
Freecalc

Homework Review problems for the final

This is a subset of the Master Problem Sheet

1. Problems that have appeared past final(s):

(a) Problem 2.m.

(b) Problem 4.a.

(c) Problem 6.d (the problem was formulated slightly differently - as an improper integral).

(d) Problem 8.b.

(e) Problem 9.c.

(f) Problem 10.a.

(g) Problem 10.b.

(h) Problem 12.c.

(i) Problem 13.a.

(j) Problem 14.d.

(k) Problem 17.c.

(l) Problem 16.c.

2. Evaluate the indefinite integral. Illustrate all steps of your solution.

(a)

∫
x3 + 4

x2 + 4
dx

answer:
x2

2
+2arctan(x

2

)−2ln(x2+4)+C

(b)

∫
4x2

2x2 − 1
dx

answer:−1
2

√
2ln(x+1

2

√
2)+1

2

√
2ln(x−1

2

√
2)+2x+C

(c)

∫
x3

x2 + 2x− 3
dx

answer:1
4

ln|x−1|+27
4

ln|x+3|+1
2
x2−2x

(d)

∫
x3

x2 + 3x− 4
dx

answer:1
2
x2−3x+64

5
ln|x+4|+1

5
ln|x−1|+C

(e)

∫
x3

2x2 + 3x− 5
dx

answer:125
56

ln(x+5
2)+1

7
ln(x−1)+1

4
x2−3

4
x+C

(f)

∫
x2 + 1

(x− 3)(x− 2)2
dx

answer:10ln|x−3|−9ln|x−2|+
5

x−2
+C

(g)

∫
x4

(x+ 1)2(x+ 2)
dx

answer:
x2

2
−4x−5ln|x+1|+16ln|x+2|−

1

x+1
+C

(h)

∫
15x2 − 4x− 81

(x− 3)(x+ 4)(x− 1)
dx

answer:5ln|−x−4|+3ln|x−3|+7ln|x−1|

(i)

∫
x4 + 10x3 + 18x2 + 2x− 13

x4 + 4x3 + 3x2 − 4x− 4
dx

Check first that (x− 1)(x+ 2)2(x+ 1) = x4 + 4x3 +
3x2 − 4x− 4.

answer:3(x+2)−1+2ln|x+2|+ln|x−1|+3ln|x+1|+x+C

(j)

∫
x4

(x2 + 2)(x+ 2)
dx

answer:
x2

2
−2x+

8

3
ln|x+2|−

1

3
ln(x2+2)+

2
√

2

3
arctan(√2

2
x)+C

(k)

∫
x5

x3 − 1
dx

answer:

1
3

ln∣∣∣x2+x+1∣∣∣+1
3

ln|x−1|+1
3
x3+C

=1
3

ln∣∣∣x3−1∣∣∣+1
3
x3+C

(l)

∫
x4

(x2 + 2)(x+ 1)2
dx

answer:x−
1

3
(x+1)−1

−
10

9
ln|x+1|−

4

9
ln∣∣∣x2+2∣∣∣−2

9

√
2arctan(√2

2
x)+C

(m)

∫
3x2 + 2x− 1

(x− 1)(x2 + 1)
dx

answer:2ln|x−1|+1
2

ln(x2+1)+3arctanx+C

(n)

∫
x2 − 1

x(x2 + 1)2
dx

answer:−(x2+1)−1
+1

2
ln(x2+1)−ln|x|

1



Solution. 2.l We are trying to integrate a rational function; we aim to decompose into partial fractions the following
function.

x4

x4 + 2x3 + 3x2 + 4x+ 2
=

x4

(x+ 1)
2

(x2 + 2)

Since the numerator of the function is of degree greater than or equal to the denominator, we start the partial fraction
decomposition by polynomial division.

Remainder

−2x3 −3x2 −4x −2

Divisor(s) Quotient(s)

x4 + 2x3 + 3x2 + 4x+ 2 1

Dividend

x4

x4 +2x3 +3x2 +4x +2

−2x3 −3x2 −4x −2

Therefore we have
x4

x4 + 2x3 + 3x2 + 4x+ 2
= 1 +

−2x3 − 3x2 − 4x− 2

x4 + 2x3 + 3x2 + 4x+ 2
−2x3 − 3x2 − 4x− 2

x4 + 2x3 + 3x2 + 4x+ 2
=
−2x3 − 3x2 − 4x− 2

(x+ 1)
2

(x2 + 2)

=
A1

(x+ 1)
+

A2

(x+ 1)2
+
A3 +A4x

(x2 + 2)

We seek to find Ai’s that turn the above expression into an identity. Just as in the solution of Problem ??, we will use
the method of coefficient comparison (see the solution of Problem 2.m for a shortcut method).

After clearing denominators, we get the following equality.

−2x3 − 3x2 − 4x− 2 = A1(x+ 1)(x2 + 2) +A2(x2 + 2)

+(A3 +A4x)(x+ 1)2

0 = (A4 +A1 + 2)x3

+(2A4 +A3 +A2 +A1 + 3)x2

+(A4 + 2A3 + 2A1 + 4)x

+(A3 + 2A2 + 2A1 + 2) .

In order to turn the above into an identity we need to select Ai’s such that the coefficients of all powers of x become
zero. In other words, we need to solve the following system.

A1 +A4 = −2

A1 +A2 +A3 +2A4 = −3

2A1 +2A3 +A4 = −4

2A1 +2A2 +A3 = −2 .

This is a system of linear equations. There exists a standard method for solving system of linear equations called
Gaussian Elimination (also known as Row-Echelon Form Reduction Method). This method is very well suited for
computer implementation. We illustrate it on this particular example; for a description of the method in full generality
we direct the reader to a standard course in Linear algebra.

System status Action

A1 +A4 = −2

A1 +A2 +A3 +2A4 = −3

2A1 +2A3 +A4 = −4

2A1 +2A2 +A3 = −2

Sel. pivot column 2. Eliminate non-pivot entries.

A1 +A4 = −2

A2 +A3 +A4 = −1

2A3 −A4 = 0

2A2 +A3 −2A4 = 2

Sel. pivot column 3. Eliminate non-pivot entries.
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A1 +A4 = −2

A2 +A3 +A4 = −1

2A3 −A4 = 0

−A3 −4A4 = 4

Sel. pivot column 4. Eliminate non-pivot entries.

