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License to use and redistribute

These lecture slides and their LATEX source code are licensed to you
under the Creative Commons license CC BY 3.0. You are free

to Share - to copy, distribute and transmit the work,
to Remix - to adapt, change, etc., the work,
to make commercial use of the work,

as long as you reasonably acknowledge the original project (a notice of
use freecalc is sufficient).

Latest version of the .tex sources of the slides: https:
//sourceforge.net/p/freecalculus/code/HEAD/tree/

Should the link be outdated/moved, search for “freecalc project”.
Creative Commons license CC BY 3.0:
https://creativecommons.org/licenses/by/3.0/us/
and the links therein.
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Curves

Curves Defined by Parametric Equations

(x, y) = (f (t), g(t))
= (x(t), y(t))

Suppose a particle moves along the
curve in the picture.
The x-coordinate and y -coordinate of
the particle are some functions of the
time t .
We can write x = f (t) and y = g(t).
Less formally, we may directly write
(x , y) = (x(t), y(t)).
We say that the equations∣∣∣∣ x = f (t)

y = g(t)
are parametric

equations of a parametric curve.
Note that the curve can’t be written as
y = f (x): it fails the vertical line test.
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Curves

Definition (Curve in n-dimensional space)
We define an arbitrary n-tuple of functions f1, . . . , fn on [a,b] to be a
parametric curve (or simply curve). If C is a curve, we write C as:

C :

∣∣∣∣∣∣∣∣∣
x1 = f1(t)
x2 = f2(t)

...
xn = fn(t)

, t ∈ [a,b]

where x1, . . . , xn are the labels of the n-dimensional coordinate system.

Curves in 2- and 3-dimensional space will be of special interest:

A curve in dimension 2 is given by:

C :

∣∣∣∣ x = f (t)
y = g(t)

, t ∈ [a,b] .

A curve in dimension 3 is given by:

C :

∣∣∣∣∣∣
x = f (t)
y = g(t)
z = h(t)

, t ∈ [a,b] .
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Curves

Consider the two parametric curves:

γ1 :

∣∣∣∣ x = t2

y = t2 , t ∈ [0,1] γ2 :

∣∣∣∣ x = t
y = t

, t ∈ [0,1]

Plug in t = 0, t = 0.2, t = 0.4, t = 0.6, t = 0.8, t = 1.

Question
Are the above curves different?

To answer this question we need a definition.
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Curves

Recall a parametric curve C was defined as the data

C :

∣∣∣∣∣∣∣∣∣
x1 = f1(t)
x2 = f2(t)

...
xn = fn(t)

, t ∈ [a,b]

Definition
A curve image (or simply a curve) is any set of points that arises by
traversing some continuous curve. In other words, a curve image is
any set that can be written in the form

{(f1(t), . . . , fn(t)) | t ∈ [a,b]} ,

for some continuous functions f1, . . . , fn.

Informally, a curve image “remembers” only the points lying on the
curve but forgets the “speed” with which each point was visited and
“how many times” each point was visited.
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Curves

Recall a parametric curve C was defined as the data

C :

∣∣∣∣∣∣∣∣∣
x1 = f1(t)
x2 = f2(t)

...
xn = fn(t)

, t ∈ [a,b]

Definition
A curve image (or simply a curve) is any set of points that arises by
traversing some continuous curve. In other words, a curve image is
any set that can be written in the form

{(f1(t), . . . , fn(t)) | t ∈ [a,b]} ,

for some continuous functions f1, . . . , fn.

If we don’t require that the functions be continuous, every set of points
will be a curve and the definition would be pointless.

Informally, a curve image “remembers” only the points lying on the
curve but forgets the “speed” with which each point was visited and
“how many times” each point was visited.
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Curves

Recall a parametric curve C was defined as the data

C :

∣∣∣∣∣∣∣∣∣
x1 = f1(t)
x2 = f2(t)

...
xn = fn(t)

, t ∈ [a,b]

Definition
A curve image (or simply a curve) is any set of points that arises by
traversing some continuous curve. In other words, a curve image is
any set that can be written in the form

{(f1(t), . . . , fn(t)) | t ∈ [a,b]} ,

for some continuous functions f1, . . . , fn.

