ ∈ [0, 2π). Except the origin, which is traversed four times by the curve r = 1 + sin(2θ), the
second curve is in a one-to-one correspondence with points in the r, θ-plane given by the equation r = 1+sin(2θ), θ ∈ [0, 2π).
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Since the two curves do not meet in the origin, we may conclude that the two curves may intersect only when their values
for r and θ coincide. Therefore we have an intersection when

1 + sin(2θ) = 1
sin(2θ) = 0

θ = 0, π2 , π,
3π
2 because θ ∈ [0, 2π)

Therefore the two curves meet in the points (0, 1)(−1, 0) and (0,−1), (1, 0).
Denote the investigated region by A. From the computer-generated plot, it is clear that when a point has polar coordinates

θ ∈ [π2 , π]∪ [ 3π2 , 2π], r ∈ [1 + sin(2θ), 1] it lies in A. Furthermore, the points r, θ lying in the above intervals are in one-to-one
correspondence with the points in A.

Suppose we have a curve r = f(θ), θ ∈ [a, b] for which no two points lie on the same ray from the origin. Recall from
theory that the area swept by that curve is given by

b∫
a

1

2
f2(θ)dθ .

Therefore the area a of A is computed via the integrals

a =

π∫
π
2

1

2

 1︸︷︷︸
outer curve

2 −

1 + sin(2θ)︸ ︷︷ ︸
inner curve

2
dθ +

2π∫
3π
2

1

2

(
12 − (1 + sin(2θ))2

)
dθ use the symmetry of A

=

π∫
π
2

(
12 − (1 + sin(2θ))2

)
dθ =

π∫
π
2

(
−2 sin(2θ)− sin2(2θ)

)
dθ use sin2 z = 1−cos(2z)

2

=

π∫
π
2

(
−2 sin(2θ)− 1

2
+

1

2
cos(4θ)

)
dθ =

[
cos(2θ)− 1

2
θ − 1

8
sin(4θ)

]π
π
2

= 2− π
4 .

Solution. 90.2 A computer generated plot of the figure is included below. The circle x2 + y2 = 1
4 is centered at 0 and of

radius 1
2 and therefore can be parametrized in polar coordinates via r = 1

2 , θ ∈ [0, 2π].
Points with polar coordinates (r1, θ1) and (r2, θ2) coincide if one of the three holds:

• r1 = r2 6= 0 and θ1 = θ2 + 2kπ, k ∈ Z,

• r1 = −r2 6= 0 and θ1 = θ2 + (2k + 1)π, k ∈ Z,

• r1 = r2 = 0 and θ is arbitrary.

To find the intersection points of the two curves we have to explore each of the cases above. The third case is not possible
as the circle does not pass through the origin. Suppose we are in the first case. Then the value of r (as a function of θ) is
equal for the two curves. Thus the two curves intersect if

r = cos(2θ) = 1
2

2θ = ±π3 + 2kπ where k ∈ Z
θ = ±π6 + kπ where k ∈ Z
θ = π

6 ,
π
6 + π,−π6 + π,−π6 + 2π all other values discarded as θ ∈ [0, 2π]

θ = π
6 ,

7π
6 ,

5π
6 ,

11π
6
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This gives us only four intersection points, and the computer-generated plot shows eight. Therefore the second case must
yield new intersection points: the two curves intersect also when

r = cos(2θ) = − 1
2

2θ = ± 2π
3 + 2kπ where k ∈ Z

θ = ±π3 + kπ where k ∈ Z
θ = π

3 ,
π
3 + π, −π3 + π, −π3 + 2π all other values are discarded as θ ∈ [0, 2π]

θ = π
3 ,

4π
3 ,

2π
3 ,

5π
3 .

From the computer-generated plot below, we can see that the area we are looking for is 4 times the area locked between the
two curves for θ ∈

[−π
6 ,

π
6

]
. Therefore the area we are looking for is given by

4

π
6∫

−π6

1

2

(
cos2(2θ)−

(
1

2

)2
)

dθ .

We leave the above integral to the reader.

x

y

Solution. 90.3. The circle x2 + y2 = 1
4 is centered at 0 and of radius 1

2 and therefore can be parametrized in polar
coordinates via r = 1

2 , θ ∈ [0, 2π).
Points with polar coordinates (r1, θ1) and (r2, θ2) coincide if one of the three holds:

• r1 = r2 6= 0 and θ1 = θ2 + 2kπ, k ∈ Z,

• r1 = −r2 6= 0 and θ1 = θ2 + (2k + 1)π, k ∈ Z,

• r1 = r2 = 0 and θ is arbitrary.

