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Modeling with Differential Equations

Modeling with Differential Equations

When modeling real-world problems, we often have a relationship
between an unknown function and some of its derivatives.
Such a relationship is called a differential equation.
It is not always possible to find an explicit solution to a differential
equation, but sometimes a graphical or approximate answer can
be good enough for applications.
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Modeling with Differential Equations Models of Population Growth

Models of Population Growth

One model for population growth assumes that the population
grows at a rate proportional to its size.
In other words, if a certain number of bacteria produce a certain
number of offspring in a certain time, then ten times that many
bacteria produce ten times that many offspring in the same time.
This is plausible when the population has unlimited food and
environment and no restrictions on its size.

Name the variables:

t = time
P = the number of individuals in the population

The rate of growth is dP/dt .
Then “rate of growth proportional to population size” means

dP
dt

= kP

where k is the proportionality constant.
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Modeling with Differential Equations Models of Population Growth

dP
dt

= kP

This is a differential equation.

Exponential functions satisfy this condition.
Let P(t) = Cekt (C is a constant). Then

dP
dt

=
d
dt

(Cekt) = Ckekt = kCekt = kP(t)

Therefore any function of the form P(t) = Cekt satisfies the
equation. We will see later that there is no other solution.
Letting C vary over the real numbers gives a family of solutions.
Since populations are non-negative, only solutions with C > 0 are
relevant.
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Modeling with Differential Equations Models of Population Growth

This model works well under ideal conditions.
In real life, most populations are constrained by the environment,
the amount of food, etc.
Many populations start by increasing exponentially, but then level
off when they approach some upper bound, called the carrying
capacity K .

To take this into account, make two assumptions:

dP
dt ≈ kP if P is small (Initially, the growth rate is proportional to P).
dP
dt < 0 if P > K (P decreases if it ever exceeds K ).

Here is an expression that takes both assumptions into account:

dP
dt

= kP
(

1− P
K

)

This is called the logistic differential equation.
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Modeling with Differential Equations Models of Population Growth

dP
dt

= kP
(

1− P
K

)
What do the solutions look like?

P = 0 and P = K are special solutions, called equilibrium
solutions.
If P > K , then 1− P/K < 0 , so dP/dt < 0, and P decreases.
If P < K , then 1− P/K > 0, so dP/dt > 0, and P increases.
As P → K , 1− P/K → 0, so dP/dt → 0 and P levels off.

t

P
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Modeling with Differential Equations A Model for the Motion of a Spring

A Model for the Motion of a Spring

Suppose we have an object with mass m attached to a spring.
Hooke’s Law: if the spring is stretched or compressed x units from
its natural length, then it exerts a force that is proportional to x .
Force equals mass times acceleration.
Acceleration is the second derivative of displacement with respect
to time.

m
d2x
dt2 = −kx

This is called a second-order differential equation because it
involves second derivatives.
Sine and cosine functions are solutions.
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Modeling with Differential Equations General Differential Equations

General Differential Equations

Definition (Differential Equation)
A differential equation is an equation that contains an unknown
function and some of its derivatives.

Definition (Order of a Differential Equation)
The order of a differential equation is the highest derivative that
appears in it.

Definition (Solution)
A function f is called a solution of a differential equation if the equation
is satisfied when f and its derivatives are plugged in.

Definition (To Solve a Differential Equation)
When we are asked to solve a differential equation we are expected to
find all possible solutions.
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Modeling with Differential Equations General Differential Equations

Example
Show that every member of the family of functions

y =
1 + cet

1− cet

is a solution of the differential equation y ′ = 1
2(y

2 − 1).

LHS =
(1− cet)(cet)− (1 + cet)(−cet)

(1− cet)2

=
cet − c2e2t + cet + c2e2t

(1− cet)2 =
2cet

(1− cet)2

RHS =
1
2

[(
1 + cet

1− cet

)2

− 1

]
=

1
2

[
(1 + cet)2 − (1− cet)2

(1− cet)2

]
=

1
2

[
1 + 2cet + c2e2t − 1 + 2cet − c2e2t

(1− cet)2

]
=

1
2

4cet

(1− cet)2 =
2cet

(1− cet)2

= LHS
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2(y

2 − 1).

LHS =
(1− cet)(cet)− (1 + cet)(−cet)

(1− cet)2

=
cet − c2e2t + cet + c2e2t

(1− cet)2 =
2cet

(1− cet)2

RHS =
1
2

[(
1 + cet

1− cet

)2

− 1

]
=

1
2

[
(1 + cet)2 − (1− cet)2

(1− cet)2

]
=

1
2

[
1 + 2cet + c2e2t − 1 + 2cet − c2e2t

(1− cet)2

]
=

1
2

4cet

(1− cet)2 =
2cet

(1− cet)2 = LHS
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Modeling with Differential Equations General Differential Equations

Often we don’t want to find all solutions (the general solution).
Instead, we only want to find a single solution that satisfies some
additional requirement.
Often that requirement has the form y(t0) = y0.
This is called an initial condition.
This type of problem is called an initial value problem.
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Modeling with Differential Equations General Differential Equations

Example

Find a solution of the differential equation y ′ = 1
2(y

2 − 1) that satisfies
the initial condition y(0) = 2.