Informally, a curve image “remembers” only the points lying on the
curve but forgets the “speed” with which each point was visited and
“how many times” each point was visited.
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Curves

C1 :

∣

∣

∣

∣

∣

x = t2

y = t2
, t ∈ [0, 1] C2 :

∣

∣

∣

∣

x = t
y = t

, t ∈ [0, 1]

Question

((((((((((((((((hhhhhhhhhhhhhhhh
Are the above curves different?

Are the above parametric curves
different? Yes.
Are the above curve images
different? No.

As parametric curves, C1 and C2 are different: C1,C2 are given by
different functions.
As curve images, C1,C2 coincide.
The original question is incorrectly posed: the word “curve” does
not have a mathematical definition without the words “parametric”
or “image” attached to it.
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Curves

C1 :

∣

∣

∣

∣

∣

x = t2

y = t2
, t ∈ [0, 1] C2 :

∣

∣

∣

∣

x = t
y = t

, t ∈ [0, 1]

Question

((((((((((((((((hhhhhhhhhhhhhhhh
Are the above curves different?

Are the above parametric curves
different? Yes.
Are the above curve images
different? No.

Nonetheless we sometimes use the word “curve” informally,
without specifying “parametric curve” or “curve image”.
In this case, whether we mean “parametric curve” or “curve
image” should be clear from the context. If not, we are using
mathematical language incorrectly.
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Curves

Graphs of functions as curve images

Consider a graph of a function given by

y = f (x)

Write x = t . Then y = f (x) = f (t), so we get the system

C :

∣∣∣∣ x = t
y = f (t)

, t ∈ [a,b]

Observation
The graph of an arbitrary function can be written as the image of a
curve C using the above transformation.
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Curves

Example
Sketch and identify the curve image defined by the equations∣∣∣∣ x = − t2 + 2

y = t − 1

1

−1

−2

−3

1 2−1−2−3−4

x

y t x y
− 2 − 2 − 3
− 1 1 − 2

0 2 − 1
1 1 0
2 − 2 1

Eliminate t : from second equation
we have t = y + 1 and therefore:
x = − t2 + 2

= − (y + 1)2 + 2
= − y2 − 2y + 1

Thus our curve image is a
parabola, as expected.
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Curves

1

−1

−2

−3

1 2−1−2−3−4

x

y

∣∣∣∣ x = −t2 + 2
y = t − 1

, − 1 ≤ t ≤ 2

There was no restriction
placed on t in the last
example.
In such a case we assume
t ∈ (−∞,∞), i.e., t runs over
all real numbers.
In general we are expected to
specify the interval in which t
lies.
For example, if we restrict the
previous example to
t ∈ [−1,2], we get the part of
the parabola that begins at
(1,−2) and ends at (−2,1).
We say that (1,−2) is the
initial point and (−2,1) is the
terminal point of the curve.
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Curves

Implicit vs Explicit (Parametric) Curve Equations

Consider the parametric curve∣∣∣∣ x = −t2 + 2
y = t − 1 .

As we saw in preceding slides/lectures, all points (x , y) on the
image of this curve satisfy the equation

x + (y + 1)2 − 2 = 0

Equations of the first form are called explicit (parametric) curve
equations.
Equations of the second form are called implicit equations of the
curve image.
Explicit (parametric) curve equations have the advantage that it is
easy to generate points on the curve.
Implicit curve equations have the advantage that it is easy to
check whether a point is on the curve.
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Curves

Example
Sketch and identify the curve defined by the parametric equations

x = cos t , y = sin t .

(1, 0)

t x y
0 1 0
π
6

√
3

2
1
2

π
3

1
2

√
3

2
π
2 0 1
π − 1 0

3π
2 0 − 1

2π 1 0

x2 + y2 = cos2 t + sin2 t = 1

Therefore (x , y) travels on the
unit circle x2 + y2 = 1.
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Curves

Example
Find parametric equations for the circle with center (h, k) and radius r .

(h, k) = O

r

P = (x, y)

t

Q

r cos t

r sin t

h

k

Let O be the center of the circle with
coordinates (h, k).
Let P be a point on the circle with
coordinates (x , y).
Let t , Q be as indicated on the figure.
Then |OQ| =

?

r cos t .
|PQ| =

?

r sin t .
Then the coordinates of P are
(h + r cos t , k + r sin t).
In this way we get the parametric

equations
∣∣∣∣ x = h + r cos t

y = k + r sin t
, t ∈ [0,2π]
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Curves

Example
Find parametric equations for the circle with center (h, k) and radius r .