To find the intersection points of the two curves we have to explore each of the cases above. The third case is not possible
as the circle does not pass through the origin. Suppose we are in the first case. Then the value of r (as a function of θ) is
equal for the two curves. Thus the two curves intersect if

r = sin(2θ) = 1
2

2θ = π
6 + 2kπ or 5π

6 + 2kπ where k ∈ Z
θ = π

12 + kπ or 5π
12 where k ∈ Z

θ = π
12 ,

13π
12 ,

5π
12 ,

17π
12

other values discarded as
θ ∈ [0, 2π]

This gives us only four intersection points, and the computer-generated plot shows eight. Therefore the second case must
yield 4 new intersection points. However, from the figure we see there are only two intersection points that participate in
the boundary of our area, and both of those were found above. Therefore we shall not find the remaining 4 intersections.

Both the areas locked by the petal and the area locked by the section of the circle are found by the formula for the area
locked by a polar curve. Subtracting the two we get that the area we are looking for is:

Area =

θ= 5π
12∫

θ=− π
12

1

2

(
sin2(2θ)−

(
1

2

)2
)

dθ .

=
1

2

θ= 5π
12∫

θ=− π
12

(
1− cos(4θ)

2
− 1

4

)
dθ

=
1

2

[
1

4
θ − sin(4θ)

8

]θ= 5π
12

θ=− π
12

= 1
24π +

√
3

16 .
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Problem 91. The answer key has not been proofread, use with caution.

1. Sketch the graph of the curve given in polar coordinates by r = 3 sin(2θ) and find the area of one petal.

answer:9π
8

,curvesketch:

2. Sketch the graph of the curve given in polar coordinates by r = 4 + 3 sin θ and find the area enclosed by the curve.

answer:41π
2

,curvesketch:

15 A Bit of Differential Equations

15.1 Separable Differential equations

15.1.1 The Mixing Problem

Problem 92. A tank contains 30 kg of salt dissolved in 10000 liters of water and salt solution. Brine that contains 0.05 kg
of salt per liter enters the tank at a rate of 10 liters per minute. The solution is kept thoroughly mixed and drains from the
tank at the same rate (10 liters per minute). Determine how much salt remains in the tank after 45 minutes.

answer:500−470e−9
200≈50.68kg

Solution. 92. Let
y(t) = salt in the tank after t minutes (in kg) .

We are given y(0) = 30kg, the initial amount of salt. We are looking to find y(45), the amount of salt after 45 minutes. We
have that

dy

dt
= (rate in)− (rate out) .

The rate of salt entering the tank is constant:

(rate in) = 0.05kg/L · 10L/min = 0.5kg/min .

As the solution is thoroughly mixed, at any time the concentration of salt in the tank is

y

10000
kg/L.

Therefore the rate of salt going out of the tank is

(rate out) =
y

10000
kg/L ∗ 10L/min =

y

1000
kg/min .

Therefore the differential equation for the amount of salt in the tank is

dy

dt
= 0.5︸︷︷︸

(rate in)

− y

1000︸ ︷︷ ︸
(rate out)

.

There are two variants for remainder of the solution. Variant I uses indefinite integration and is slightly informal, but is
easier to learn and remember. Variant II is rigorous, but more challenging understand and write up. Both solutions are
acceptable for full credit in a Calculus exam. Variant I is recommended when taking exams and Variant II is recommended
when writing scientific texts.
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Variant I

dy

dt
= 0.5− y

1000
.

dy

dt
=

500− y
1000

.

1000

500− y
dy

dt
= 1 Use indefinite integration∫

1000

500− y
dy

dt
dt︸ ︷︷ ︸

dy

=

∫
dt

∫
1000

500− y
dy = t+ C

−1000

∫
1

500− y
d(500− y) = t+ C

−1000 ln |500− y| = t+ C

The constant from

the second integral

is accounted by the constant C

ln |500− y| = − t+ C

1000

|500− y| = e−
t+C
1000

Since 500− y(0) = 500− 30 = 470 > 0

we can drop the absolute values

500− y = e−
t+C
1000

y = 500− e−
t+C
1000 Set D = e−

C
1000

y = 500−De− t
1000 .

To find the constant D, we observe that

30 = y(0) = 500−De− 0
1000 = 500−D

D = 470 .

Therefore
y(t) = 500− 470e−

t
1000 ,

and the final answer is
y(45) = 500− 470e−

45
1000 ≈ 50.68

with measurement unit kg.

