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License to use and redistribute

These lecture slides and their IATEX source code are licensed to you
under the Creative Commons license CC BY 3.0. You are free

@ to Share - to copy, distribute and transmit the work,
@ to Remix - to adapt, change, etc., the work,
@ to make commercial use of the work,

as long as you reasonably acknowledge the original project (a notice of
use freecalc is sufficient).

@ Latest version of the .tex sources of the slides: https:
//sourceforge.net/p/freecalculus/code/HEAD/tree/

@ Should the link be outdated/moved, search for “freecalc project”.

@ Creative Commons license CC BY 3.0:
https://creativecommons.org/licenses/by/3.0/us/
and the links therein.
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Polar Coordinates
Polar Coordinates

@ The polar coordinate system is an alternative to the Cartesian
coordinate system.
@ Choose a point in the plane called O (the origin).

@ Draw a ray starting at O. The ray is called the polar axis. This ray
is usually drawn horizontally to the right.

Pr0) @ Let P be a pointin the plane.

@ Let 6 denote the angle
§ between the polar axis and the
line OP.

0 @ Let r denote the length of the
o ¢ olar axs segment OP.
@ Then P is represented by the
ordered pair (r, ).
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Polar Coordinates
Polar Coordinates

@ The polar coordinate system is an alternative to the Cartesian
coordinate system.

@ Choose a point in the plane called O (the origin).

@ Draw a ray starting at O. The ray is called the polar axis. This ray
is usually drawn horizontally to the right.

P(r, 0)

@ The letters (x, y) imply
Cartesian coordinates and the
letters (r, 0)- polar. When we
use other letters, it should be

0 clear from context whether we

F— mean Cartesian or polar
coordinates. If not, one must
request clarification.
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Polar Coordinates

@ What if 4 is negative?
© What if r is negative?
© What if ris 07?

o

Positive angles 6 are
measured in the
counterclockwise direction
from O. Negative angles are
measured in the clockwise
direction.

Points with polar coordinates
(=r,0) and (r, ) lie on the
same line through O and at
the same distance from O, but
on opposite sides.

If r =0, then (0, 6) represents
O for all values of 6.
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Polar Coordinates

= 18x
0=3r b=
o o
o
= (1, 18x
— 51 (r,e)_(1, 4)
(r,0) = (1, 5¢) »
’
’
’
(¢] o — 3: p

0= (-1.%)
@ There are many ways to represent the same point.
@ We could use a negative 6.

@ We could go around more than once.

@ We could use a negative r.
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Polar Coordinates

@ Let P; be point with polar coordinates (ry, 61).
@ Let P, be point with polar coordinates (rz, 62).

Observation

P; coincides with P» if one of the three mutually exclusive possibilities
holds:

@ri=r+#0andb, =04+ 2kn, k € Z,
oern=—-rn#0andb, =60+ 2k + 1),k Z,
@ ri =r =0 and? is arbitrary.

04 05 = 04 + 27

(ry,64) (r2,02) = (r1, 01 +2m)
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Polar Coordinates

@ Let P; be point with polar coordinates (ry, 61).
@ Let P, be point with polar coordinates (rz, 62).

Observation

P; coincides with P» if one of the three mutually exclusive possibilities
holds:

@ri=r+#0andb, =04+ 2kn, k € Z,
oern=—-rn#0andb, =60+ 2k + 1),k Z,
@ ri =r =0 and? is arbitrary.

(ry,64) (ro, 02) = (—ry,01 + )
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Polar Coordinates

@ How do we go from polar coordinates to Cartesian coordinates?

@ Suppose a point has polar coordinates (r, 8) and Cartesian
coordinates (x, y).

@ How do we go from Cartesian coordinates to polar coordinates?

X = rcosét
y = rsind
X
cosf) = —
r
P =0y sing = 2L
[ r
2 2 2
) r = X°+y

l ro—

Math 141

X
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arcsin (%) ifx>0
arccos (¥) ify >0
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Polar Coordinates

Convert the point (2, 3) from polar to Cartesian coordinates

x_rcose_2003_2< ) =

V3

y:rsiné?:2sin7:;:2<\£§

Therefore the point with polar coordinates (2, ) has Cartesian
coordinates (1,/3).
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Polar Coordinates

e

Represent the point with Cartesian coordinates
(1,—1) in terms of polar coordinates.

@ Suppose r is positive.

@ tang = —1 for § = 37, 7= and many r o= i\/m
other angles.

@ (1,—1) is in the fourth quadrant. - 124 (=1)?
@ Of the two values above, only § = 7~ = V2

gives a point in the fourth quadrant.
@ Therefore one possible tang = %

representation of (1,—1) in polar
coordinates is (v2, 77 /4).

@ (v/2,—n/4) is another.
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Polar Curves

@ Recall polar coordinates:

rcosé
rsind

X
y

@ A curve in polar coordinates is given by specifying explicit or
implicit equations in polar coordinates.
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Polar Curves

Example
What curve is represented by the polar equation r = 2?

@ The equation describes all
points that are 2 units away
from O.

@ This is the circle with center O
and radius 2.

@ The equation r = 1 describes
the unit circle.

@ The equation r = 4 describes
the circle with center O and
radius 4.
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Polar Curves

@ Sketch the curve with polar equation r = 2 cos 6.
@ Find a Cartesian equation for this curve.