(h, k) = O

r

P = (x, y)

t

Q

r cos t

r sin t

h

k

Alternative solution: x = cos t , y = sin t
are parametric equations of the unit
circle.
Multiply by r to scale the circle to have
radius r : x = r cos t , y = r sin t .
Add h to x and k to y to translate the
circle h units to the left and k units up:
x = h + r cos t , y = k + r sin t
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Curves The Cycloid

The Cycloid

P

P

P

P

P

P

P

P

P

Definition (Cycloid)
The curve traced out by a point P on the circumference of a circle as
the circle rolls along a straight line is called a cycloid.
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Curves The Cycloid

Example
Find parametric equations of a cycloid made using a circle with radius
r that rolls along the x-axis such that P hits the origin.

P

C = (rθ, r)

x

y

r

Q

Trθ

θ

O

We choose our parameter to be θ, the
angle of rotation of the circle.
How far has the circle moved if it has
rolled through θ radians?

|OT | = arcPT = rθ

Then the center is C = (rθ, r).
Let the coordinates of P be (x , y).

x = |OT | − |PQ| = rθ − r sin θ
y = |CT | − |CQ| = r − r cos θ

Therefore the equations are
x = r(θ − sin θ), y = r(1− cos θ), θ ∈ R
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Arc Length

Arc Length

What do we mean by the length of a curve?
The length of a polygon is easy to compute: add up the length of
the line segments that form the polygon.
If the curve is a circle, approximate it by a polygon.
Then take the limit as the number of segments of the polygon
goes to∞.
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Arc Length

Let γ be the curve γ :

∣∣∣∣ x = x(t)
y = y(t)

, t ∈ [a,b]

Divide [a,b] into n subintervals with endpoints t0, t1, . . . , tn and
equal width ∆t .
The points Pi = (x(ti), y(ti)) lie on the curve γ. The lengths of the
segments with endpoints with consecutive indices from
P0,P1, . . . ,Pn approximate the length of the curve γ.
The length L of the curve γ is the limit of the lengths of these
segments as n→∞.

P0

P1

P2
P3

P4

P5

L = lim
n→∞

n∑
i=1

|Pi−1Pi |
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Arc Length

Let γ be the curve γ :

∣∣∣∣ x = x(t)
y = y(t)

, t ∈ [a,b]

L = lim
n→∞

n∑
i=1
|Pi−1Pi | = lim

n→∞

n∑
i=1

√
(x ′(si))2 + (y ′(ri))2 ∆t

=
∫ b

a

√
(x ′(t))2 + (y ′(t))2 dt

If f has continuous derivative, we can compute the above limit.

Let
∣∣∣∣ xi = x(ti)

yi = y(ti)
, and

∣∣∣∣ ∆x = xi − xi−1 = x(ti)− x(ti−1)
∆y = yi − yi−1 = y(ti)− y(ti−1)

.

Then |PiPi−1| =
√

(∆x)2 + (∆y)2.
Mean Value Theorem: there exist numbers si and ri between ti−1
and ti such that x(ti)− x(ti−1) = x ′(si)(ti − ti−1) and
y(ti)− y(ti−1) = y ′(ri)(ti − ti−1).
∆x = x ′(si)∆t , ∆y = y ′(ri)∆t .

|Pi−1Pi | =
√

(∆x)2 + (∆y)2 =
√

(x ′(si)∆t)2 + (y ′(ri)∆t)2

=
√

(x ′(si))2 + (y ′(ri))2
√

(∆t)2 =
√

(x ′(si))2 + (y ′(ri))2 ∆t
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Arc Length

The Arc Length Formula

Let γ :

∣∣∣∣ x = x(t)
y = y(t)

, t ∈ [a,b].

Definition
Suppose x ′(t) and y ′(t) (exist and) are continuous on [a,b]. Then the
length of the curve γ is defined as

L(γ) =

∫ b

a

√
(x ′(t))2 + (y ′(t))2 dt

=

∫ b

a

√(
dx
dt

)2

+

(
dy
dt

)2

dt in Leibniz notation .
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Arc Length

Arc length of graph of a function

Question
What is the length of the graph of the curve given by the graph of
y = f (x)?

The graph of y = f (x) is written as a curve as

γ :

∣∣∣∣ x = t
y = f (t)

, t ∈ [a,b] .