71



Variant II. To find y(45), we integrate from t = 0 to t = 45:

45∫
t=0

1000

500− y
dy

dt
dt︸ ︷︷ ︸

d(y(t))

=

45∫
t=0

dt

t=45∫
t=0

1000

500− y(t)
d(y(t)) = 45 set z = y(t)

−1000

z=y(45)∫
z=y(0)=30

1

500− z
d(500− z) = 45

−1000 ln |500− y|]y(45)y(0)=30 = 45

−1000 (ln |500− y(45)|

− ln |500− 30|) = 45

ln

∣∣∣∣ 470

500− y(45)

∣∣∣∣ =
45

1000

ln

(
470

500− y(45)

)
=

45

1000
see below

470

500− y(45)
= e

45
1000

500− y(45) = 470e−
9

200

y(45) = 500− 470e−
9

200

≈ 500− 470 · 0.955997

≈ 50.681184 ,

where we have used that
470

500− y(t)
> 0. The fact that

470

500− y(t)
> 0 can be seen as follows. As 500 − y(0) = 470 > 0

and y(t) is continuous, in order to have 500 − y(t) < 0 there must exist some x1 for which y(x1) = 500. However this is

impossible since x = ln

∣∣∣∣ 470

500− y(x)

∣∣∣∣.
As the unit of measurement is kg, the final answer to the problem is ≈ 50.68kg salt.

Problem 93. Mixing problem. A tank contains 1000 kg of salt dissolved in 10000 liters of water. Brine that contains 0.05
kg of salt per liter of water enters the tank at a rate of 30 liters per minute. The solution is kept thoroughly mixed and drains
from the tank at the same rate (30 liters per minute).

1. Determine how much salt remains in the tank after an hour. The answer key has not been proofread, use with caution.

answer:500+500e−0.18
≈917.64kg

2. Determine how much time will be needed in order to have the concentration of salt in the tank reach 0.0501kg/liter.
The answer key has not been proofread, use with caution.

answer:1000
3

ln500≈2071.54min≈34.53hours

15.1.2 General Separable Problems

Problem 94.
dy

dx
= y2 − 1 . (13)

1. Find all solutions of the differential equation above.

2. Find a solution for which y(0) = − 3
5 .

Solution. 94.1. There are two variants for solving this problem. The first variant uses indefinite integration and is slightly
informal, but easier to apply and remember. The second variant is more rigorous but more difficult to write up. Both
solutions are acceptable for full credit in a Calculus exam. Variant I is recommended when taking exams and Variant II is
recommended when writing scientific texts.

Variant I
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dy

dx
= y2 − 1 Suppose y2 − 1 6= 0

dy
dx

y2 − 1
= 1∫

1

y2 − 1

dy

dx
dx︸ ︷︷ ︸

=dy

=

∫
dx

∫
dy

y2 − 1
= x+ C∫ ( 1

2

y − 1
−

1
2

y + 1

)
dy = x+ C

1

2
ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = x+ C

ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = 2t+ 2C∣∣∣∣y − 1

y + 1

∣∣∣∣ = e2x+2C

y − 1

y + 1
= ±e2x+2C

y − 1 = ±e2x+2C(y + 1)

y(1∓ e2x+2C) = 1± e2x+2C

y =
1± e2x+2C

1∓ e2x+2C

y =
1± e2Ce2x

1∓ e2Ce2x
Set D = ±e2C

y =
1 +De2x

1−De2x
.

The above solution works on condition that y2 − 1 6= 0. So the only case not covered is that of y2 − 1 = 0, which yields the
two solutions y = ±1.

Our final answer is

y(x) =
1 +De2x

1−De2x
or y(x) = −1,

where D is an arbitrary real number. Notice that in the above answer, by allowing D = 0, we have covered the case y(x) = 1.

Finally, we note that if we let D → ∞, the solution y(x) = 1+De2x

1−De2x tends to the solution y(x) = −1 (here we fix a value of
x before we let D →∞).

Variant II
Case 1. Suppose there exists a number x0 such that (y(x0))2 − 1 6= 0. Since y is a differentiable function of x, it is also
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continuous. Therefore for some t sufficiently close to x0, all numbers x in the interval between t and x0 satisfy y(x)2−1 6= 0.

dy
dx

y2 − 1
= 1

x=t∫
x=x0

1

y2 − 1

dy

dx
dx︸ ︷︷ ︸

=d(y(x))

=

x=t∫
x=x0

dx can integrate as y(x)2 − 1 6= 0

x=t∫
t=x0

d(y(x))

(y(x))2 − 1
= x|x=tx=x0

set z = y(x)

z=y(t)∫
z=y(x0)

dz

z2 − 1
= t− x0

z=y(t)∫
z=y(x0)

( 1
2

z − 1
−

1
2

z + 1

)
dz = t− x0

1

2
ln

∣∣∣∣z − 1

z + 1

∣∣∣∣]z=y(t)
z=y(x0)

= t− x0 Set C = 2x0 − ln
∣∣∣y(x0)−1
y(x0)+1

∣∣∣
ln

∣∣∣∣y(t)− 1

y(t) + 1

∣∣∣∣ = 2t− C relabel dummy variable t to x

ln

∣∣∣∣y(x)− 1

y(x) + 1

∣∣∣∣ = 2x− C

Set
D = e−C .