A1 +A4 = −2

A2 + 3
2A4 = −1

A3 −A4

2 = 0

− 9
2A4 = 4

Sel. pivot column 5. Eliminate non-pivot entries.

A1 = − 10
9

A2 = 1
3

A3 = − 4
9

A4 = − 8
9

Final result.

Therefore, the final partial fraction decomposition is the following.

x4

x4 + 2x3 + 3x2 + 4x+ 2
= 1 +

−2x3 − 3x2 − 4x− 2

x4 + 2x3 + 3x2 + 4x+ 2

= 1 +
− 10

9

(x+ 1)
+

1
3

(x+ 1)2
+
− 8

9x−
4
9

(x2 + 2)

Therefore we can integrate as follows.∫
x4

(x2 + 2)(x+ 1)2
dx =

∫ (
1 +

− 10
9

(x+ 1)
+

1
3

(x+ 1)2
+
− 8

9x−
4
9

(x2 + 2)

)
dx

=

∫
dx− 10

9

∫
1

(x+ 1)
dx+

1

3

∫
1

(x+ 1)2
dx

−8

9

∫
x

x2 + 2
dx− 4

9

∫
1

x2 + 2
dx

= x− 1

3
(x+ 1)−1 − 10

9
log (x+ 1)

−4

9
log

(
x2 + 2

)
− 2

9

√
2 arctan

(√
2

2
x

)
+ C

Solution. 2.k This problem can be solved directly with a substitution shortcut, or by the standard method.

Variant I (standard method).∫
x5

x3 − 1
dx=

∫ (
x2 +

x2

x3 − 1

)
dx Polyn. long div.

=
x3

3
+

∫
x2

(x− 1)(x2 + x+ 1)
dx part. frac.

=
x3

3
+

∫ ( 1
3

x− 1
+

2
3x+ 1

3

x2 + x+ 1

)
dx complete square

=
x3

3
+

1

3
ln |x− 1|+ 2

3

∫
x+ 1

2(
x+ 1

2

)2
+ 3

4

dx Set
u =

(
x+ 1

2

)2
+ 3

4
1
2du =

(
x+ 1

2

)
dx

=
x3

3
+

1

3
ln |x− 1|+ 1

3

∫
du

u

=
x3

3
+

1

3
ln |x− 1|+ 1

3
ln |u|+ C

=
x3

3
+

1

3
ln |x− 1|+ 1

3
ln |x2 + x+ 1|+ C
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Variant II (shortcut method).∫
x5

x3 − 1
dx =

∫
x5 − x2 + x2

x3 − 1
dx

=

∫
x2(x3 − 1) + x2

x3 − 1
dx

=

∫
x2dx+

∫
x2

x3 − 1
dx

=
x3

3
+

∫ d
(
x3

3

)
x3 − 1

=
x3

3
+

1

3

∫
d
(
x3 − 1

)
x3 − 1

Set u = x3 − 1

=
x3

3
+

1

3

∫
du

u

=
x3

3
+

1

3
ln |u|+ C

=
x3

3
+

1

3
ln
∣∣x3 − 1

∣∣+ C .

The answers obtained in the two solution variants are of course equal since

ln |x− 1|+ ln |x2 + x+ 1| = ln
∣∣(x− 1)

(
x2 + x+ 1

)∣∣ = ln
∣∣x3 − 1

∣∣ .

Solution. 2.m. This is a concise solution written in a form suitable for exam taking. We set up the partial fraction
decomposition as follows.

3x2 + 2x− 1

(x− 1)(x2 + 1)
=

A

x− 1
+
Bx+ C

x2 + 1
.

Therefore 3x2 + 2x− 1 = A(x2 + 1) + (Bx+ C)(x− 1).

• We set x = 1 to get 4 = 2A, so A = 2.

• We set x = 0 to get −1 = A− C, so C = 3.

• Finally, set x = 2 to get 15 = 5A+ 2B + C, so B = 1.

We can now compute the integral as follows.∫ (
2

x− 1
+

x+ 3

x2 + 1

)
dx = 2 ln(|x− 1|) +

1

2
ln(x2 + 1) + 3 arctanx+K .

3. Compute the integral.

(a)

∫ √
1 + x2

x2
dx.

Solution. 3.a

Variant I. In this variant, we use the trigonometric substitution x = tan θ and then solve the integral using a few
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algebraic tricks.

∫ √
1 + x2

x2
dx =

∫ √
1 + tan2 θ

tan2 θ
d(tan θ)

Set
x = tan θ
θ ∈

(
−π2 ,

π
2

)
=

∫
| sec θ|
tan2 θ

sec2 θdθ
| sec θ| = sec θ
for θ ∈

(
−π2 ,

π
2

)
=

∫
cos2 θ

cos3 θ sin2 θ
dθ

=

∫
cos θ

cos2 θ sin2 θ
dθ

=

∫
d(sin θ)

(1− sin2 θ) sin2 θ

Set
u = sin θ
for θ ∈

(
0, π2

)
u =
√

1− cos2 θ

u =
√

1− 1
sec2 θ

u =
√

1− 1
1+tan2 θ

u =
√

tan2 θ
1+tan2 θ

u = tan θ√
1+tan2 θ

u = x√
1+x2

=

∫
du

(1− u2)u2

=

∫
du

(1− u)u2(u+ 1)
use part. frac.

=

∫ ( 1
2

u+ 1
+
− 1

2

u− 1
+

1

u2

)
du

= −1

2
ln |u− 1|+ 1

2
ln (u+ 1)− u−1 + C

= −1

2
ln (1− u) +

1

2
ln (u+ 1)− u−1 + C u = x√

1+x2
< 1

=
1

2
ln

(
1 + u

1− u

)
− u−1 + C

=
1

2
ln

(
(1 + u)

(1− u)
· (1 + u)

(1 + u)

)
− u−1 + C

=
1

2
ln

(
(1 + u)2

1− u2

)
− u−1 + C use u = x√

1+x2

=
1

2
ln

(
(1 + u)2

1
1+x2

)
−
√

1 + x2

x
+ C

=
1

2
ln

((
(1 + u)

√
1 + x2

)2)
−
√

1 + x2

x
+ C

= ln
(√

1 + x2 + x
)
−
√

1 + x2

x
+ C .

