Math 141

Lecture 16[material reduced]

Greg Maloney

Todor Miley

University of Massachusetts Boston

Spring 2015

Outline

- Curves
 - The Cycloid

2 Arc Length

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project (a notice of use freecalc is sufficient).

- Latest version of the .tex sources of the slides: https: //sourceforge.net/p/freecalculus/code/HEAD/tree/
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Curves Defined by Parametric Equations

- Suppose a particle moves along the curve in the picture.
- The x-coordinate and y-coordinate of the particle are some functions of the time t.
- We can write x = f(t) and y = g(t).
- Less formally, we may directly write (x, y) = (x(t), y(t)).
- We say that the equations $\begin{vmatrix} x &= f(t) \\ y &= g(t) \end{vmatrix}$ are parametric equations of a parametric curve.
- Note that the curve can't be written as y = f(x): it fails the vertical line test.

Definition (Curve in *n*-dimensional space)

We define an arbitrary n-tuple of functions f_1, \ldots, f_n on [a, b] to be a parametric curve (or simply curve). If C is a curve, we write C as:

$$C: \begin{vmatrix} x_1 & = & f_1(t) \\ x_2 & = & f_2(t) \\ & \vdots & \\ x_n & = & f_n(t) \end{vmatrix}, t \in [a, b]$$

where x_1, \ldots, x_n are the labels of the *n*-dimensional coordinate system.

Curves in 2- and 3-dimensional space will be of special interest:

A curve in dimension 2 is given by:

A curve in dimension 3 is given by:

$$C: \begin{vmatrix} x &= f(t) \\ y &= g(t) \end{vmatrix}, t \in [a,b]$$
 . $C: \begin{vmatrix} x &= f(t) \\ y &= g(t) \\ z &= h(t) \end{vmatrix}$.

Consider the two parametric curves:

$$\gamma_1: \left| \begin{array}{ccc} x & = & t^2 \\ y & = & t^2 \end{array} \right., t \in [0, 1]$$

$$\gamma_2: \left| \begin{array}{ccc} x & = & t \\ y & = & t \end{array} \right., t \in [0,1]$$

Plug in t = 0, t = 0.2, t = 0.4, t = 0.6, t = 0.8, t = 1.

Question

Are the above curves different?

To answer this question we need a definition.

Recall a parametric curve C was defined as the data

$$C: \begin{vmatrix} x_1 & = & f_1(t) \\ x_2 & = & f_2(t) \\ \vdots & & , t \in [a, b] \\ x_n & = & f_n(t) \end{vmatrix}$$

Definition

A *curve image* (or simply a curve) is any set of points that arises by traversing some continuous curve. In other words, a curve image is any set that can be written in the form

$$\{(f_1(t),\ldots,f_n(t)) \mid t \in [a,b]\}$$
,

for some continuous functions f_1, \ldots, f_n .

Recall a parametric curve C was defined as the data

$$C: \begin{vmatrix} x_1 &=& f_1(t) \\ x_2 &=& f_2(t) \\ \vdots &&, t \in [a,b] \\ x_n &=& f_n(t) \end{vmatrix}$$

Definition

A *curve image* (or simply a curve) is any set of points that arises by traversing some continuous curve. In other words, a curve image is any set that can be written in the form

$$\{(f_1(t),\ldots,f_n(t)) \mid t \in [a,b]\}$$
,

for some continuous functions f_1, \ldots, f_n .

If we don't require that the functions be continuous, every set of points will be a curve and the definition would be pointless.

Recall a parametric curve C was defined as the data

$$C: \begin{vmatrix} x_1 & = & f_1(t) \\ x_2 & = & f_2(t) \\ & \vdots & & , t \in [a, b] \\ x_n & = & f_n(t) \end{vmatrix}$$

Definition

A *curve image* (or simply a curve) is any set of points that arises by traversing some continuous curve. In other words, a curve image is any set that can be written in the form

$$\{(f_1(t),\ldots,f_n(t)) \mid t \in [a,b]\}$$
,

for some continuous functions f_1, \ldots, f_n .

Informally, a curve image "remembers" only the points lying on the curve but forgets the "speed" with which each point was visited and "how many times" each point was visited.

$$C_1: \left| \begin{array}{ccc} x & = & t^2 \\ y & = & t^2 \end{array} \right., t \in [0, 1]$$

Question

Are the above curves different?

Are the above parametric curves different? Yes.

Are the above curve images different? No.

- As parametric curves, C_1 and C_2 are different: C_1 , C_2 are given by different functions.
- As curve images, C_1 , C_2 coincide.
- The original question is incorrectly posed: the word "curve" does not have a mathematical definition without the words "parametric" or "image" attached to it.

Question

Are the above curves different?

Are the above parametric curves different? Yes.

Are the above curve images different? No.

- Nonetheless we sometimes use the word "curve" informally, without specifying "parametric curve" or "curve image".
- In this case, whether we mean "parametric curve" or "curve image" should be clear from the context. If not, we are using mathematical language incorrectly.