By the assumption of our case, (y(x0))2 − 1 6= 0, so there are two remaining cases: (y(x0))2 − 1 > 0 and (y(x0))2 − 1 < 0.

Case 1.1. Suppose
y(x0)− 1

y(x0) + 1
> 0. As the function y(x) is differentiable, it is also continuous. Therefore

y(x)− 1

y(x) + 1
> 0 for

all x near x0. Then we can remove the absolute values in the equality above to get that for all x close to x0 we have that

ln

(
y(x)− 1

y(x) + 1

)
= 2x− C exponentiate, recall D = e−C

y(x)− 1

y(x) + 1
= De2x

y(x)− 1 = De2x(y(x) + 1)

y(x)
(
1−De2x

)
= De2x + 1

y(x) =
1 +De2x

1−De2x
.

The solution y(x) given above satisfies
y(x)− 1

y(x) + 1
= De2x for all x. As D > 0, this implies that

y(x)− 1

y(x) + 1
> 0. Therefore the

considerations above are valid for all x, rather than only for those x near x0. Therefore our first case yields the solution

y(x) =
1 +De2x

1−De2x
.

Case 1.2. Suppose
y(x0)− 1

y(x0) + 1
< 0. Then for all x near x0 we get ln

∣∣∣∣y(x)− 1

y(x) + 1

∣∣∣∣ = ln

(
1− y(x)

y(x) + 1

)
and, similarly to Case 1, we

get

1− y(x)

y(x) + 1
= De2x

1− y(x) = De2x(y(x) + 1)

y(x)
(
1 +De2x

)
= 1−De2x

y(x) =
1−De2x

1 +De2x
.
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Since D is a positive constant, we conclude in a fashion analogous to Case 1 that y(x) < 0 for all x.
Case 2. Suppose (y(x0))2 − 1 = 0. Then y(x0) = ±1. Clearly the constant functions y(x) = ±1 are two solutions: if we

can plug back y = ±1 in the original equation we get that dy
dx = 0 and y is a constant function of x. From the preceding

two cases we know that if y(x)−1
y(x)+1 is defined and not equal to zero for some value of x, then y(x)−1

y(x)+1 is defined and not equal

to zero for all values of x. Therefore the present case yields only two solutions, the constant functions y(x) = ±1.
Our final answer is

y(x) =
1 +De2x

1−De2x
or y(x) = −1,

where D is an arbitrary real number. Notice that in the above answer, we have combined Cases 1.1, 1.2 and the case
y(x) = 1: by allowing D to be negative we included Case 1.2 and by allowing D to be zero we included the case y(x) = 1.

Finally, we note that if we let D →∞, the solution y(x) = 1+De2x

1−De2x tends to the solution y(x) = −1 (for all values of x).
Solution plots.
We may plot solutions for a few values of D as follows. We overlay the solutions on top of the direction field of

the differential equation. The picture tells us a lot about the properties of the solutions of the differential equations.

1− 1
4
e
2x

1+ 1
4
e2x

1−e
2x

1+e2x

1−4e
2x

1+4e2x

1+ 1
4
e
2x

1− 1
4
e2x

1+e
2x

1−e2x

1+4e
2x

1−4e2x

1

2

3

4

−1

−2

−3

−4

1 2 3 4−1−2−3−4

The direction field
dy

dx
= y2 − 1

94.2. From the computer generated picture above, we may visually estimate that y(x) = 1−4e2x
1+4e2x intersects the x-axis at(

0,− 3
5

)
. Furthermore, we may check directly that for

y(x) =
1− 4e2x

1 + 4e2x

we have y(0) = 1−4
1+5 = − 3

5 and that is a solution to our problem (this however does not prove the solution is unique).

Alternatively, let us give an algebraic solution. As we are given that y(0) = − 3
5 and so

−3

5
= y(0) =

1−De2·0

1 +De2·0
=

1−D
1 +D

−3

5
(1 +D) = 1−D

2

5
D =

8

5

D = 4 ,
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which is our final answer.