Variant II. In this variant, we use directly the Euler substitution
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x = cot(2 arctan t)
= 1

2

(
1
t − t

)
dx = − 1

2

(
1
t2 + 1

)
dt√

1 + x2 = 1
2

(
1
t + t

)
t =

√
x2 + 1− x

1
t =

√
x2 + 1 + x .∫ √

1 + x2

x2
dx =

∫ 1
2

(
1
t + t

)
1
4

(
1
t − t

)2 (−1

2

)(
1

t2
+ 1

)
dt

=

∫
−t4 − 2t2 − 1

(t− 1)2t(t+ 1)2
dt Part. frac

=

∫ (
−1

t
+

1

(t+ 1)2
− 1

(t− 1)2

)
dt

= − ln t− 1

t+ 1
+

1

t− 1
+ C

= ln

(
1

t

)
+

2

t2 − 1
+ C

= ln
(√

1 + x2 + x
)

+
1

t 12
(
t− 1

t

) + C

= ln
(√

1 + x2 + x
)
− 1

t
· 1

1
2

(
1
t − t

) + C

= ln
(√

1 + x2 + x
)
−
(√

x2 + 1 + x
)
· 1

x
+ C

= ln
(√

1 + x2 + x
)
−
√
x2 + 1

x
− 1 + C .

4. Compute the integral using a trigonometric substitution.

(a)

∫ √
9− x2
x2

dx .

answer:−

√9−x2
x−arcsin(x3)+C

Solution. 4.a ∫ √
9− x2
x2

dx =

∫
3
√

cos2 θ

9 sin2 θ
(3 cos θ)dθ

Set x = 3 sin θ
for θ ∈

[
π
2 , 0
)
∪
(
0, π2

]
dx = 3 cos θdθ

= 9

∫
| cos θ|
sin2 θ

cos θdθ
For θ ∈

[
π
2 , 0
)
∪
(
0, π2

]
we have| cos θ| = cos θ

=

∫
cot2 θdθ

=

∫
(csc2 θ − 1)dθ

= − cot θ − θ + C

= −
√

9− x2
x

− arcsin
(x

3

)
+ C,

where we expressed cot θ via sin θ by considering the following triangle.

θ

x
3

√

9 − x2

5. Evaluate the indefinite integral. Illustrate the steps of your solutions.

(a)

∫
x sinxdx.

answer:−xcosx+sinx+C

(b)

∫
xe−xdx.

answer:−(1+x)e−x+C
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(c)

∫
x2exdx.

answer:x2ex−2xex+2ex+C

(d)

∫
x sin(−2x)dx.

answer:x
2

cos(−2x)+1
4

sin(−2x)+C

(e)

∫
x2 cos(3x)dx.

answer:x2

3
sin(3x)+2x

9
cos(3x)−2

27
sin(3x)+C

(f)

∫
x2e−2xdx.

answer:−x2e−2x

2−xe−2x

2−e−2x

4
+C

(g)

∫
x sin(2x)dx.

answer:−x
2

cos(2x)+1
4

sin(2x)+C

(h)

∫
x cos(3x)dx.

answer:x
3

sin(3x)+1
9

cos(3x)+C

(i)

∫
x2e2xdx.

answer:x2

2
e2x−x

2
e2x+e2x

4
+C

(j)

∫
x3exdx.

answer:x3ex−3x2ex+6xex−6ex+C

Solution. 5.a. ∫
x sinxdx︸ ︷︷ ︸

=d(− cos x)

= −
∫
xd(cosx) = −x cosx+

∫
cosxdx = −x cosx+ sinx+ C .

Solution. 5.c. ∫
x2 exdx︸ ︷︷ ︸

d(ex)

=

∫
x2dex = x2ex −

∫
ex2xdx = x2ex −

∫
2xdex

= x2ex − 2xex +

∫
2exdx = x2ex − 2xex + 2ex + C .

Solution. 5.f. ∫
x2e−2xdx =

∫
x2d

(
e−2x

−2

)
Integrate by parts

= −x
2e−2x

2
−
∫ (

e−2x

−2

)
d
(
x2
)

= −x
2e−2x

2
+

∫
xe−2xdx

= −x
2e−2x

2
+

∫
xd

(
e−2x

−2

)
Integrate by parts

= −x
2e−2x

2
− xe−2x

2
+

1

2

∫
e−2xdx

= −x
2e−2x

2
− xe−2x

2
− e−2x

4
+ C .

6. Use integral test, the comparison test or the limit comparison test to determine whether the series is convergent or
divergent. Justify your answer.

(a)

∞∑
n=1

1

2n+ 1
.

answer:divergent

(b)

∞∑
n=1

1

2n2 + n3
.

answer:convergent

(c)

∞∑
n=1

n2 + 3

3n5 + n

answer:convergent,canuselimitcomparisontest

(d)

∞∑
2

1

n lnn

answer:divergent,integraltest

(e)

∞∑
n=2

1

(2n+ 1) ln(n)
.

answer:divergent

(f)

∞∑
n=2

1

n(lnn)2

answer:convergent,canuseintegraltest

(g)

∞∑
n=2

1

(2n+ 1)(ln(n))2
.

answer:convergent

(h) Determine all values of p, q r for which the series

∞∑
n=30

1

np(lnn)q(ln(lnn))r

is convergent.

7



Solution. 6.d. ∫ ∞
2

1

x lnx
dx = lim

t→∞

∫ t

2

1

x lnx
dx

= lim
t→∞

∫ t

2

1

lnx
d(lnx)

= lim
t→∞

∫ t

2

d(ln(lnx))

= lim
t→∞

[ln(lnx)]
x=t
x=2

= lim
t→∞

(ln(ln t)− ln(ln 2))

= ∞,

therefore the integral is divergent (and diverges to +∞).

The function 1
x ln x is decreasing, as for x > 2, it is the quotient of 1 by increasing positive functions. 1

x ln x tends to 0

as x→∞, and therefore the integral criterion implies that
∞∑
n=2

1
n lnn is divergent.

Solution. 6.e The integral criterion appears to be of little help: the improper integral
∫

1
(2x+1) ln xdx cannot be

integrated algebraically with any of the techniques we have studied so far. Therefore it makes sense to try to solve
this problem using a comparison test.

Variant I. This variant uses the limit comparison test. It requires less intuition than Variant II below which uses the
usual comparison test, but against a more carefully selected series.

