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Polar Coordinates

Polar Coordinates

The polar coordinate system is an alternative to the Cartesian
coordinate system.

Choose a point in the plane called O (the origin).
Draw a ray starting at O. The ray is called the polar axis. This ray
is usually drawn horizontally to the right.

Let P be a point in the plane.
Let θ denote the angle
between the polar axis and the
line OP.
Let r denote the length of the
segment OP.
Then P is represented by the
ordered pair (r , θ).
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Polar Coordinates

Polar Coordinates

The polar coordinate system is an alternative to the Cartesian
coordinate system.
Choose a point in the plane called O (the origin).
Draw a ray starting at O. The ray is called the polar axis. This ray
is usually drawn horizontally to the right.

θ

P(r, θ)

O

r

polar axis

The letters (x , y) imply
Cartesian coordinates and the
letters (r , θ)- polar.

When we
use other letters, it should be
clear from context whether we
mean Cartesian or polar
coordinates. If not, one must
request clarification.
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Polar Coordinates

1 What if θ is negative?
2 What if r is negative?
3 What if r is 0?

O
θ = − 3π

4

(r, θ) =
(

1,− 3π
4

)

(x, y) =
(

−
√

2
2

,−
√

2
2

)

O

(−r, θ)

(r, θ)

1 Positive angles θ are
measured in the
counterclockwise direction
from O. Negative angles are
measured in the clockwise
direction.

2 Points with polar coordinates
(−r , θ) and (r , θ) lie on the
same line through O and at
the same distance from O, but
on opposite sides.

3 If r = 0, then (0, θ) represents
O for all values of θ.
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Polar Coordinates

O

θ = 5π
4

(r, θ) =
(

1, 5π
4

)

O
θ = − 3π

4

(r, θ) =
(

1,− 3π
4

)

O

θ = 13π
4

(r, θ) =
(

1, 13π
4

)

O

θ = π

4

(r, θ) =
(

−1, π

4

)

There are many ways to represent the same point.

We could use a negative θ.
We could go around more than once.
We could use a negative r .
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Polar Coordinates

Let P1 be point with polar coordinates (r1, θ1).
Let P2 be point with polar coordinates (r2, θ2).

Observation
P1 coincides with P2 if one of the three mutually exclusive possibilities
holds:

r1 = r2 6= 0 and θ2 = θ1 + 2kπ, k ∈ Z,
r1 = −r2 6= 0 and θ2 = θ1 + (2k + 1)π, k ∈ Z,
r1 = r2 = 0 and θ is arbitrary.

O θ1

(r1, θ1)

O

θ2 = θ1 + π

(r2, θ2) = (−r1, θ1 + π)
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Polar Coordinates

How do we go from polar coordinates to Cartesian coordinates?

Suppose a point has polar coordinates (r , θ) and Cartesian
coordinates (x , y).
How do we go from Cartesian coordinates to polar coordinates?

y

x

θ

P(r, θ) = (x, y)

O

r

x =

r cos θ

y =

r sin θ

cos θ =
x
r

sin θ =
y
r

r2 =

x2 + y2

r =

√
x2 + y2

θ =

arcsin
( y

r

)
if x > 0

= arccos
( x

r

)
if y > 0

= arctan
(y

x

)
if x > 0
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Polar Coordinates

Example
Convert the point (2, π3 ) from polar to Cartesian coordinates.

x = r cos θ =

2

cos

π

3

= 2
(

1
2

)

= 1

y = r sin θ = 2 sin
π

3
= 2

(

√
3

2

)

=
√

3

Therefore the point with polar coordinates (2, π3 ) has Cartesian
coordinates (1,

√
3).
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Polar Coordinates

Example

x

y

Represent the point with Cartesian coordinates
(1,−1) in terms of polar coordinates.

Suppose r is positive.
tan θ = −1 for θ = 3π

4 ,
7π
4 , and many

other angles.
(1,−1) is in the

fourth

quadrant.
Of the two values above, only θ =

7π
4

gives a point in the fourth quadrant.
Therefore one possible
representation of (1,−1) in polar
coordinates is (

√
2,7π/4).

(
√

2,−π/4) is another.

r = ±
√

x2 + y2

=
√

12 + (−1)2

=
√

2

tan θ =
y
x

= − 1
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Complex numbers

Complex numbers definition

Definition
The set of complex numbers C is defined as the set

{a + bi |a,b − real numbers},

where the number i is a number for which

i2 = −1 .

The number i is called the imaginary unit.

