
Dear students, below you can find the approximate problem types that will appear on the test. The problems are not
new, you have already been assigned them in the various homeworks. This file is simply a test prepartaion problem collection
for your convenience.

1. Compute the limits. The answer key has not been fully proofread, use with caution.

(a) lim
x→0

sinx

x
. answer:1

(b) lim
x→0

x

ln(1 + x)
. answer:1

(c) lim
x→0

x2

x− ln(1 + x)
. answer:2

(d) lim
x→0

x2

sinx ln(1 + x)
. answer:1

(e) lim
x→0

sin2 x

(ln(1 + x))
2 . answer:1

(f) lim
x→0

cosx− 1

sinx ln(1 + x)
. answer:−1

2

(g) lim
x→0

arctanx− x

x3
. answer:−1

3

(h) lim
x→0

arcsinx− x

x3
. answer:1

6

(i) lim
x→1

x

x− 1
− 1

lnx
. answer:1

2

(j) lim
x→0

cos(nx)− cos(mx)

x2
. answer:m2−n2

2

(k) (Optional) lim
x→0

arcsinx− x− 1
6x

3

sin5 x
. answer:3

40

2. Express the sum of the series as a rational number.

(a)

∞∑
n=1

2n + 3n

5n

answer:13
6

(b)

∞∑
n=0

2n + 5n

10n
answer:13

4

(c)
∞∑

n=1

5n − 3n

7n

answer:7
4

(d)
∞∑

n=1

3n+1 + 7n−1

21n

answer:4
7

Solution. 2.a

∞∑
n=1

2n + 3n

5n
=

∞∑
n=1

(
2

5

)n

+

∞∑
n=1

(
3

5

)n

=
2

5

∞∑
n=0

(
2

5

)n

+
3

5

∞∑
n=0

(
3

5

)n
Use geometric series sum f-la:
∞∑

n=0
rn = 1

1−r ,

provided |r| < 1

=
2

5

1(
1− 2

5

) +
3

5

1(
1− 3

5

)
=

13

6
.

Solution. 2.b
∞∑

n=0

2n + 5n

10n
=

∞∑
n=0

(
1

5n
+

1

2n

)
use

∞∑
n=0

rn = 1
1−r , for |r| < 1

=
1

1− 1
2

+
1

1− 1
5

=
13

4
.
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Solution. 2.d

∞∑
n=1

3n+1 + 7n−1

21n
=

∞∑
n=1

(
3

3n

21n
+

1

7

7n

21n

)
= 3

∞∑
n=1

(
1

7

)n

+
1

7

∞∑
n=1

(
1

3

)n

=
3

7

∞∑
n=0

(
1

7

)n

+
1

21

∞∑
n=0

(
1

3

)n

use
∑∞

n=0 r
n = 1

1−r , |r| < 1

=
3

7

1(
1− 1

7

) +
1

21

1(
1− 1

3

)
=

4

7
.

3. The last problem is intended for the students who are interested. Solving it is not required to be prepared for the test.
Use integral test, the comparison test or the limit comparison test to determine whether the series is convergent or
divergent. Justify your answer.

(a)
∞∑

n=1

1

2n + 1
.

answer:divergent

(b)

∞∑
n=1

1

2n2 + n3
.

answer:convergent

(c)

∞∑
n=1

n2 + 3

3n5 + n

answer:convergent,canuselimitcomparisontest

(d)

∞∑
2

1

n lnn

(e)

∞∑
n=2

1

(2n + 1) ln(n)
.

answer:divergent

(f)

∞∑
n=2

1

n(lnn)2

answer:convergent,canuseintegraltest

(g)

∞∑
n=2

1

(2n + 1)(ln(n))2
.

answer:convergent

(h) Determine all values of p, q r for which the series

∞∑
n=30

1

np(lnn)q(ln(lnn))r

is convergent.

Solution. 3.d. ∫ ∞
2

1

x lnx
dx = lim

t→∞

∫ t

2

1

x lnx
dx

= lim
t→∞

∫ t

2

1

lnx
d(lnx)

= lim
t→∞

∫ t

2

d(ln(lnx))

= lim
t→∞

[ln(lnx)]
x=t
x=2

= lim
t→∞

(ln(ln t)− ln(ln 2))

= ∞,

therefore the integral is divergent (and diverges to +∞).

The function 1
x ln x is decreasing, as for x > 2, it is the quotient of 1 by increasing positive functions. 1

x ln x tends to 0

as x→∞, and therefore the integral criterion implies that
∞∑
2

1
n lnn is divergent.

Solution. 3.e

The integral criterion appears to be of little help: the improper integral
∫

1
(2x+1) ln xdx cannot be integrated algebraically

with any of the techniques we have studied so far. Therefore it makes sense to try to solve this problem using a
comparison test.

The “dominant term”1 of the denominator of 1
(2n+1) lnn = 1

2n lnn+lnn is 2n lnn. Therefore it makes sense to compare

- or limit-compare - with 1
n lnn .