The “dominant term”1 of the denominator of 1
(2n+1) lnn = 1

2n lnn+lnn is 2n lnn. Therefore it makes sense to compare

- or limit-compare - with 1
n lnn .

We will use the Limit Comparison Test for the series
∞∑
n=2

an =
∞∑
n=2

1
(2n+1) lnn and

∞∑
n=2

bn =
∞∑
n=2

1
n lnn . Both an and bn

are positive (for n > 2) and therefore the Limit Comparison Test applies.

lim
n→∞

an
bn

= lim
n→∞

1
(2n+1) lnn

1
n lnn

= lim
n→∞

n

2n+ 1
= lim
n→∞

1

2 + 1
n

=
1

2
.

Since lim
n→∞

an
bn

= 1
2 6= 0, the Limit Comparison Test implies that the series

∞∑
n=2

an has same convergence/divergence

properties as the series
∑∞
n=2 bn. In Problem 6.d we demonstrated that the series

∞∑
n=2

bn is divergent; therefore the

series
∞∑
n=2

an =
∞∑
n=2

1
(2n+1) lnn is divergent as well.

Variant II. This solution variant is shorter as it uses the directly the comparison test. However, unlike the preceding
solution Variant the present one requires good algebraic intuition for selecting the series bn to compare to.

Let an = 1
(2n+1) lnn . Consider the series

∑∞
n=2 bn for bn = 1

3n lnn . We have that

3n ≥ 2n+ 1 for n ≥ 1

1

3n
≤ 1

2n+ 1
.

Inverting positive
quantities reverses
inequalities

Therefore bn ≥ an. In Problem 6.d we illustrated (using the integral test) that
∞∑
n=2

(3bn) is divergent and therefore so

is its constant multiple
∞∑
n=2

bn. Therefore
∞∑
n=2

1
(2n+1) lnn is divergent by the comparison test.

7. Compute the limits. The answer key has not been fully proofread, use with caution.

(a) lim
x→0

sinx

x
. answer:1

(b) lim
x→0

x

ln(1 + x)
. answer:1

(c) lim
x→0

x2

x− ln(1 + x)
. answer:2

(d) lim
x→0

x2

sinx ln(1 + x)
. answer:1

1since we do not speak of rational functions, here the expression “dominant term” is used informally
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(e) lim
x→0

sin2 x

(ln(1 + x))
2 . answer:1

(f) lim
x→0

cosx− 1

sinx ln(1 + x)
. answer:−1

2

(g) lim
x→0

arctanx− x
x3

. answer:−1
3

(h) lim
x→0

arcsinx− x
x3

. answer:1
6

(i) lim
x→1

x

x− 1
− 1

lnx
. answer:1

2

(j) lim
x→0

cos(nx)− cos(mx)

x2
. answer:m2−n2

2

(k) (Optional) lim
x→0

arcsinx− x− 1
6x

3

sin5 x
. answer:3

40

8. Express the sum of the series as a rational number.

(a)

∞∑
n=1

2n + 3n

5n

answer:13
6

(b)

∞∑
n=0

2n + 5n

10n

answer:13
4

(c)

∞∑
n=1

5n − 3n

7n

answer:7
4

(d)

∞∑
n=1

3n+1 + 7n−1

21n

answer:4
7

(e)

∞∑
n=0

2n+1 + (−3)n−1

5n

answer:25
8

Solution. 8.a.

∞∑
n=1

2n + 3n

5n
=

∞∑
n=1

(
2

5

)n
+

∞∑
n=1

(
3

5

)n

=
2

5

∞∑
n=0

(
2

5

)n
+

3

5

∞∑
n=0

(
3

5

)n Use geometric series sum f-la:
∞∑
n=0

rn = 1
1−r ,

provided |r| < 1

=
2

5
· 1(

1− 2
5

) +
3

5
· 1(

1− 3
5

)
=

13

6
.

Solution. 8.b.
∞∑
n=0

2n + 5n

10n
=

∞∑
n=0

(
1

5n
+

1

2n

)
use

∞∑
n=0

rn = 1
1−r , for |r| < 1

=
1

1− 1
2

+
1

1− 1
5

=
13

4
.

Solution. 8.d.

∞∑
n=1

3n+1 + 7n−1

21n
=

∞∑
n=1

(
3 · 3n

21n
+

1

7
· 7n

21n

)
= 3

∞∑
n=1

(
1

7

)n
+

1

7

∞∑
n=1

(
1

3

)n
=

3

7

∞∑
n=0

(
1

7

)n
+

1

21

∞∑
n=0

(
1

3

)n
use

∑∞
n=0 r

n = 1
1−r , |r| < 1

=
3

7
· 1(

1− 1
7

) +
1

21
· 1(

1− 1
3

)
=

4

7
.
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Solution. 8.e.

∞∑
n=0

2n+1 + (−3)n−1

5n
=

∞∑
n=0

(
2 · 2n

5n
− 1

3
· (−3)n

5n

)
= 2

∞∑
n=0

(
2

5

)n
− 1

3

∞∑
n=0

(
−3

5

)n
use

∑∞
n=0 r

n = 1
1−r , |r| < 1

= 2 · 1(
1− 2

5

) − 1

3
· 1(

1−
(
− 3

5

))
=

25

8
.

9. Sum the telescoping series (a sum is “telescoping” if it can be broken into summands so that consecutive terms cancel).

(a)

∞∑
n=0

−6

9n2 + 3n− 2
. answer:2

(b)

∞∑
n=3

3

n2 − 3n+ 2
. answer:3

(c)

∞∑
n=2

ln

(
1− 1

n2

)
. (Hint: Use the properties of the logarithm to aim for a telescoping series).

answer:−ln2

Solution. 9.b

∞∑
n=3

3

n2 − 3n+ 2
=

∞∑
n=3

(
3

n− 2
− 3

n− 1

)
use partial fractions, see below

= 3

∞∑
n=3

(
1

n− 2
− 1

n− 1

)

= 3

(1− 1

2

)
n=3

+

(
1

2
− 1

3

)
n=4

+

(
1

3
− 1

4

)
n=5

+ . . .


= 3 lim

n→∞

(
1− 1

n− 1

)
= 3 .

In the above we used the partial fraction decomposition of
3

n2 − 3n+ 2
. This decomposition is computed as follows.