Complex numbers are added/subtracted according to the rule

(a + bi)± (c + di) = (a± c) + (b ± d)i .

Complex numbers are multiplied according to the rule

(a + bi)(c + di) = ac + adi + bci + bdi2 =

(ac−bd) + (bc + ad)i

.
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Complex numbers

Re

Im

Definition (Complex numbers)
The complex numbers are the set {x + yi |x , y ∈ R}.

Real numbers are usually denoted by R.
Complex numbers are usually denoted by C.

Consider z = x + yi .
x is called the real part of z,

y is called the imaginary part of z.
We write x = Rez = Re(x + yi), y = Imz = Im(x + yi).

Real & imaginary part of z can be used as x , y -coords. to depict z.
In this way we view complex number x + iy as the point (position
vector) (x , y) in a two-dimensional space.
The addition of complex numbers corresponds to vector addition.
Multiplication by a real number c corresponds to vector scalar
multiplication by c (scaling).
The space the complex numbers is referred to as the complex
plane (sometimes alternatively called the complex line).
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u + wi

x + yi

Definition (Complex numbers)
The complex numbers are the set {x + yi |x , y ∈ R}.
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u + wi

x + yi
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(x, y)
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Im

c(x + yi), 0 < c < 1

x + yi

Definition (Complex numbers)
The complex numbers are the set {x + yi |x , y ∈ R}.

Real numbers are usually denoted by R.
Complex numbers are usually denoted by C.
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c(x + yi), c < 0

x + yi
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Complex numbers

Let u = 2 + 3i , v = 5− 7i .

Example (Addition)
u + v =

(2 + 3i) + (5− 7i) = ?(2 + 5) + (3− 7)i = 7− 4i

.

Example (Subtraction)
u − v =

(2 + 3i)− (5− 7i) = ?(2− 5) + (3− (−7))i = −3 + 10i

.

Example (Multiplication)
u · v =

(2 + 3i) · (5− 7i)
= 2 · 5 + 2 · (−7)i + 3i · 5 + 3i(−7i)
= 10− 14i + 15i − 21i2

= 10 + i − (− 21)
= 31 + i
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Complex numbers

Re

Im

x + iy

Let z = x + iy be a complex number.

Definition (Complex conjugation)

We say that z̄ = (x + iy) = x − iy is the complex
conjugate of z.

The transformation that maps z to z̄ is
called complex conjugation.

In the complex plane, complex conj. = reflection across real axis.

Theorem
zz̄ is a non-negative real number. zz̄ equals 0 if and only if z = 0.

Proof.
zz̄ =

(x + iy)(x − iy) = x2 − (iy)2 = x2 + y2 is real and non-negative.
zz̄ = 0 implies x2 + y2 = 0, which implies x = y = 0.

Definition

The quantity |z| =
√

zz̄ =
√

x2 + y2 is called the absolute value of z.
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Complex numbers

Theorem (Conjugation preserves +, ·)
1 z · w = z · w
2 z + w = z + w

Proof.
Let z = x + yi , w = u + vi .

z · w =

(x + yi) · (u + vi) = (x − yi)(u − vi)
= (xu − yv)− (xv + yu)i

z · w =

(x + yi)(u + iv) = xu − yv + (xv + yu)i
= (xu − yv)− (xv + yu)i .

z + w =

(x + yi) + (u + vi) = (x − yi) + (u − vi)
= (x + u)− (y + v)i

z + w =

(x + yi) + (u + iv) = (x + u) + (y + v)i
= (x + u)− (y + v)i .
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Complex numbers

In the preceding slide we proved the following.

Theorem (Conjugation preserves ·)
z · w = z · w.

Corollary
|zw | = |z||w |.

Proof.

|zw | =
√

zwzw =
√

zwz̄w̄ =
√

zz̄
√

ww̄ = |z||w |

.

Corollary

| zw | = |z|
|w | , w 6= 0.
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Complex numbers

Let u = 2 + 3i , v = 5− 7i .

Example (Division)
u
v

=
2 + 3i
5− 7i

=
(2 + 3i)

(5− 7i)
?(5 + 7i)
?(5 + 7i)

Multiply and divide
by complex conjugate
of denominator

=
(2 + 3i)(5 + 7i)

?52 − (7i)2

=
10 + 15i + 14i + 21i2

52 + 72

=
10− 21 + 29i

25 + 49
=

−11 + 29i
74

= −11
74

+
29
74

i
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Complex numbers

Let u = a + bi , v = c + di , v 6= 0.