In other words, the question asks what is the length L(γ) of γ.
That is a straightforward computation:

L(γ) =

∫ √
(x ′(t))2 + (y ′(t))2dt =

∫ √

?

1 + (f ′(t))2dt
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Arc Length

The Arc Length Formula

Definition
Suppose f ′ exists and is continuous on [a,b]. Then the length of the
curve y = f (x), a ≤ x ≤ b, is

L =

b∫
a

√
1 + (f ′(x))2 dx

=

b∫
a

√
1 +

(
dy
dx

)2

dx (in Leibniz notation) .
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Arc Length

Example

Find the length of the arc of y2 = x3 between (1,1) and (4,8).

(4, 8)

(1, 1)

y2 = x3

For the top half of the curve we have:
y = x3/2 and y ′ = 3

2x1/2.

u = 1 + 9
4x and du = 9

4dx .

When x = 1, u = 13
4 .

When x = 4, u = 10.

L =

∫ 4

1

√
1 + (y ′)2dx

=

∫ 4

1

√
1 +

9
4

x dx =

∫ 10

13/4

4
9
√

u du

=
4
9

[
2
3

u3/2
]10

13/4
=

8
27

(
103/2 −

(
13
4

)3/2
)
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Arc Length

If a curve has equation x = g(y), c ≤ y ≤ d , and g′(y) is continuous,
then we can get the length of the curve by interchanging the roles of x
and y in the arc length formula:

L =

∫ d

c

√
1 + (g′(y))2 dy =

∫ d

c

√
1 +

(
dx
dy

)2

dy
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Arc Length

Example

Find the length of the arc of x = y2 from (0,0) to (1,1).
x = y2, so dx/dy = 2y .
Substitute y = 1

2 tan θ, so dy = 1
2 sec2 θdθ, and

√
1 + 4y2 = sec θ.

When y = 0, tan θ = 0, so θ = 0.
When y = 1, tan θ = 2, so θ = arctan(2) (call this α).

L =

∫ 1

0

√
1 + (dx/dy)2 dy =

∫ 1

0

√
1 + 4y2 dy

=

∫ α

0
sec θ · 1

2
sec2 θ dθ =

1
2

∫ α

0
sec3 θ dθ

=
1
2
· 1

2
[sec θ tan θ + ln | sec θ + tan θ|]α0

=
1
4

( secα tanα + ln | secα + tanα|)

=
1
4

(
2
√

5 + ln |
√

5 + 2|
)
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Arc Length

Example ((a + b)2, (a− b)2, 2ab = 1/2)

Find the length of the arc of y = 1
6e3x + 1

6e−3x from x = 0 to
x = 1.

y ′ =
1
2

e3x − 1
2

e−3x .

(y ′)2 =
1
4

e6x − 1
4

e3xe−3x − 1
4

e3xe−3x +
1
4

e−6x

=
1
4

e6x − 1
2

+
1
4

e−6x .

L =

∫ 1

0

√
1 + (y ′)2dx =

∫ 1

0

√
1 +

1
4

e6x − 1
2

+
1
4

e−6xdx

=

∫ 1

0

√
1
4

e6x +
1
2

+
1
4

e−6xdx =

∫ 1

0

√(
1
2

e3x +
1
2

e−3x
)2

dx

=

∫ 1

0

(
1
2

e3x +
1
2

e−3x
)

dx =

[
1
6

e3x − 1
6

e−3x
] 1

0
=

e3 − e−3

6
.
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Arc Length

Example

2r

2πr

Find the length of one arch of the cycloid

x = r(θ − sin θ), y = r(1− cos θ).

The first arch is 0 ≤ θ ≤ 2π.

L =

∫ 2π

0

√(
dx
dθ

)2

+

(
dy
dθ

)2

dθ =

∫ 2π

0

√
(r(1− cos θ))2 + (r sin θ)2dθ

=

∫ 2π

0

√
r2(1− 2 cos θ + cos2 θ + sin2 θ)dθ = r

∫ 2π

0

√
2(1− cos θ)dθ

Use the identity sin2 x = 1
2(1− cos 2x). Then√

2(1− cos θ) =

√
4 sin2(θ/2) = 2| sin(θ/2)| = 2 sin(θ/2)

L = r
∫ 2π

0
2 sin(θ/2)dθ = r [−4 cos(θ/2)]2π0 = 8r
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