1since we do not speak of rational functions, here the expression “dominant term” is used informally
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We will use the Limit Comparison Test for the series
∞∑

n=2
an =

∞∑
n=2

1
(2n+1) lnn and

∞∑
n=2

bn =
∞∑

n=2

1
n lnn . Both an and bn

are positive (for n > 2) and therefore the Limit Comparison Test applies.

lim
n→∞

an
bn

= lim
n→∞

1
(2n+1) lnn

1
n lnn

= lim
n→∞

n

2n + 1
= lim

n→∞

1

2 + 1
n

=
1

2
.

Since lim
n→∞

an

bn
= 1

2 6= 0, the Limit Comparison Test implies that the series
∑∞

n=2 an has same convergence/divergence

properties as the series
∑∞

n=2 bn. In Problem 3.d we demonstrated that the series
∞∑

n=2
bn is divergent; therefore the

series
∞∑

n=2
an =

∞∑
n=2

1
(2n+1) lnn is divergent as well.

4. Determine the interval of convergence for the following power series.

(a)

∞∑
n=1

(x− 2)n

3
√
n + 1

.

answer:x∈[1,3)

(b)

∞∑
n=1

10nxn

n3
.

answer:x∈[−1
10

,1
10]

(c)

∞∑
n=1

10n(x− 1)n

n3

answer:x∈[0.9,1.1]

(d)

∞∑
n=0

(−1)n
(x + 1)n

2n + 1

answer:x∈(−2,0]

(e)

∞∑
n=0

(−1)n
(x− 3)n

2n + 1
.

answer:x∈(2,4]

(f)

∞∑
n=0

xn

n!

answer:convergesforallx

(g)

∞∑
n=0

(n + 1)xn

answer:convergesfor|x|<1

(h)

∞∑
n=1

xn

n

answer:convergesfor|x|∈[−1,1).

(i)

∞∑
n=1

(−1)n
x2n+1

2n + 1

answer:convergesfor|x|∈(−1,1] .

(j)

∞∑
n=1

( 1
2

n

)
xn, where we recall that the binomial coeffi-

cient

(
q

n

)
stands for

q(q − 1) . . . (q − n + 1)

n!
.

answer:convergesforx∈(−1,1].

Solution. 4.a. We apply the Ratio Test to get that lim
n→∞

∣∣∣an+1

an

∣∣∣ = |x−2|. Therefore the power series converges at least

in the interval x ∈ (1, 3). When x = 3, the series becomes
∞∑

n=1

1
3
√
n+1

, which diverges - this can be seen, for example,

by comparing to the p-series 1√
n

. When x = 1, the series becomes
∞∑

n=1

(−1)n

3
√
n+1

, which converges by the Alternating

Series Test. Our final answer x ∈ [1, 3).

5. Find whether the series is convergent or divergent using an appropriate test.

(a)

∞∑
n=1

(−1)n lnn.

(b)

∞∑
n=2

(−1)n

lnn
.

Solution. 5.a. lim
n→∞

(−1)n lnn does not exist and therefore the sum is not convergent.

Solution. 5.b. For n > 2, we have that lnn is a positive increasing function and therefore 1
lnn is a decreasing positive

function. Furthermore lim
n→∞

1

lnn
= 0. Therefore the series is convergent by the alternating series test.

6. For each of the items below, do the following.

• Find the Maclaurin series of the function (i.e., the power series representation of the function around a = 0).

3



• Find the radius of convergence of the series you found in the preceding point.

You are not asked to find the entire interval of convergence, but just the radius. In other words, you only need to find
the inside of the interval of convergence but do not need to worry for the endpoints. Nevertheless in the answer key
we indicate the entire interval of convergence - including the endpoints.

The fact that the value of the series at the endpoints, whenever convergent, coincides with the value of the function
has not been demonstrated so far. Nevertheless that is true - but we shall not show it here.

Please post on piazza if you discover errors in the answer key.

(a)
1

3− x
.

answer:

∞∑
n=0

xn

3n+1

R=3
convergesforx∈(−3,3)

(b)
1

3− 2x
.

answer:

∞∑
n=0

2n

3n+1
x
n

R=3
2

convergesforx∈(−3

2
,
3

2

)

(c)
1

2x + 3
.

answer:

1

3

(1−
2x

3
+(2x

3

)2−(2x

3

)3+...)

=
∞∑
0

(−1)n

3

(2

3

)nx
n

R=3
2

convergesforx∈(−3

2
,
3

2

)

(d)
1

1 + x2
.

answer:

∞∑
n=0

(−1)
n
x
2n

R=1
convergesforx∈(−1,1)

(e)
1

1− 2x2
.

answer:

∞∑
n=0

2
n
x
2n

R=
1

2

convergesforx∈(−1

2
,
1

2

)

(f)
1

x2 − 1
.

answer:

−
∞∑

n=0

x
2n

R=1
convergesforx∈(−1,1)

(g)
1
2

x− 1
−

1
2

x + 1
.

answer:sameas6.f

(h)
1

(1− x)2
.

answer:

1+2x+3x2+4x3+...