(v3,%) 0 r
0 2

/6 V3

(2.0) /4 V2

/3 1

/2 0

2r/3| —1

(-va. %) 3n/4| — V2
57/6| — V3

‘s -2
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Polar Curves

@ Sketch the curve with polar equation r = 2 cos 6.
@ Find a Cartesian equation for this curve.

@ X =rcosé.
@ cosf = x/r.
@ r=2cosfd =2x/r.

(2,0)
@ 2x =r? = x2 + 2.

@ x>+ y?—2x=0.
@ Complete the square:

(P—2x+1)+y?2 = 0+1
(x—12+y? = 1
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Example (Cardioid)
Sketch the curve r = 1 + siné.

Math 141

Polar Curves

2,7
r=1+sing

-,

27

NR——
3
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Polar Curves

Example
Sketch the curve r = cos(26).

1 1-6 r = cos(260)
T [4

|
T
L

|
T
s jus T
1 v N\ OF fFT
Spring 2015
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Polar Curves
Symmetry

@ If the polar equation is unchanged when @ is replaced by —6, the
curve is symmetric about the polar axis.

@ If the equation is unchanged when 6 is replaced by 7 + 6, the
curve is symmetric under rotation about the pole.

@ If the equation is unchanged when 6 is replaced by = — 6, the
curve is symmetric about the vertical line 60 = 7.
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Polar Curves
Symmetry

@ If the polar equation is unchanged when @ is replaced by —6, the
curve is symmetric about the polar axis.

@ If the equation is unchanged when 6 is replaced by = + 6, the
curve is symmetric under rotation about the pole.

@ If the equation is unchanged when 6 is replaced by = — 6, the
curve is symmetric about the vertical line 60 = 7.

(r,0)

=0
_

—r,0)
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Polar Curves
Symmetry

@ If the polar equation is unchanged when @ is replaced by —6, the
curve is symmetric about the polar axis.

@ If the equation is unchanged when 6 is replaced by 7 + 6, the
curve is symmetric under rotation about the pole.

@ If the equation is unchanged when 6 is replaced by = — 6, the
curve is symmetric about the vertical line 6 = 7.

(r, ™ —6) (r,0)

Math 141 Lecture 18[material skipped, included on final Spring 2015



Areas in Polar Coordinates
Areas in Polar Coordinates

Suppose we have a polar curve r = f(6),a< 60 < b.

Definition

We say that the figure obtained as the union of the segments
connecting the origin with the points of the curve is the figure swept by
the curve as 6 varies from ato b.

Theorem
Suppose no two points on the curve lie on the same ray from the

b
origin. Then the area swept by the curve equals A = / % ((6))? d6.
a

Math 141 Lecture 18[material skipped, included on final Spring 2015



Areas in Polar Coordinates

Area swept by a polar curve: justification

Split [a, b] into N equal segments
viapointsa=0y <6y <--- <
On_1 < Oy = b. The length of each
segmentis A = 252, Let r; = ().
Then each 6; gives a point P; with
polar coordinates (r;, 6;).

The area swept by the curve is approximated by sum of areas of
triangles given by connecting the origin with two consecutive vertices.

Consider one such triangle, say, OP; P». By Euclidean geometry, the
area Of AOP‘] P2 |S |OP1HO§2|sinA — I’ﬂ’gZiﬂA — f(01)f(022)sinA'
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Areas in Polar Coordinates

Area swept by a polar curve: justification

Split [a, b] into N equal segments
viapointsa=0y <6y <--- <
On_1 < Oy = b. The length of each
segmentis A = 252, Let r; = ().
Then each 6; gives a point P; with
polar coordinates (r;, 6;).

Therefore the area swept by the curve equals the limit of the sum:

A = I|lim Z w — lim smA Z f(6))f (0,+A)A
A—0 A—0 =0
N—
(can be proved) = lim % lim Z M 1. lim Z w
A—0 A0 A0 5
N—1 b .,
Riemannsum) = [im (02’)A = f f ée)de
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Areas in Polar Coordinates

Find the area enclosed by one loop of the four-leaved rose r = cos 26.

r = cos(20)

4

The region enclosed by the right 1
loop corresponds to points whose ¢ 2
polar coordinate lies in the interval T
— <4< . 8

P+Zsm@mh
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Areas in Polar Coordinates

Find all points of intersection of the polar curves r = } and
r = cos(26).

1
cos20 = >

™ 57 77 11n

20 = 3333

g _ 7 5n7r tir

6’66 6

@ This only gives four points.

@ There are actually eight.

@ The circle r = } also has polar
r = cos(20) equation r = —}.

@ To find all eight points, solve
cos(20) = % and cos(20) = 3.
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Areas in Polar Coordinates

Find the area that lies within the circle r = 3 sin @ and outside of the
cardioid r = 1 + siné.

5t 57
=% [.° (8sin6)2dd — § [.° (1 + sin§)2do
6 6
:%f% (gsin 0—(1+2sin0+sin29))d9
:%f% (83in20—1—23in«9)d0
= J7 (8sin?0—1-2sin0) df
6
The curves meet if = J£ (3 —4cos20 —2sin6)do
I = 1*3'”0 — 30— 25sin20 + 2cos b]2
sinf = - °
2 :(g—z.o+2-o)—(3g—2\/§+2§)
g = T~ o
6 6 =T
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