Substitute t = 0 and y = 2 into the formula

y =
1 + cet

1− cet

from Example 1.

2 =
1 + ce0

1− ce0 =
1 + c
1− c

2(1− c) = 1 + c
2− 2c = 1 + c

c = 1/3

Therefore the solution to the initial-value problem is

y =
1 + 1

3et

1− 1
3et

=
3 + et

3− et .
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Direction Fields and Euler’s Method

Direction Fields and Euler’s Method

Often we don’t know how to find explicit solutions to a differential
equation.
Nevertheless, we can learn a lot about the solutions using:

A graphical approach (direction fields)
A numerical approach (Euler’s method)

Today we will discuss direction fields, but not Euler’s method.
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Direction Fields and Euler’s Method Direction Fields

Direction Fields

How do we sketch the graph of the solution to y ′ = x + y that
satisfies the initial condition y(0) = 1?

Make a table of values of y ′.

Point y ′

(1,0)

1

(−1,0)

− 1

(0,1)

1

(0,−1)

− 1

(0,0)

0

(1,1)

2

(1,−1)

0

(−1,1)

0

(−1,−1)

− 2

1 2

Line y ′

y = −x

0

y = −x + 1
2

1
2

y = −x + 1

1

y = −x − 1
2

− 1
2

y = −x − 1

− 1
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Separable Equations

Separable Equations

In this section, we will discuss a type of differential equation, called a
separable equation, for which it is possible to find an explicit solution.

Definition (Separable Equation)
A separable equation is a first-order equation in which the expression
for dy/dx can be factored as a function of x times a function of y . In
other words,

dy
dx

= g(x)f (y).

Let f (y) = 1/h(y). Then
dy
dx

=
g(x)
h(y)

.
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dy
dx

=
g(x)
h(y)

.

To solve, write this in differential form:

h(y)dy = g(x)dx

Now integrate:

∫
h(y)dy =

∫
g(x)dx

This defines y implicitly as a function of x .
Sometimes we might be able to solve explicitly for y in terms of x .
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Why does this process yield a function that satisfies the original
differential equation? Suppose that

∫
h(y)dy =

∫
g(x)dx . Then we will

use the Chain Rule to show that y satisfies the original equation.∫
h(y)dy =

∫
g(x)dx

d
dx

(∫
h(y)dy

)
=

d
dx

(∫
g(x)dx

)
d

dy

(∫
h(y)dy

)
dy
dx

=
d

dx

(∫
g(x)dx

)
h(y)

dy
dx

= g(x)

dy
dx

=
g(x)
h(y)
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Separable Equations

Example

Solve the differential equation dy
dx = x2

y2 , and find the solution that
satisfies the intial condition y(0) = 2.

y2dy = x2dx∫
y2dy =

∫
x2dx

y3

3
=

x3

3
+ C

y =
3
√

x3 + 3C

y =
3
√

x3 + K
To find the solution satisfying the initial condition, set
2 = y(0) = 3

√
03 + K =

3
√

K . Then 3
√

K = 2, so K = 8.
y =

3
√

x3 + 8.
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Example

Solve the equation y ′ = x2y .

dy
dx

= x2y

1
y

dy = x2dx y 6= 0∫
1
y

dy =

∫
x2dx

ln |y | =
1
3

x3 + C

eln |y | = ex3/3+C

|y | = eCex3/3

y = ± eCex3/3

The function y = 0 satisfies the equation. General solution:
y = Aex3/3.
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Separable Equations Orthogonal Trajectories

Orthogonal Trajectories

Definition (Orthogonal Trajectory)
An orthogonal trajectory to a family of curves is a curve that intersects
each curve of the family orthogonally (that is, at right angles).

Each member of the family y = mx
of straight lines passing through
the origin is an orthogonal
trajectory to the family x2 + y2 = r2

of circles centered at the origin.
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Separable Equations Orthogonal Trajectories

Example

Find the orthogonal trajectories of the family x = ky2, where k is an
arbitrary constant.