3

n2 − 3n+ 2
=

3

(n− 1) (n− 2)

We need to find Ai’s so that we have the following equality of rational functions. After clearing denominators, we get
the following equality.

3 = A1(n− 2) +A2(n− 1)

After rearranging we get that the following polynomial must vanish. Here, by “vanish” we mean that the coefficients
of the powers of x must be equal to zero.

(A2 +A1)n+ (−A2 − 2A1 − 3)

In other words, we need to solve the following system.

−2A1 −A2 = 3
A1 +A2 = 0

System status Action
−2A1 −A2 = 3
A1 +A2 = 0

Selected pivot column 2. Eliminated the non-zero entries in the pivot column.

A1 +A2

2 = − 3
2

A2

2 = 3
2

Selected pivot column 3. Eliminated the non-zero entries in the pivot column.

A1 = −3
A2 = 3

Final result.
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Therefore, the final partial fraction decomposition is the following.

3

n2 − 3n+ 2
=

−3

(n− 1)
+

3

(n− 2)
.

Solution. 9.c.
∞∑
n=2

ln

(
1− 1

n2

)
=

∞∑
n=2

(
ln

(
1− 1

n

)
+ ln

(
1 +

1

n

))
=

∞∑
n=2

(
ln

(
n− 1

n

)
+ ln

(
n+ 1

n

))
=

∞∑
n=2

(ln(n− 1)− 2 ln(n) + ln(n+ 1))

= (ln 1− 2 ln 2 +��ln 3) + (ln 2����−2 ln 3 +��ln 4)
+ (��ln 3����−2 ln 4 +��ln 5) +��. . . . . .

= lim
n→∞

(− ln 2− lnn+ ln(n+ 1))

= lim
n→∞

(
− ln 2 + ln

(
n+ 1

n

))
= − ln 2 .

10. Find whether the series is convergent or divergent using an appropriate test. Some of the problems require the
alternating series test. The test states the following.

Alternating series test. Suppose bn ↘ 0. Then
∑

(−1)nbn is convergent.

Here, bn ↘ 0 means the following.

• The sequence of numbers bn is decreasing.

• The sequence decreases to 0, that is,
lim
n→∞

bn = 0 .

(a)

∞∑
n=1

(−1)n lnn.

answer:diverges,basicdivergencetest

(b)

∞∑
n=2

(−1)n

lnn
.

answer:converges,alternatingseriestest

(c)

∞∑
n=2

n

lnn

answer:diverges,basicdivergencetest

(d)

∞∑
n=2

lnn

n

answer:converges,alternatingseriestest

Solution. 10.a. lim
n→∞

(−1)n lnn does not exist and therefore the sum is not convergent.

Solution. 10.b. For n > 2, we have that lnn is a positive increasing function and therefore 1
lnn is a decreasing positive

function. Furthermore lim
n→∞

1

lnn
= 0. Therefore the series is convergent by the alternating series test.

11. For each of the items below, do the following.

• Find the Maclaurin series of the function (i.e., the power series representation of the function around a = 0).

• Find the radius of convergence of the series you found in the preceding point. You are not asked to find the entire
interval of convergence, but just the radius.

Please post on piazza if you discover errors in the answer key.

(a) ex.

answer:
∞∑
n=0

xn

n!

(b) xe−2x.

answer:

∞∑
n=0

(−1)n2nxn+1=
∞∑
n=1

(−1)n−12n−1xn

convergesforx∈()

(c) e2x.

answer:e
2x

=

∞∑
n=0

2nxn

n!

(d) ex
2

.

answer:e
x2

=

∞∑
n=0

x2n

n!
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(e) e−3x
2

.

answer:e−3x2
=
∞∑
n=0

(−1)n3nx2n

n!

(f) x2e2x.

answer:e
2x

=
∞∑
n=0

2nxn+2

n!

(g) sinx.

answer:sinx=
∞∑
n=0

(−1)
nx2n+1

(2n+1)!

(h) cosx.

answer:cosx=
∞∑
n=0

(−1)
nx2n

(2n)!

(i) sin(2x).

answer:sin(2x)=
∞∑
n=0

(−1)
n22n+1x2n+1

(2n+1)!

(j) cos(2x).

answer:cos(2x)=
∞∑
n=0

(−1)
n
2
2nx2n

(2n)!

(k) cos2(x).

answer:cos
2
x=

1

2
+
∞∑
n=0

(−1)
n
2
2n−1x2n

(2n)!

(l) x sinx.

answer:xsinx=
∞∑
n=0

(−1)
nx2n+2

(2n+1)!

12. Find the Taylor series of the function at the indicated point.

(a) 1
x2 at a = −1.

answer:1+2(x+1)+3(x+1)
2

+···=
∞∑
n=0

(n+1)(x+1)
n

(b) ln
(√
x2 − 2x+ 2

)
at a = 1.

answer:
∞∑
n=1

(−1)
n+1(x−1)2n

2n

(c) Write the Taylor series of the function lnx around a = 2.

answer:ln2+
∞∑
n=1

(−1)n+1

2n
(x−2)

n

Solution. 12.b

ln
(√

x2 − 2x+ 2
)

=
1

2
ln
(
(x− 1)2 + 1

)
use ln(1 + y) =

∞∑
n=1

(−1)n+1 y
n

n , |y| < 1

=
1

2

∞∑
n=1

(−1)n+1

(
(x− 1)2

)n
n

=

∞∑
n=1

(−1)n+1 (x− 1)2n

2n
.

Although the problem does not ask us to do this, we will determine the interval of convergence of the series for exercise.

If we use the fact that ln(1 + y) =
∞∑
n=1

(−1)n+1 y
n

n holds for −1 < y ≤ 1, it follows immediately that the above equality

holds for 0 < (x − 1)2 ≤ 1, which holds for x ∈ [0, 2]. Let us however compute the interval of convergence without
using the aforementioned fact.

Let an be the nth term of our series, i.e., let

an = (−1)n+1 (x− 1)2n

2n
.

We use the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+2(x− 1)2n+2

(2n+ 2)

2n

(−1)n+1(x− 1)2n

∣∣∣∣
= lim

n→∞
(x− 1)2

n

n+ 1
= (x− 1)2 .