Graphs of functions as curve images

Consider a graph of a function given by

$$y = f(x)$$

• Write x = t. Then y = f(x) = f(t), so we get the system

$$C: \left| \begin{array}{ccc} x & = & t \\ y & = & f(t) \end{array} \right|, t \in [a, b]$$

Observation

The graph of an arbitrary function can be written as the image of a curve C using the above transformation.

Sketch and identify the curve image defined by the equations

$$\begin{array}{rcl} x & = & -t^2 + 2 \\ y & = & t - 1 \end{array}$$

t	X	У
-2	- 2	– 3
– 1	1	– 2
0	2	– 1
1	1	0
2	-2	1

Eliminate t: from second equation we have t = y + 1 and therefore:

$$x = -t^{2} + 2$$

$$= -(y+1)^{2} + 2$$

$$= -v^{2} - 2v + 1$$

Thus our curve image is a parabola, as expected.

$$\begin{vmatrix} x & = -t^2 + 2 \\ y & = t - 1 \end{vmatrix}$$
, $-1 \le t \le 2$

- There was no restriction placed on t in the last example.
- In such a case we assume $t \in (-\infty, \infty)$, i.e., t runs over all real numbers.
- In general we are expected to specify the interval in which t lies.
- For example, if we restrict the previous example to
 t∈ [-1,2], we get the part of the parabola that begins at (1,-2) and ends at (-2,1).
- We say that (1, -2) is the initial point and (-2, 1) is the terminal point of the curve.

Spring 2015

Implicit vs Explicit (Parametric) Curve Equations

Consider the parametric curve

$$\begin{vmatrix} x & = -t^2 + 2 \\ y & = t - 1 \end{vmatrix}.$$

 As we saw in preceding slides/lectures, all points (x, y) on the image of this curve satisfy the equation

$$x + (y + 1)^2 - 2 = 0$$

- Equations of the first form are called explicit (parametric) curve equations.
- Equations of the second form are called implicit equations of the curve image.
- Explicit (parametric) curve equations have the advantage that it is easy to generate points on the curve.
- Implicit curve equations have the advantage that it is easy to check whether a point is on the curve.

Sketch and identify the curve defined by the parametric equations

$$x = \cos t$$
, $y = \sin t$.

t	X	У
0	1	0
π 6 π 3 π 2 π	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
π	1	$\sqrt{\frac{2}{3}}$
3	$\frac{1}{2}$	2
$\frac{\pi}{2}$	0	1
	<u> </u>	0
$\frac{3\pi}{2}$ 2π	0	– 1
2π	1	0

$$x^2 + y^2 = \cos^2 t + \sin^2 t = 1$$

Therefore (x, y) travels on the unit circle $x^2 + y^2 = 1$.

Find parametric equations for the circle with center (h, k) and radius r.

- Let O be the center of the circle with coordinates (h, k).
- Let P be a point on the circle with coordinates (x, y).
- Let t, Q be as indicated on the figure.
- Then $|OQ| = r \cos t$.
- $|PQ| = r \sin t$.
- Then the coordinates of P are $(h + r \cos t, k + r \sin t)$.
- In this way we get the parametric equations $\begin{vmatrix} x = h + r \cos t \\ y = k + r \sin t \end{vmatrix}$, $t \in [0, 2\pi]$

Find parametric equations for the circle with center (h, k) and radius r.

- Alternative solution: x = cos t, y = sin t are parametric equations of the unit circle.
- Multiply by r to scale the circle to have radius r: $x = r \cos t$, $y = r \sin t$.
- Add h to x and k to y to translate the circle h units to the left and k units up:
 x = h + r cos t, y = k + r sin t

The Cycloid

Definition (Cycloid)

The curve traced out by a point P on the circumference of a circle as the circle rolls along a straight line is called a cycloid.

Find parametric equations of a cycloid made using a circle with radius r that rolls along the x-axis such that P hits the origin.

Therefore the equations are $x = r(\theta - \sin \theta)$,

- We choose our parameter to be θ , the angle of rotation of the circle.
- How far has the circle moved if it has rolled through θ radians?

$$|OT| = \operatorname{arc}PT = r\theta$$

- Then the center is $C = (r\theta, r)$.
- Let the coordinates of P be (x, y).

$$x = |OT| - |PQ| = r\theta - r\sin\theta$$

 $y = |CT| - |CQ| = r - r\cos\theta$

$$y = r(1 - \cos \theta), \quad \theta \in \mathbb{R}$$

Arc Length

- What do we mean by the length of a curve?
- The length of a polygon is easy to compute: add up the length of the line segments that form the polygon.
- If the curve is a circle, approximate it by a polygon.
- Then take the limit as the number of segments of the polygon goes to ∞ .

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

- Divide [a, b] into n subintervals with endpoints t_0, t_1, \ldots, t_n and equal width Δt .
- The points $P_i = (x(t_i), y(t_i))$ lie on the curve γ . The lengths of the segments with endpoints with consecutive indices from P_0, P_1, \ldots, P_n approximate the length of the curve γ .
- The length *L* of the curve γ is the limit of the lengths of these segments as $n \to \infty$.

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i| = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \, \Delta t$$
$$= \int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$$

If f has continuous derivative, we can compute the above limit.