Differentiate implicitly:
x = ky2

1 = 2ky
dy
dx

1 = 2
(

x
y2

)
y

dy
dx

dy
dx

=
y
2x

An orthogonal trajectory will have a
slope that is the negative reciprocal
of the slope of the curve.

dy
dx

= − 2x
y∫

ydy = −
∫

2xdx

y2

2
= − x2 + C

x2 +
y2

2
= C

The ellipses x2 + y2

2 = C are all
orthogonal trajectories to x = ky2.
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of the slope of the curve.

dy
dx

= − 2x
y∫

ydy = −
∫

2xdx

y2

2
= − x2 + C

x2 +
y2

2
= C

The ellipses x2 + y2

2 = C are all
orthogonal trajectories to x = ky2.
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Separable Equations Mixing Problems

Mixing Problems

Typical mixing problems involve:
A tank of fixed capacity.
A completely mixed solution of some substance in the tank.
A solution of a certain concentration enters the tank at a fixed rate.
In the tank, the solution immediately becomes completely stirred.
The mixture leaves at the other end at a fixed rate (possibly a
different rate).

Let y(t) denote the amount of substance in the tank at time t .
Then y ′(t) denotes the rate at which the substance is being added
minus the rate at which it is being removed.
This often gives a differential equation.
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Separable Equations Mixing Problems

Example
A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that
contains 0.03 kg of salt per liter of water enters the tank at a rate of 25
L/min. The solution is kept thoroughly mixed and drains from the tank
at the same rate. How much salt is in the tank after half an hour?

Let y(t) denote the amount of salt (in kg) after t minutes.
Given: y(0) =

20.

We want to know:

y(30).

dy
dt

= (rate in) − (rate out) = 0.75− y(t)
200

=
150− y(t)

200
rate in = (concentration in)(rate of volume in)

=

(

0.03
kg
L

)(

25
L

min

)
= 0.75

kg
min

rate out = (concentration out)(rate of volume out)

=

(

y(t)
5000

kg
L

)(

25
L

min

)
=

y(t)
200

kg
min
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Separable Equations Mixing Problems

Example (Example 6, p. 621)
A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that
contains 0.03 kg of salt per liter of water enters the tank at a rate of 25
L/min. The solution is kept thoroughly mixed and drains from the tank
at the same rate. How much salt is in the tank after half an hour?

dy
dt

=
150− y(t)

200

∫
dy

150− y
=

∫
dt

200
− ln |150− y | = t/200 + C y(0) = 20, so C =

− ln 130

− ln |150− y | = t/200− ln 130
|150− y | = 130e−t/200

y < 150 = (0.03)(5000), so |150− y | = 150− y
y = 150− 130e−t/200

y(30) = 150− 130e−30/200 ≈ 38.1kg
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Models for Population Growth The Law of Natural Growth

The Law of Natural Growth

Recall that differential equations could be used to model
population growth.
The Law of Natural Growth works in ideal cases, where
populations are unconstrained by lack of food, or the environment.
Let P(t) be the population at time t .
Then the Law of Natural Growth says:

dP
dt

= kP

The constant k is sometimes called the relative growth rate.
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dP
dt

= kP

This is a separable equation, so we can solve it.

∫
dP
P

=

∫
kdt

ln |P| = kt + C
|P| = eCekt

P = ± eCekt

Let A = ±eC . Then the solution is P = Aekt .
A = ±eC can be any positive or negative number.
The function P = 0 is also a solution, so A can be any number.
P(0) = Aek ·0 = A.

The solution to the initial value problem
dP
dt

= kP, P(0) = P0

is P(t) = P0ekt .
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Models for Population Growth The Logistic Model

The Logistic Model

The Logistic Model works in cases when the population is
constrained by its environment.
Let P(t) be the population at time t .
Then the Logistic Equation is:

dP
dt

= kP
(

1− P
K

)

The constant K is called the carrying capacity. It represents how
many individuals the environment can sustain in the long run.
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dP
dt

= kP
(

1− P
K

)

∫
1

P(1− P/K )
dP =

∫
kdt∫

K
P(K − P)

dP =

∫
kdt∫ (

1
P

+
1

K − P

)
dP =

∫
kdt

ln |P| − ln |K − P| = kt + C

ln
∣∣∣∣K − P

P

∣∣∣∣ = − kt − C

K − P
P

= ± e−Ce−kt = Ae−kt

K = P(1 + Ae−kt)

P =
K

1 + Ae−kt

Plug in P(0) = P0:

K − P0

P0
= Ae−k ·0 = A.
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The solution to the initial value problem

dP
dt

= kP
(

1− P
K

)
, P(0) = P0

is
P =

K
1 + Ae−kt , A =

K − P0

P0
.
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Example
Write the solution of the initial value problem

dP
dt

= 0.08P
(

1− P
1000

)
, P(0) = 100

and use it to find when the population reaches 900.

P(t) =
1000

1 + Ae−0.08t , A =

1000

−

100
100

= 9

Therefore P(t) =
1000

1 + 9e−0.08t .

Set P(t) = 900 :
1000

1 + 9e−0.08t = 900

1 + 9e−0.08t = 1000/900

e−0.08t =
1000/900− 1

9
=

1
81

− 0.08t = − ln 81

t =
ln 81
0.08

≈ 54.9
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