By the ratio test, the series is divergent for (x− 1)2 > 1, i.e., for |x− 1| > 1, and convergent for (x− 1)2 < 1, i.e., for
|x−1| < 1. The ratio test is inconclusive at only two points: x−1 = 1, i.e., x = 2 and x−1 = −1, i.e., x = 0. At both

points the series becomes

∞∑
n=1

(−1)n+1 22n

2n
and the series is convergent at both points by the alternating series test.

Solution. 12.c This solution is similar to the solution of 12.b, but we have written it in a concise fashion suitable for
test taking.
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Denote Taylor series at a by Ta and recall that the Maclaurin series of are just T0, the Taylor series at 0.

T2(lnx) = T2(ln ((x− 2) + 2))

= T2

(
ln

(
2

(
x− 2

2
+ 1

)))
= T2

(
ln 2 + ln

(
1 +

x− 2

2

))
T0(ln(1 + y)) =

∞∑
n=1

(−1)n+1yn

n

= ln 2 +

∞∑
n=1

(−1)n+1
(
x−2
2

)
n

= ln 2 +

∞∑
n=1

(−1)n+1

2n
(x− 2)n .

13. Determine the interval of convergence for the following power series.

(a)

∞∑
n=1

(x− 2)n

3
√
n+ 1

.

answer:x∈[1,3).

(b)

∞∑
n=1

10nxn

n3
.

answer:x∈[−1
10
,1
10].

(c)

∞∑
n=1

10n(x− 1)n

n3
.

answer:x∈[0.9,1.1].

(d)

∞∑
n=0

(−1)n
(x+ 1)n

2n+ 1
.

answer:x∈(−2,0].

(e)

∞∑
n=0

(−1)n
(x− 3)n

2n+ 1
.

answer:x∈(2,4].

(f)

∞∑
n=0

xn

n!
.

answer:convergesforallx.

(g)

∞∑
n=0

(n+ 1)xn.

answer:convergesfor|x|<1.

(h)

∞∑
n=1

xn

n
.

answer:convergesfor|x|∈[−1,1).

(i)

∞∑
n=1

(−1)n
x2n+1

2n+ 1
.

answer:convergesfor|x|∈(−1,1].

(j)

∞∑
n=1

( 1
2

n

)
xn, where we recall that the binomial coefficient

(
q

n

)
stands for

q(q − 1) . . . (q − n+ 1)

n!
.

answer:convergesforx∈(−1,1].

Solution. 13.a. We apply the Ratio Test to get that lim
n→∞

∣∣∣an+1

an

∣∣∣ = |x − 2|. Therefore the power series converges

at least in the interval x ∈ (1, 3). When x = 3, the series becomes
∞∑
n=1

1
3
√
n+1

, which diverges - this can be seen,

for example, by comparing to the p-series 1√
n

. When x = 1, the series becomes
∞∑
n=1

(−1)n

3
√
n+1

, which converges by the

Alternating Series Test. Our final answer x ∈ [1, 3).

14. Plot the curve. Set up an integral that expresses its length. Find the length of the curve.
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(a) y =
√
x, x ∈ [1, 2].

(b) y = x2, x ∈ [1, 2].

(c) γ :

∣∣∣∣ x(t) = 1
t + t3

3
y(t) = 2t

, t ∈ [1, 2] .

(d) x =
√
t− 2t and y =

8

3
t
3
4 from t = 1 to t = 4.

Solution. 14.d. The length of the parametric curve is given by

L =

∫ 4

1

√(
dx

dt

)2

+

(
dy

dt

)2

dt .

We have that
dx

dt
=

1

2
√
t
− 2

dy

dt
= 2t−

1
4(

dx

dt

)2

=
1

4t
− 2√

t
+ 4(

dy

dt

)2

= 4t−
1
2 =

4√
t(

dx

dt

)2

+

(
dy

dt

)2

=
1

4t
+ 2

1√
t

+ 4 =

(
1

2
√
t

+ 2

)2

.

1
2
√
t

+ 2 is positive and

√(
1

2
√
t

+ 2
)2

= 1
2
√
t

+ 2. So the integral becomes

L =

∫ 4

1

(
1

2
√
t

+ 2

)
dt =

[√
t+ 2t

]t=4

t=1
= (2 + 8)− (1 + 2) = 7 .

15. Determine if the sequence is convergent or divergent. If convergent, find the limit of the sequence.

(a) an = n.

answer:divergent

(b) an = 2n.

answer:divergent

(c) an = 1.0001n.

answer:divergent

(d) an = 0.999999n.

answer:convergent,lim
n→∞

an=0

(e) an = n−
√
n+ 1

√
n+ 2

answer:convergent,limn→∞an=−3
2

(f) an =
lnn

n
.

answer:convergent,limn→∞an=0

(g) an =
lnn
10
√
n

.

answer:convergent,limn→∞an=0

(h) an =
1

n
.

answer:convergent,limn→∞an=0

(i) an =
1

n!
.

answer:convergent,limn→∞an=0

(j) an =
nn

n!
.

answer:divergent

(k) an = cosn.

answer:divergent

(l) an = cos

(
1

n

)

answer:convergent,limn→∞an=1

(m) an =

(
n+ 1

n

)n
.

answer:convergent,limn→∞an=e

(n) an =

(
2n+ 1

n

)n
.

answer:divergent

(o) an =

(
n+ 1

n

)2n

.

answer:convergent,limn→∞an=e2

(p) an =

(
n+ 1

2n

)n
.

answer:convergent,limn→∞an=0

Solution. 15m.
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Consider f(x) =
(
x+1
x

)x
, where x is a positive number. We will now show that lim

x→∞
f(x) exists. Since the limit is of

the form 1∞, we will start by finding the limit of the logarithm ln(f(x)). We will then exponentiate that limit to find
the limit of f(x).

lim
x→∞

ln

((
x+ 1

x

)x)
= lim

x→∞
x ln

(
x+ 1

x

)
= lim

x→∞

ln
(
x+1
x

)
1
x

= lim
x→∞

ln
(
1 + 1

x

)
1
x

Form “ 0
0”

L’Hospital rule

= lim
x→∞

1
1+ 1

x

(
1 + 1

x

)′
− 1
x2

= lim
x→∞

1

(1+ 1
x )�

��(
− 1
x2

)
���(
− 1
x2

)
= lim

x→∞

1

1 + 1
x

= 1

lim
x→∞

(
x+ 1

x

)x
= lim

x→∞
eln(( x+1

x )
x
) The exponent is continuous

= e
lim
x→∞

ln(( x+1
x )

x
)

= e1 use preceding
= e .