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.
- $\Delta x = x'(s_i) \Delta t, \, \Delta y = y'(r_i) \Delta t.$

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x'(s_i)\Delta t)^2 + (y'(r_i)\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \sqrt{(\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \Delta t$$

The Arc Length Formula

Let
$$\gamma: \left| \begin{array}{ccc} x & = & x(t) \\ y & = & y(t) \end{array} \right|, t \in [a, b].$$

Definition

Suppose x'(t) and y'(t) (exist and) are continuous on [a,b]. Then the length of the curve γ is defined as

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

$$= \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt \quad \text{in Leibniz notation }.$$

Arc length of graph of a function

Question

What is the length of the graph of the curve given by the graph of y = f(x)?

• The graph of y = f(x) is written as a curve as

$$\gamma: \left| \begin{array}{ccc} x & = & t \\ y & = & f(t) \end{array} \right|, t \in [a, b] .$$

• In other words, the question asks what is the length $L(\gamma)$ of γ . That is a straightforward computation:

$$L(\gamma) = \int \sqrt{(x'(t))^2 + (y'(t))^2} dt = \int \sqrt{1 + (f'(t))^2} dt$$

The Arc Length Formula

Definition

Suppose f' exists and is continuous on [a, b]. Then the length of the curve y = f(x), $a \le x \le b$, is

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx$$
$$= \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \quad \text{(in Leibniz notation)} .$$

Find the length of the arc of $y^2 = x^3$ between (1, 1) and (4, 8).

•
$$y = x^{3/2}$$
 and $y' = \frac{3}{2}x^{1/2}$.

•
$$u = 1 + \frac{9}{4}x$$
 and $du = \frac{9}{4}dx$.

• When
$$x = 1$$
, $u = \frac{13}{4}$.

• When
$$x = 4$$
, $u = 10$.

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$

$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int_{13/4}^{10} \frac{4}{9} \sqrt{u} du$$

$$= \frac{4}{9} \left[\frac{2}{3} u^{3/2} \right]_{13/4}^{10} = \frac{8}{27} \left(10^{3/2} - \left(\frac{13}{4} \right)^{3/2} \right)$$

If a curve has equation x = g(y), $c \le y \le d$, and g'(y) is continuous, then we can get the length of the curve by interchanging the roles of x and y in the arc length formula:

$$L = \int_c^d \sqrt{1 + (g'(y))^2} \, \mathrm{d}y = \int_c^d \sqrt{1 + \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2} \, \mathrm{d}y$$

Find the length of the arc of $x = y^2$ from (0,0) to (1,1).

- $x = y^2$, so dx/dy = 2y.
- Substitute $y = \frac{1}{2} \tan \theta$, so $dy = \frac{1}{2} \sec^2 \theta d\theta$, and $\sqrt{1 + 4y^2} = \sec \theta$.
- When y = 0, $\tan \theta = 0$, so $\theta = 0$.
- When y = 1, $\tan \theta = 2$, so $\theta = \arctan(2)$ (call this α).

$$L = \int_0^1 \sqrt{1 + (dx/dy)^2} \, dy = \int_0^1 \sqrt{1 + 4y^2} \, dy$$

$$= \int_0^\alpha \sec \theta \cdot \frac{1}{2} \sec^2 \theta \, d\theta = \frac{1}{2} \int_0^\alpha \sec^3 \theta \, d\theta$$

$$= \frac{1}{2} \cdot \frac{1}{2} [\sec \theta \tan \theta + \ln|\sec \theta + \tan \theta|]_0^\alpha$$

$$= \frac{1}{4} (\sec \alpha \tan \alpha + \ln|\sec \alpha + \tan \alpha|)$$

$$= \frac{1}{4} \left(2\sqrt{5} + \ln|\sqrt{5} + 2| \right)$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

Find the length of the arc of $y = \frac{1}{6}e^{3x} + \frac{1}{6}e^{-3x}$ from x = 0 to x = 1.

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

$$L = \int_0^1 \sqrt{1 + (y')^2} dx = \int_0^1 \sqrt{1 + \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}} dx$$

$$= \int_0^1 \sqrt{\frac{1}{4}e^{6x} + \frac{1}{2} + \frac{1}{4}e^{-6x}} dx = \int_0^1 \sqrt{\left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right)^2} dx$$

$$= \int_0^1 \left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right) dx = \left[\frac{1}{6}e^{3x} - \frac{1}{6}e^{-3x}\right]_0^1 = \frac{e^3 - e^{-3}}{6}.$$

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{r^2(1-2\cos\theta + \cos^2\theta + \sin^2\theta)} d\theta = r \int_0^{2\pi} \sqrt{2(1-\cos\theta)} d\theta$$

Use the identity
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
. Then

$$\sqrt{2(1-\cos\theta)} = \sqrt{4\sin^2(\theta/2)} = 2|\sin(\theta/2)| = 2\sin(\theta/2)$$

$$L = r \int_0^{2\pi} 2\sin(\theta/2) d\theta = r [-4\cos(\theta/2)]_0^{2\pi} = 8r$$