Math 141 Lecture 17

Greg Maloney

Todor Milev

University of Massachusetts Boston

Spring 2015

Outline

- Modeling with Differential Equations
 - Models of Population Growth
 - A Model for the Motion of a Spring
 - General Differential Equations
- Direction Fields and Euler's Method
 - Direction Fields
- Separable Equations
 - Orthogonal Trajectories
 - Mixing Problems
- Models for Population Growth
 - The Law of Natural Growth
 - The Logistic Model

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project (a notice of use freecalc is sufficient).

- Latest version of the .tex sources of the slides: https: //sourceforge.net/p/freecalculus/code/HEAD/tree/
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Modeling with Differential Equations

- When modeling real-world problems, we often have a relationship between an unknown function and some of its derivatives.
- Such a relationship is called a differential equation.
- It is not always possible to find an explicit solution to a differential equation, but sometimes a graphical or approximate answer can be good enough for applications.

Models of Population Growth

- One model for population growth assumes that the population grows at a rate proportional to its size.
- In other words, if a certain number of bacteria produce a certain number of offspring in a certain time, then ten times that many bacteria produce ten times that many offspring in the same time.
- This is plausible when the population has unlimited food and environment and no restrictions on its size.
- Name the variables:

t = time

P = the number of individuals in the population

- The rate of growth is dP/dt.
- Then "rate of growth proportional to population size" means

$$\frac{\mathrm{d}P}{\mathrm{d}t}=kP$$

where k is the proportionality constant.

- This is a differential equation.
- Exponential functions satisfy this condition.
- Let $P(t) = Ce^{kt}$ (C is a constant). Then $\frac{dP}{dt} = \frac{d}{dt}(Ce^{kt}) = Cke^{kt} = kCe^{kt} = kP(t)$
- Therefore any function of the form $P(t) = Ce^{kt}$ satisfies the equation. We will see later that there is no other solution.
- Letting C vary over the real numbers gives a family of solutions.
- Since populations are non-negative, only solutions with C > 0 are relevant.

- This model works well under ideal conditions.
- In real life, most populations are constrained by the environment, the amount of food, etc.
- Many populations start by increasing exponentially, but then level off when they approach some upper bound, called the carrying capacity K.
- To take this into account, make two assumptions:
 - $\frac{dP}{dt} \approx kP$ if P is small (Initially, the growth rate is proportional to P). $\frac{dP}{dt} < 0$ if P > K (P decreases if it ever exceeds K).
- Here is an expression that takes both assumptions into account:

$$\frac{\mathrm{d}P}{\mathrm{d}t} = kP\left(1 - \frac{P}{K}\right)$$

This is called the logistic differential equation.

$$\frac{\mathrm{d}P}{\mathrm{d}t} = kP\left(1 - \frac{P}{K}\right)$$

- What do the solutions look like?
- P = 0 and P = K are special solutions, called equilibrium solutions.
- If P > K, then 1 P/K < 0, so dP/dt < 0, and P decreases.
- If P < K, then 1 P/K > 0, so dP/dt > 0, and P increases.
- As $P \to K$, $1 P/K \to 0$, so $dP/dt \to 0$ and P levels off.

A Model for the Motion of a Spring

- Suppose we have an object with mass m attached to a spring.
- Hooke's Law: if the spring is stretched or compressed x units from its natural length, then it exerts a force that is proportional to x.
- Force equals mass times acceleration.
- Acceleration is the second derivative of displacement with respect to time.

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -kx$$

- This is called a second-order differential equation because it involves second derivatives.
- Sine and cosine functions are solutions.

General Differential Equations

Definition (Differential Equation)

A differential equation is an equation that contains an unknown function and some of its derivatives.

Definition (Order of a Differential Equation)

The order of a differential equation is the highest derivative that appears in it.

Definition (Solution)

A function f is called a solution of a differential equation if the equation is satisfied when f and its derivatives are plugged in.

Definition (To Solve a Differential Equation)

When we are asked to solve a differential equation we are expected to find all possible solutions.

Show that every member of the family of functions

$$y = \frac{1 + ce^t}{1 - ce^t}$$

is a solution of the differential equation $y' = \frac{1}{2}(y^2 - 1)$.