Therefore lim
n→∞

n− integer

(
n+ 1

n

)n
= lim

x→∞
x− real

(
x+ 1

x

)x
= e and the sequence converges (to e).

Solution. 15n.

This problem can be solved in fashion similar to Problem 15m. However there is a much simpler solution:

2n+1
n ≥ 2 for n > 0

lim
n→∞

(
2n+ 1

n

)n
≥ lim

n→∞
2n

limits respect non-strict inequalities
lim
n→∞

2n computed in Problem 15b

lim
n→∞

(
2n+ 1

n

)n
= ∞ .

16. (a)

dy

dx
= y2 − 1 . (1)

i. Find all solutions of the differential equation
above.

ii. Find a solution for which y(0) = − 3
5 .

(b) i. Find the general solution to the differential equa-
tion

dy

dx
= y2 − 4 .

Below is a computer-generated plot of the direc-

tion field
dy

dx
= y2 − 4, you may use it to get a

feeling for what your answer should look like.

1

2

3

4

−1

−2

−3

−4

1 2 3 4−1−2−3−4

The direction field
dy
dx

= y2
− 4

ii. Find a solution of the above equation for which
y(0) = − 6

5 .

(c) Solve the initial-value differential equation y′ =
y2(1 + x), y(0) = 3.
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(d) Solve the initial-value differential equation problem

y′ = xe−y , y(4) = 0.

Below is a computer-generated plot of the corre-
sponding direction field, you may use it to get a feel-
ing for what your answer should look like.

1

2

3

4

5

6

7

8

−1

−2

−3

−4

1 2 3 4 5 6 7 8−1−2−3−4

The direction field
dy
dx

= y′
= xe−y

answer:y(x)=ln(x2
2−7)

(e) Solve the initial-value differential equation problem

y′ =
lnx

xy
, y(1) = 2.

Below is a computer-generated plot of the corre-
sponding direction field, you may use it to get a feel-
ing for what your answer should look like.

1

2

3

4

5

−1

−2

−3

−4

1 2 3 4 5 6 7 8 9

The direction field
dy
dx

= y′
=

ln x
xy

answer:y(x)=√(lnx)2+4

(f) i. Solve the initial-value differential equation prob-
lem

y′ = x tan y , y(0) = arcsin

(
1

e

)
≈ 0.376728.

answer:y(x)=arcsin


e
x2

2−1

ii. Solve the same differential equation with initial
condition y(0) = π + arcsin

(
− 1
e

)
≈ 2.764865.

answer:y(x)=π+arcsin


−e

x2

2−1

Below is a computer-generated plot of corre-
sponding direction field, you may use it to get
a feeling for what your answer should look like.

1

2

3

4

5

6

7

8

−1

−2

−3

−4

1 2 3 4 5 6 7 8−1−2−3−4

The direction field
y
dx

= y′
= x tan y

Solution. 16.a.i. There are two variants for solving this problem. The first variant uses indefinite integration and is
slightly informal, but easier to apply and remember. The second variant is more rigorous but more difficult to write
up. Both solutions are acceptable for full credit in a Calculus exam. Variant I is recommended when taking exams
and Variant II is recommended when writing scientific texts.

Variant I
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dy

dx
= y2 − 1 Suppose y2 − 1 6= 0

dy
dx

y2 − 1
= 1∫

1

y2 − 1

dy

dx
dx︸ ︷︷ ︸

=dy

=

∫
dx

∫
dy

y2 − 1
= x+ C∫ ( 1

2

y − 1
−

1
2

y + 1

)
dy = x+ C

1

2
ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = x+ C

ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = 2x+ 2C∣∣∣∣y − 1

y + 1

∣∣∣∣ = e2x+2C

y − 1

y + 1
= ±e2x+2C

y − 1 = ±e2x+2C(y + 1)

y(1∓ e2x+2C) = 1± e2x+2C

y =
1± e2x+2C

1∓ e2x+2C

y =
1± e2Ce2x

1∓ e2Ce2x
Set D = ±e2C

y =
1 +De2x

1−De2x
.

The above solution works on condition that y2− 1 6= 0. So the only case not covered is that of y2− 1 = 0, which yields
the two solutions y = ±1.

Our final answer is

y(x) =
1 +De2x

1−De2x
or y(x) = −1,

where D is an arbitrary real number. Notice that in the above answer, by allowing D = 0, we have covered the case

y(x) = 1. Finally, we note that if we let D →∞, the solution y(x) = 1+De2x

1−De2x tends to the solution y(x) = −1 (here we
fix a value of x before we let D →∞).

Variant II

Case 1. Suppose there exists a number x0 such that (y(x0))2 − 1 6= 0. Since y is a differentiable function of x, it is
also continuous. Therefore for some t sufficiently close to x0, all numbers x in the interval between t and x0 satisfy
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y(x)2 − 1 6= 0.
dy
dx

y2 − 1
= 1

x=t∫
x=x0

1

y2 − 1

dy

dx
dx︸ ︷︷ ︸

=d(y(x))

=

x=t∫
x=x0

dx can integrate as y(x)2 − 1 6= 0

x=t∫
t=x0

d(y(x))

(y(x))2 − 1
= x|x=tx=x0

set z = y(x)

z=y(t)∫
z=y(x0)

dz

z2 − 1
= t− x0

z=y(t)∫
z=y(x0)

( 1
2

z − 1
−

1
2

z + 1

)
dz = t− x0

1

2
ln

∣∣∣∣z − 1

z + 1

∣∣∣∣]z=y(t)
z=y(x0)

= t− x0 Set C = 2x0 − ln
∣∣∣y(x0)−1
y(x0)+1

∣∣∣
ln

∣∣∣∣y(t)− 1

y(t) + 1

∣∣∣∣ = 2t− C relabel dummy variable t to x

ln

∣∣∣∣y(x)− 1

y(x) + 1

∣∣∣∣ = 2x− C

Set
D = e−C .

By the assumption of our case, (y(x0))2−1 6= 0, so there are two remaining cases: (y(x0))2−1 > 0 and (y(x0))2−1 < 0.