Example (Complex number division)
u
v

=
a + bi
c + di

=
(a + bi)
(c + di)

(c − di)
(c − di)

Multiply and divide
by complex conjugate
of denominator

=
(a + bi)(c − di)

c2 − (di)2

=
ac − adi + cbi − bdi2

c2 + d2

=
ac + bd + (bc − ad)i

c2 + d2

=
ac + bd
c2 + d2 +

(bc − ad)

c2 + d2 i

Definition (Complex number division)
The quotient u

v , v 6= 0 is defined via the formula above.
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Complex numbers

Theorem

Let e(z) =
∞∑

n=0

zn

n! ,

z ∈ C. Then e(z)e(w) = e(z + w).

Power series over C are defined similarly to power series over R. The
following proof lies outside of scope Calc II. Details are omitted and get
filled in a course of Complex Analysis. You will not be tested on it.

Proof.

e(z)e(w) =
∞∑

n=0

zn

n!

∞∑
m=0

wm

m!
=
∞∑

s=0

s∑
k=0

zkws−k

k !(s − k)!

=
∞∑

s=0

s∑
k=0

zkws−k

s!

s!

k !(s − k)!
=
∞∑

s=0

(z + w)s

s!
= e(z + w).

Lemma (Newton Binomial formula)

(z + w)s =
∑s

k=0 zkws−k s!
k!(s−k)! .
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Complex numbers

Definition (Real exponent, Definition I)
Let z ∈ R. The real exponent ez is defined as lim

p→x
p is rational

ep.

Definition (Exponent, Definition II)

Let z ∈ C. The complex exponent ez is defined by ez = e(z) =
∞∑

n=0

zn

n!
.

For real z, ez may be defined via Definition I.
For complex z, ez is defined via Definition II.
Real numbers are complex numbers (with zero imaginary part).
Thus Definition II is also valid when z is a real number, and
therefore Definition II is more general.
A calculus course may be built by presenting Definition II first and
proving Definition I as a theorem.
Alternatively, a calculus course may be built by first presenting
Definition I, and then expanding it to Definition II.
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Complex numbers

Definition (Real exponent, Definition I)
Let z ∈ R. The real exponent ez is defined as lim

p→x
p is rational

ep.

Definition (Exponent, Definition II)

Let z ∈ C. The complex exponent ez is defined by ez = e(z) =
∞∑

n=0

zn

n!
.

Theorem
When z ∈ R, Definition I and Definition II are equivalent.
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Let z ∈ R. The real exponent ez is defined as lim

p→x
p is rational

ep.

Definition (Exponent, Definition II)

Let z ∈ C. The complex exponent ez is defined by ez = e(z) =
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n=0

zn

n!
.

Theorem
When z ∈ R, Definition I and Definition II are equivalent.

Sketch of Proof. Definition I implies Definition II over R.
Under Definition I the Maclaurin series of ez was computed to be
∞∑

n=0

zn

n! .

Under Definition I, it can be shown that ez equals its Maclaurin

series, which is the defining expression for Definition II.
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Complex numbers

Definition (Real exponent, Definition I)
Let z ∈ R. The real exponent ez is defined as lim

p→x
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ep.
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Let z ∈ C. The complex exponent ez is defined by ez = e(z) =
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n=0

zn

n!
.

Theorem
When z ∈ R, Definition I and Definition II are equivalent.

Sketch of Proof. Definition II implies Definition I over R.
We showed that e(z + w) = e(z)e(w).

Using that statement alone,
one can show that the two definitions agree over the rational numbers.
Two continuous functions are equal if they are equal over the rationals,
and the theorem follows.
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Complex numbers

Euler’s Formula

Theorem (Euler’s Formula)

eix = cos x + i sin x ,

where e ≈ 2.71828 is Euler’s/Napier’s constant .

Proof.
Recall n! = 1 · 2 · 3 · · · · · (n − 1) · n. Borrow from Calc II the f-las:
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Complex numbers

Euler’s Formula

Theorem (Euler’s Formula)

eix = cos x + i sin x ,

where e ≈ 2.71828 is Euler’s/Napier’s constant .

Proof.
Recall n! = 1 · 2 · 3 · · · · · (n − 1) · n. Borrow from Calc II the f-las:

sin x = x − x3

3!
+

x5

5!
− · · ·+ (−1)nx2n+1

(2n + 1)!
+ . . .

cos x = 1− x2

2!
+

x4

4!
− · · ·+ (−1)nx2n

(2n)!
+ . . .