Problem 95. 1. Find the general solution to the differential equation

dy

dx
= y2 − 4 .

Below is a computer-generated plot of the direction field
dy

dx
= y2 − 4, you may use it to get a feeling for what your

answer should look like.

1

2

3

4

−1

−2

−3

−4

1 2 3 4−1−2−3−4

The direction field dy

dx
= y2 − 4

2. Find a solution of the above equation for which y(0) = − 6
5 .

Problem 96. 1. Solve the initial-value differential equation y′ = y2(1 + x), y(0) = 3.

2. Solve the initial-value differential equation problem

y′ = xe−y , y(4) = 0.

Below is a computer-generated plot of the corresponding direction field, you may use it to get a feeling for what your
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answer should look like.

1

2

3

4

5

6

7

8

−1

−2

−3

−4

1 2 3 4 5 6 7 8−1−2−3−4

The direction field dy

dx
= y′ = xe−y

answer:y(x)=ln(x2
2−7)

3. Solve the initial-value differential equation problem

y′ =
lnx

xy
, y(1) = 2.

Below is a computer-generated plot of the corresponding direction field, you may use it to get a feeling for what your
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answer should look like.

1

2

3

4

5

−1

−2

−3

−4

1 2 3 4 5 6 7 8 9

The direction field dy

dx
= y′ = ln x

xy

answer:y(x)=√(lnx)2+4

Solution. 96.1.
dy

dx
= y2(1 + x)

dy

y2
= (1 + x)dx∫

dy

y2
=

∫
(1 + x)dx

−1

y
= x+

x2

2
+ C

−1

3
= 0 + 0 + C

y = − 1
x2

2 + x− 1
3

= − 3

3x2 + 6x− 2
.

Problem 97. 1. Solve the initial-value differential equation problem

y′ = x tan y , y(0) = arcsin

(
1

e

)
≈ 0.376728.

answer:y(x)=arcsin


e
x2

2−1

2. Solve the same differential equation with initial condition y(0) = π + arcsin
(
− 1
e

)
≈ 2.764865.

answer:y(x)=π+arcsin


−e

x2

2−1

Below is a computer-generated plot of corresponding direction field, you may use it to get a feeling for what your answer
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should look like.

1

2

3

4

5

6

7

8

−1

−2

−3

−4

1 2 3 4 5 6 7 8−1−2−3−4

The direction field y

dx
= y′ = x tan y
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Solution. 97.1 and 97.2

y′ = x tan y
y′

tan y
= x

(cos y)y′

sin y
= x Integrate from 0

t=x∫
t=0

cos(y(t))

sin(y(t))
(y′dt) =

x∫
t=0

tdt

t=x∫
t=0

cos(y(t))

sin(y(t))
d(y(t)) =

x2

2
Set z = y(t)

z=y(x)∫
z=y(0)

cos z

sin z
dz =

x2

2

z=y(x)∫
z=y(0)

d(sin z)

sin z
=

x2

2

[ln | sin z|]yy(0) =
x2

2

ln | sin y| − ln | sin(y(0))| =
x2

2

ln | sin y| =
x2

2
+ ln | sin(y(0))|

| sin y| = e
x2

2 +ln | sin(y(0))|

| sin y| =

{
e
x2

2 +ln|sin(arcsin( 1
e ))| for problem 97.1

e
x2

2 +ln|sin(π+arcsin( 1
e ))| for problem 97.2

| sin y| = e
x2

2 +ln( 1
e )

| sin y| = e
x2

2 −1 y(0) > 0 for both problems
therefore sin y(0) > 0

sin y = e
x2

2 −1 .

From the elementary properties of the trigonometric functions, we know that sin y = sinα implies that either

• y = α+ 2kπ, where k is an arbitrary integer or

• y = (2k + 1)π − α, where k is an arbitrary integer.

In other words, if we are given sin y, we know y up to a choice of sign and a choice of an integer k. For our problem, this
means that

y =


2kπ + arcsin

(
e
x2

2 −1
)

k − integer

or

(2k + 1)π − arcsin
(
e
x2

2 −1
)

k − integer

For problem 97.1, the only choice for k and sign which fits the initial condition y(0) = arcsin
(
1
e

)
is

y = arcsin
(
e
x2

2 −1
)

,

which is our final answer.
For problem 97.2, the only choice for k and sign which fits the initial condition y(0) = π + arcsin

(
− 1
e

)
= π − arcsin

(
1
e

)
is

y = π − arcsin
(
e
x2

2 −1
)

,

which is our final answer.
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