LHS =
$$\frac{(1 - ce^t)(ce^t) - (1 + ce^t)(-ce^t)}{(1 - ce^t)^2}$$
$$= \frac{ce^t - c^2e^{2t} + ce^t + c^2e^{2t}}{(1 - ce^t)^2} = \frac{2ce^t}{(1 - ce^t)^2}$$

RHS =
$$\frac{1}{2} \left[\left(\frac{1 + ce^t}{1 - ce^t} \right)^2 - 1 \right] = \frac{1}{2} \left[\frac{(1 + ce^t)^2 - (1 - ce^t)^2}{(1 - ce^t)^2} \right]$$

= $\frac{1}{2} \left[\frac{1 + 2ce^t + c^2e^{2t} - 1 + 2ce^t - c^2e^{2t}}{(1 - ce^t)^2} \right]$
= $\frac{1}{2} \frac{4ce^t}{(1 - ce^t)^2} = \frac{2ce^t}{(1 - ce^t)^2} = \text{LHS}$

- Often we don't want to find all solutions (the general solution).
- Instead, we only want to find a single solution that satisfies some additional requirement.
- Often that requirement has the form $y(t_0) = y_0$.
- This is called an initial condition.
- This type of problem is called an initial value problem.

Find a solution of the differential equation $y' = \frac{1}{2}(y^2 - 1)$ that satisfies the initial condition y(0) = 2.

Substitute t = 0 and y = 2 into the formula

$$y = \frac{1 + ce^t}{1 - ce^t}$$

from Example 1.

$$2 = \frac{1 + ce^{0}}{1 - ce^{0}} = \frac{1 + c}{1 - c}$$

$$2(1 - c) = 1 + c$$

$$2 - 2c = 1 + c$$

$$c = 1/3$$

Therefore the solution to the initial-value problem is

$$y = \frac{1 + \frac{1}{3}e^t}{1 - \frac{1}{3}e^t} = \frac{3 + e^t}{3 - e^t}.$$

Direction Fields and Euler's Method

- Often we don't know how to find explicit solutions to a differential equation.
- Nevertheless, we can learn a lot about the solutions using:
 - A graphical approach (direction fields)
 - A numerical approach (Euler's method)
- Today we will discuss direction fields, but not Euler's method.

Direction Fields

- How do we sketch the graph of the solution to y' = x + y that satisfies the initial condition y(0) = 1?
- Make a table of values of y'.

Point	<i>y'</i>
(1,0)	1
(-1,0)	<u> </u>
(0,1)	1
(0,-1)	<u> </u>
(0,0)	0
(1,1)	2
(1,-1)	0
(-1,1)	0
(-1,-1)	– 2

Line	<i>y'</i>
y = -x	0
$y=-x+\tfrac{1}{2}$	$\frac{1}{2}$
y = -x + 1	1
$y=-x-\tfrac{1}{2}$	$-\frac{1}{2}$
$y = -x - \bar{1}$	$-\overline{1}$

Separable Equations

In this section, we will discuss a type of differential equation, called a separable equation, for which it is possible to find an explicit solution.

Definition (Separable Equation)

A separable equation is a first-order equation in which the expression for dy/dx can be factored as a function of x times a function of y. In other words.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x)f(y).$$

Let f(y) = 1/h(y). Then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{g(x)}{h(y)}.$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{g(x)}{h(y)}$$

To solve, write this in differential form:

$$h(y)dy = g(x)dx$$

Now integrate:

$$\int h(y)\mathrm{d}y = \int g(x)\mathrm{d}x$$

- This defines y implicitly as a function of x.
- Sometimes we might be able to solve explicitly for y in terms of x.