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ . . .
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Complex numbers

Euler’s Formula

Theorem (Euler’s Formula)

eix = cos x + i sin x ,

where e ≈ 2.71828 is Euler’s/Napier’s constant .

Proof.
Recall n! = 1 · 2 · 3 · · · · · (n − 1) · n. Borrow from Calc II the f-las:

i

sin x =

i

x −

i

x3

3! +

i

x5

5! − . . .

cos x = 1 − x2

2! + x4

4! + . . .

ez = 1 +z + z2

2! + z3

3! +z4

4! +

i

z5

5! + . . .

Rearrange.

Plug-in z = ix . Use i2 = −1. Multiply sin x by i . Add to get
eix = cos x + i sin x .
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Complex numbers

Re

Im

i

1

z

Theorem (Euler’s formula)

eiθ = cos θ + i sin θ.

Lemma∣∣∣ z
|z|

∣∣∣

= |z|
|z| = 1.

Let z = x + iy be a non-zero complex number.
Then 0, z, z

|z| lie on a ray

and z
|z| lies on the unit circle.

Let θ - angle between the real axis and the ray between 0 and z.
Then z

|z| = cos θ + i sin θ

= eiθ

.

Definition (Polar form of complex numbers)

Let z 6= 0. z = |z|( cos θ + i sin θ) = |z|eiθ is called polar form of z.

Let ρ = ln |z|

= ln
√

x2 + y2 = 1
2 ln(x2 + y2)

.
Then z = |z|(cos θ + i sin θ) = eρ(cos θ + i sin θ)

= eρeiθ = eρ+iθ.
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|z| = eiθ

Definition (Polar form of complex numbers)
Let z 6= 0. Then z = |z|(cos θ + i sin θ) is called
polar form of z.

θ is called an argument of z. We write

θ = arg z.

If θ is an argument of z, so is θ + 2kπ for all integers k .
If θ ∈ (−π, π], we say that θ is the principal argument of z.
If we write θ = arg z without clarifying the choice of the argument,
it is implied that θ is the principal argument of z, θ ∈ (−π, π].
One should never write θ = arg z without clarifying the choice of
argument.
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Complex numbers

Example

Re

Im
Plot the number z. Write z in polar form,
using the principal value of the argument of z
(polar angle).
Recall that θ is the principal argument⇒
θ ∈ (−π, π].

z |z| θ |z|(cos θ + i sin θ)

1 1 0 cos 0 + i sin 0
i 1 π

2 cos
(
π
2

)
+ i sin

(
π
2

)
−1 1 π cosπ + i sinπ
−i 1 −π

2 cos
(
−π

2

)
+ i sin

(
−π

2

)
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using the principal value of the argument of z
(polar angle).
Recall that θ is the principal argument⇒
θ ∈ (−π, π].

z |z| θ |z|(cos θ + i sin θ)
1
2 +

√
3

2 i 1 π
3 cos

(
π
3

)
+ i sin

(
π
3

)
1 + i 2 π

4 2
(
cos

(
π
4

)
+ i sin

(
π
4

))
1− i 2 −π

4 2
(
cos

(
−π

4

)
+ i sin

(
−π

4

))
−
√

3− i 2 −2π
3 2

(
cos

(2π
3

)
+ i sin

(2π
3

))
3
5 + 4

5 i 5 arctan
(4

3

)
5
(
cos

(
arctan

(4
3

))
+ i sin

(
arctan

(4
3

)))
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Complex numbers

Definition (Real exponent)
Let ρ ∈ R. The real exponent eρ is
defined as lim

p→ρ
p is rational

ep.

Definition (Extension to C)
Let ρ, θ ∈ R. Define the complex
exponent eρ+iθ via
eρ+iθ = eρ( cos θ + i sin θ)

For the duration of this slide, assume Definition I of real exponent.

Extend this def. to complex numbers

(motivation: Euler’s f-la).

Theorem
(a) Let α, β ∈ R. Then eiαeiβ = eiα+iβ = ei(α+β).
(b) Let z,w ∈ C. Then ezew = ez+w .

Proof of (a).

eiαeiβ = ( cosα+ i sinα)( cosβ+ i sinβ) = ( cosα cosβ−sinα sinβ) +
i( cosα sinβ + sinα cosβ) = cos(α + β) + i sin(α + β) = ei(α+β)

.

The trig. f-las used above need separate (relatively long) proof.
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Complex numbers

Definition (Exponent, Def. II)

ez = e(z) =
∞∑

n=0

zn

n! .