=
∞∑

n=0
(n+1)xn

R=1
convergesforx∈(−1,1)

(i)
1

(1− x)3
.

answer:

1
2(2+6x+12x+···+n(n−1)xn−2+...)
=
∞∑

n=0

(n+1)(n+2)
2

xn

R=1
convergesforx∈(−1,1)

(j) ln(1 + x).

answer:

∞∑
n=1

(−1)
n+1xn

n

R=1
convergesforx∈(−1,1]

(k) ln(1− x).

answer:

−
∞∑

n=1

xn

n

R=1
convergesforx∈[−1,1)

(l) ln(1− 3x).

answer:

−
∞∑

n=0

3nxn

n

R=
1

3

convergesforx∈(−1

3
,
1

3

]

(m) ln(1− 3x2).

answer:

−
∞∑

n=1

3nx2n

n

R=
1
√

3

convergesforx∈(−1
√

3
,

1
√

3

)

(n) ln(3− 2x2).
answer:

ln3−
∞∑

n=1

(2

3

)nx2n

n

R=√2

3

convergesforx∈


−√2

3
,√2

3



(o) x ln(3− 2x2).

answer:

xln3−
∞∑

n=1

(2

3

)nx2n+1

n

R=√2

3

convergesforx∈


−√2

3
,√2

3



(p) arctanx.

answer:

∞∑
n=0

(−1)
nx2n+1

2n+1

R=1
convergesforx∈(−1,1]

(q) arctan(2x).

answer:

∞∑
n=0

(−1)n22n+1x2n+1

2n+1

R=
1

2

convergesforx∈(−1

2
,
1

2

]

(r) arctan
(
2x2
)
.

answer:

∞∑
n=0

(−1)
n22n+1x4n+2

2n+1

R=
1
√

2

convergesforx∈(−1
√

2
,

1
√

2

]
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Solution. 6.k

d

dx
(ln(1− x)) =

−1

1− x

expand as geometric series
for |x| < 1

= −
(
1 + x + x2 + x3 + . . .

)
Integrate indefinitely, |x| < 1

ln(1− x) = −
∫ (

1 + x + x2 + x3 + . . .
)

dx

For power series,
integral of infinite
sum equals
infinite sum of integrals
inside the convergence radius

= −
(
x +

x2

2
+

x3

3
+ . . .

)
+ C To find C set x = 0

0 = ln 1 = −0 + C = C

ln(1− x) = −
(
x + x2

2 + x3

3 + . . .
)

= −
∞∑

n=1

xn

n
.

The radius of convergence of the geometric series 1 + x + x2 + . . . is 1. Since the series for ln(1− x) is obtained from
the geometric series via integration, its radius of convergence is again 1.

We note that the interval of convergence for the series −
∞∑

n=1

xn

n is [−1, 1) - the series is convergent at x = −1 by the

alternating series test and divergent at x = 1 (at x = 1 the series is minus the harmonic series). This shows that
integration of power series can change convergence at the endpoints of the interval of convergence.

Solution. 6.n. We solve this problem by reducing it to Problem 6.k, which asserts the power series expansion

ln(1− y) = −
∞∑

n=1

yn

n
for |y| < 1.

ln
(
3− 2x2

)
= ln

(
3

(
1− 2

3
x2

))
= ln 3 + ln

(
1− 2

3
x2

)
Set y = 2

3x
2

= ln 3 + ln(1− y)

= ln 3−
∞∑

n=1

yn

n

ln(1− y) = −
∞∑

n=1

yn

n for |y| < 1

above does not hold for |y| > 1
above may (not) hold for y = ±1

= ln 3−
∞∑

n=1

(
2

3

)n
x2n

n
. Substituted back y = 2

3x
2 .

As indicated above, the equality ln(1 − y) = −
∞∑

n=1

yn

n holds for |y| < 1 and fails for |y| > 1 (for |y| > 1 the series

∞∑
n=1

yn

n diverges). Therefore interval of convergence is given by

|y| < 1 use y = 2
3x

2∣∣ 2
3x

2
∣∣ < 1

|x2| < 3
2

|x| <
√

3
2 ,

i.e., the radius of convergence is R =
√

3
2 .

Solution. 6.h
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1

1− x
= 1 + x + x2 + x3 + . . . geometric series , |x| < 1

d

dx

(
1

1− x

)
=

d

dx

(
1 + x + x2 + x3 + . . .

)
apply d

dx

− (1− x)′

(1− x)2
=

1

(1− x)2
= 1 + 2x + 3x2 + . . .

1

(1− x)2
=

∞∑
n=0

(n + 1)xn rewrite in
∑

notation.

The radius of convergence of the geometric series is 1. Since differentiating does not change the radius of convergence,

the radius of convergence of 1
(1−x)2 =

∞∑
n=0

(n + 1)xn is R = 1.

The problem does not ask us to determine the interval of convergence, however let us do it for exercise. The endpoints
of the interval of convergence are −1 and 1. The series is divergent for of them: indeed, at x = −1 the series becomes
n∑

n=0
(−1)n(n + 1) and at x = 1 the series becomes

n∑
n=0

(n + 1). Both of these series are divergent as their terms do not

tend to 0 as n tends to infinity. Thus the interval of convergence is x ∈ (−1, 1).
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