Why does this process yield a function that satisfies the original differential equation? Suppose that $\int h(y) dy = \int g(x) dx$. Then we will use the Chain Rule to show that y satisfies the original equation.

$$\int h(y)dy = \int g(x)dx$$

$$\frac{d}{dx} \left(\int h(y)dy \right) = \frac{d}{dx} \left(\int g(x)dx \right)$$

$$\frac{d}{dy} \left(\int h(y)dy \right) \frac{dy}{dx} = \frac{d}{dx} \left(\int g(x)dx \right)$$

$$h(y)\frac{dy}{dx} = g(x)$$

$$\frac{dy}{dx} = \frac{g(x)}{h(y)}$$

Solve the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2}$, and find the solution that satisfies the intial condition y(0) = 2.

$$y^{2}dy = x^{2}dx$$

$$\int y^{2}dy = \int x^{2}dx$$

$$\frac{y^{3}}{3} = \frac{x^{3}}{3} + C$$

$$y = \sqrt[3]{x^{3} + 3C}$$

$$y = \sqrt[3]{x^{3} + K}$$

To find the solution satisfying the initial condition, set $2 = y(0) = \sqrt[3]{0^3 + K} = \sqrt[3]{K}$. Then $\sqrt[3]{K} = 2$, so K = 8. $y = \sqrt[3]{x^3 + 8}$.

Solve the equation $y' = x^2y$.

$$\frac{dy}{dx} = x^2y$$

$$\frac{1}{y}dy = x^2dx \quad y \neq 0$$

$$\int \frac{1}{y}dy = \int x^2dx$$

$$\ln|y| = \frac{1}{3}x^3 + C$$

$$e^{\ln|y|} = e^{x^3/3 + C}$$

$$|y| = e^C e^{x^3/3}$$

$$y = \pm e^C e^{x^3/3}$$

The function y = 0 satisfies the equation. General solution:

$$y = Ae^{x^3/3}$$

Orthogonal Trajectories

Definition (Orthogonal Trajectory)

An orthogonal trajectory to a family of curves is a curve that intersects each curve of the family orthogonally (that is, at right angles).

Each member of the family y = mx of straight lines passing through the origin is an orthogonal trajectory to the family $x^2 + y^2 = r^2$ of circles centered at the origin.

Find the orthogonal trajectories of the family $x = ky^2$, where k is an arbitrary constant. Differentiate implicitly:

$$x = ky^{2}$$

$$1 = 2ky\frac{dy}{dx}$$

$$1 = 2\left(\frac{x}{y^{2}}\right)y\frac{dy}{dx}$$

$$dy \qquad y$$

An orthogonal trajectory will have a slope that is the negative reciprocal of the slope of the curve.

$$\frac{dy}{dx} = -\frac{2x}{y}$$

$$\int y dy = -\int 2x dx$$

$$\frac{y^2}{2} = -x^2 + C$$

$$x^2 + \frac{y^2}{2} = C$$

The ellipses $x^2 + \frac{y^2}{2} = C$ are all orthogonal trajectories to $x = ky^2$.

Mixing Problems

- Typical mixing problems involve:
- A tank of fixed capacity.
- A completely mixed solution of some substance in the tank.
- A solution of a certain concentration enters the tank at a fixed rate.
- In the tank, the solution immediately becomes completely stirred.
- The mixture leaves at the other end at a fixed rate (possibly a different rate).
- Let y(t) denote the amount of substance in the tank at time t.
- Then y'(t) denotes the rate at which the substance is being added minus the rate at which it is being removed.
- This often gives a differential equation.

A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that contains 0.03 kg of salt per liter of water enters the tank at a rate of 25 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is in the tank after half an hour?

- Let y(t) denote the amount of salt (in kg) after t minutes.
- Given: y(0) = 20. We want to know: y(30).

$$\frac{dy}{dt} = (\text{rate in}) - (\text{rate out}) = 0.75 - \frac{y(t)}{200} = \frac{150 - y(t)}{200}$$

$$\text{rate in} = (\text{concentration in})(\text{rate of volume in})$$

$$= \left(0.03 \frac{\text{kg}}{\text{L}}\right) \left(25 \frac{\text{L}}{\text{min}}\right) = 0.75 \frac{\text{kg}}{\text{min}}$$

$$\text{rate out} = (\text{concentration out})(\text{rate of volume out})$$

$$= \left(\frac{y(t)}{5000} \frac{\text{kg}}{\text{L}}\right) \left(25 \frac{\text{L}}{\text{min}}\right) = \frac{y(t)}{200} \frac{\text{kg}}{\text{min}}$$