Definition (Polar form)

|z| = eρ, z = eρ(cos θ + i sin θ)

For the duration of this slide, assume Definition II of exponent.

In preceding slides/lectures, by algebraic manipulations of series,
we showed that e(z)e(w) = ezew = ez+w = e(z + w).

Theorem
sin(α + β) = sinα cosβ + i sinβ cosα
cos(α + β) = cosα cosβ − sinα sinβ, where α, β ∈ R

Proof.

cos(α + β) + i sin(α + β) = ei(α+β) = eiα+iβ = eiαeiβ

= (cosα + i sinα)(cosβ + i sinβ)
= (cosα cosβ − sinα sinβ)

+i(cosα sinβ + sinα cosβ).
Compare real and imaginary part to get the desired trig identities.
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Complex numbers

Geometric interpretation of complex multiplication

Re

Im

z

w

Let z,w 6= 0

and let
|z| = eρ, |w | = eσ.

Let α, β be arguments of z,w .
z = eρ(cosα + i sinα) = eρ+iα

w = eσ(cosβ + i sinβ) = eσ+iβ.

Theorem (Summary)
zw = |z|(cosα + i sinα)|w |(cosβ + i sinβ)

= eρ(cosα + i sinα)eσ(cosβ + i sinβ) = eρ+iαeσ+iβ

= eρ+σ+i(α+β) = |z||w |(cos(α + β) + i sin(α + β)).

An argument (polar angle) of zw is α + β.
⇒ Multiplying complex numbers adds arguments (polar angles).
Multiplying complex numbers multiplies absolute values.
What happens to zw when we change |w |?

When we change β?
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Complex numbers

Theorem (de Moivre’s formula)
(cosα + i sinα)n = cos(nα) + i sin(nα).

Proof.

(cosα + i sinα)n =
(
eiα)n

= einα = cos(nα) + i sin(nα).

The formula is named after the French mathematician A. de Moivre
(1667-1754).
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Complex numbers

Polar form z = |z|(cos θ + i sin θ).

Example

Compute
(√

3 + i
)2014

and its polar form.

Write
√

3 + i in polar form:
√

3 + i =

?2

(
cos

(

π
6 ?

)
+ i sin

(

π
6 ?

) )

= 2ei π6

.

(√
3 + i

)2014
=

(
2ei π6

)2014

= 22014ei2014·π6

= 22014(ei(335+ 2
3 )π)

= 22014ei335πei 2
3π

= 22014(−1)
(

cos
(2π

3

)
+ i sin

(2π
3

))
= −22014

(

?− 1
2

+ i

?
√

3
2

)
= 22013

(
1−
√

3i
)
.
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Complex numbers

Example

Re

Im

Find all complex solutions of the equation z4 = 1.

Let z = |z|(cos θ + i sin θ) be the polar form of z
with θ ∈ (−π, π]. Since |z|4 = |z4| = 1 it follows
that |z| = 1 and so z = cos θ + i sin θ.

By de Moivre’s equality z4 = cos(4θ) + i sin(4θ) = 1. This implies
sin(4θ) = 0, cos(4θ) = 1 and so 4θ = 2kπ, k -integer. Therefore
θ = k π

2 . Among those values, θ = −π
2 ,0,

π
2 , π belong to (−π, π]. We

may discard the other values of θ as do not give rise to new points.
Therefore the equation z4 = 1 has 4 roots given by
z = cos

(
−π

2

)
+ i sin

(
−π

2

)
= −i

z = cos 0 + i sin 0 = 1
z = cos

(
π
2

)
+ i sin

(
π
2

)
= i

z = cosπ + i sinπ = −1 .
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Complex numbers

Example

Re

Im

Find all complex numbers z such that z3 = i .

Let z = |z|(cos θ + i sin θ) be the polar form of z
for which θ ∈ (−π, π]. We have that
1 = |i | = |z3| = |z|3. Since |z| is a positive real
number, |z|3 = 1 implies |z| = 1.

i = (cos(θ) + i sin(θ))3 de Moivre
cos

(
π
2

)
+ i sin

(
π
2

)
= cos(3θ) + i sin(3θ) Polar form i

3θ = π
2 + 2kπ k any integer

θ = π
6 + 2k

3 π k any integer

Values of θ that differ by even multiple of π produce the same value for
z ⇒ restrict our attention to θ ∈ (−π, π], i.e. k = 0,1,−1⇒
θ = π

6 ,
5π
6 ,−

π
2 . Our final answer is to be continued.
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