Example (Example 6, p. 621)

A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that contains 0.03 kg of salt per liter of water enters the tank at a rate of 25 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is in the tank after half an hour?

$$\frac{dy}{dt} = \frac{150 - y(t)}{200}$$

$$\int \frac{dy}{150 - y} = \int \frac{dt}{200}$$

$$-\ln|150 - y| = t/200 + C \quad y(0) = 20, \text{ so } C = -\ln 130$$

$$-\ln|150 - y| = t/200 - \ln 130$$

$$|150 - y| = 130e^{-t/200}$$

$$y < 150 = (0.03)(5000), \text{ so } |150 - y| = 150 - y$$

$$y = 150 - 130e^{-t/200}$$

$$y(30) = 150 - 130e^{-30/200} \approx 38.1 \text{kg}$$

The Law of Natural Growth

- Recall that differential equations could be used to model population growth.
- The Law of Natural Growth works in ideal cases, where populations are unconstrained by lack of food, or the environment.
- Let P(t) be the population at time t.
- Then the Law of Natural Growth says:

$$\frac{\mathrm{d}P}{\mathrm{d}t}=kP$$

• The constant *k* is sometimes called the relative growth rate.

$$\frac{\mathrm{d}P}{\mathrm{d}t}=kP$$

This is a separable equation, so we can solve it.

$$\int \frac{dP}{P} = \int kdt$$

$$\ln |P| = kt + C$$

$$|P| = e^{C}e^{kt}$$

$$P = \pm e^{C}e^{kt}$$

- Let $A = \pm e^C$. Then the solution is $P = Ae^{kt}$.
- $A = \pm e^C$ can be any positive or negative number.
- The function P = 0 is also a solution, so A can be any number.
- $P(0) = Ae^{k \cdot 0} = A$.

The solution to the initial value problem

$$\frac{dP}{dt} = kP, \qquad P(0) = P_0$$
is
$$P(t) = P_0 e^{kt}.$$

The Logistic Model

- The Logistic Model works in cases when the population is constrained by its environment.
- Let P(t) be the population at time t.
- Then the Logistic Equation is:

$$\frac{\mathrm{d}P}{\mathrm{d}t} = kP\left(1 - \frac{P}{K}\right)$$

 The constant K is called the carrying capacity. It represents how many individuals the environment can sustain in the long run.

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{K}\right)$$

$$\int \frac{1}{P(1 - P/K)} dP = \int kdt$$

$$\int \frac{K}{P(K - P)} dP = \int kdt$$

$$\int \left(\frac{1}{P} + \frac{1}{K - P}\right) dP = \int kdt$$

$$\ln |P| - \ln |K - P| = kt + C$$

$$\ln \left|\frac{K - P}{P}\right| = -kt - C$$

$$\frac{K - P}{P} = \pm e^{-C}e^{-kt} = Ae^{-kt}$$

$$K = P(1 + Ae^{-kt})$$

$$P = \frac{K}{1 + Ae^{-kt}}$$

The solution to the initial value problem

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{K}\right), \qquad P(0) = P_0$$

is

$$P = \frac{K}{1 + Ae^{-kt}}, \qquad A = \frac{K - P_0}{P_0}.$$

Write the solution of the initial value problem

$$\frac{dP}{dt} = 0.08P \left(1 - \frac{P}{1000} \right), \qquad P(0) = 100$$

and use it to find when the population reaches 900.

$$P(t) = \frac{1000}{1 + Ae^{-0.08t}}, \qquad A = \frac{1000 - 100}{100} = 9$$
Therefore
$$P(t) = \frac{1000}{1 + 9e^{-0.08t}}.$$

Set
$$P(t) = 900$$
:
$$\frac{1000}{1 + 9e^{-0.08t}} = 900$$
$$1 + 9e^{-0.08t} = 1000/900$$
$$e^{-0.08t} = \frac{1000/900 - 1}{9} = \frac{1}{81}$$
$$-0.08t = -\ln 81$$
$$t = \frac{\ln 81}{0.08} \approx 54.9$$