Case 1.1. Suppose
y(x0)− 1

y(x0) + 1
> 0. As the function y(x) is differentiable, it is also continuous. Therefore

y(x)− 1

y(x) + 1
> 0

for all x near x0. Then we can remove the absolute values in the equality above to get that for all x close to x0 we
have that

ln

(
y(x)− 1

y(x) + 1

)
= 2x− C exponentiate, recall D = e−C

y(x)− 1

y(x) + 1
= De2x

y(x)− 1 = De2x(y(x) + 1)

y(x)
(
1−De2x

)
= De2x + 1

y(x) =
1 +De2x

1−De2x
.

The solution y(x) given above satisfies
y(x)− 1

y(x) + 1
= De2x for all x. As D > 0, this implies that

y(x)− 1

y(x) + 1
> 0. Therefore

the considerations above are valid for all x, rather than only for those x near x0. Therefore our first case yields the
solution

y(x) =
1 +De2x

1−De2x
.

Case 1.2. Suppose
y(x0)− 1

y(x0) + 1
< 0. Then for all x near x0 we get ln

∣∣∣∣y(x)− 1

y(x) + 1

∣∣∣∣ = ln

(
1− y(x)

y(x) + 1

)
and, similarly to Case

1, we get

1− y(x)

y(x) + 1
= De2x

1− y(x) = De2x(y(x) + 1)

y(x)
(
1 +De2x

)
= 1−De2x

y(x) =
1−De2x

1 +De2x
.
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Since D is a positive constant, we conclude in a fashion analogous to Case 1 that y(x) < 0 for all x.

Case 2. Suppose (y(x0))2 − 1 = 0. Then y(x0) = ±1. Clearly the constant functions y(x) = ±1 are two solutions: if
we can plug back y = ±1 in the original equation we get that dy

dx = 0 and y is a constant function of x. From the

preceding two cases we know that if y(x)−1
y(x)+1 is defined and not equal to zero for some value of x, then y(x)−1

y(x)+1 is defined

and not equal to zero for all values of x. Therefore the present case yields only two solutions, the constant functions
y(x) = ±1.

Our final answer is

y(x) =
1 +De2x

1−De2x
or y(x) = −1,

where D is an arbitrary real number. Notice that in the above answer, we have combined Cases 1.1, 1.2 and the case
y(x) = 1: by allowing D to be negative we included Case 1.2 and by allowing D to be zero we included the case

y(x) = 1. Finally, we note that if we let D →∞, the solution y(x) = 1+De2x

1−De2x tends to the solution y(x) = −1 (for all
values of x).

Solution plots.

We may plot solutions for a few values of D as follows. We overlay the solutions on top of the direction field of
the differential equation. The picture tells us a lot about the properties of the solutions of the differential equations.

1− 1

4
e
2x

1+ 1

4
e2x

1−e
2x

1+e2x

1−4e
2x

1+4e2x

1+ 1

4
e
2x

1− 1

4
e2x

1+e
2x

1−e2x

1+4e
2x

1−4e2x

1

2

3

4

−1

−2

−3

−4

1 2 3 4−1−2−3−4

The direction field
dy

dx
= y

2
− 1

16.a.ii. From the computer generated picture above, we may visually estimate that y(x) = 1−4e2x
1+4e2x intersects the x-axis

at
(
0,− 3

5

)
. Furthermore, we may check directly that for

y(x) =
1− 4e2x

1 + 4e2x

we have y(0) = 1−4
1+5 = − 3

5 and that is a solution to our problem (this however does not prove the solution is unique).
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Alternatively, let us give an algebraic solution. As we are given that y(0) = − 3
5 and so

−3

5
= y(0) =

1−De2·0

1 +De2·0
=

1−D
1 +D

−3

5
(1 +D) = 1−D

2

5
D =

8

5

D = 4 ,

which is our final answer.

Solution. 16.c.

This is a concise solution written up in a form suitable for exam taking.

dy

dx
= y2(1 + x)

dy

y2
= (1 + x)dx∫

dy

y2
=

∫
(1 + x)dx

−1

y
= x+

x2

2
+ C

−1

3
= 0 + 0 + C

y = − 1
x2

2 + x− 1
3

= − 3

3x2 + 6x− 2
.

Solution. 16.f.i and 16.f.ii

y′ = x tan y
y′

tan y
= x

(cos y)y′

sin y
= x Integrate from 0

t=x∫
t=0

cos(y(t))

sin(y(t))
(y′dt) =

x∫
t=0

tdt

t=x∫
t=0

cos(y(t))

sin(y(t))
d(y(t)) =

x2

2
Set z = y(t)

z=y(x)∫
z=y(0)

cos z

sin z
dz =

x2

2

z=y(x)∫
z=y(0)

d(sin z)

sin z
=

x2

2

[ln | sin z|]yy(0) =
x2

2

ln | sin y| − ln | sin(y(0))| =
x2

2

ln | sin y| =
x2

2
+ ln | sin(y(0))|

| sin y| = e
x2

2 +ln | sin(y(0))|

| sin y| =

{
e
x2

2 +ln|sin(arcsin( 1
e ))| for problem 16.f.i

e
x2

2 +ln|sin(π+arcsin( 1
e ))| for problem 16.f.ii

| sin y| = e
x2

2 +ln( 1
e )

| sin y| = e
x2

2 −1 y(0) > 0 for both problems
therefore sin y(0) > 0

sin y = e
x2

2 −1 .
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From the elementary properties of the trigonometric functions, we know that sin y = sinα implies that either

• y = α+ 2kπ, where k is an arbitrary integer or

• y = (2k + 1)π − α, where k is an arbitrary integer.

In other words, if we are given sin y, we know y up to a choice of sign and a choice of an integer k. For our problem,
this means that

y =


2kπ + arcsin

(
e
x2

2 −1
)

k − integer

or

(2k + 1)π − arcsin
(
e
x2

2 −1
)

k − integer

For problem 16.f.i, the only choice for k and sign which fits the initial condition y(0) = arcsin
(
1
e

)
is

y = arcsin
(
e
x2

2 −1
)

,

which is our final answer.

For problem 16.f.ii, the only choice for k and sign which fits the initial condition y(0) = π+arcsin
(
− 1
e

)
= π−arcsin

(
1
e

)
is

y = π − arcsin
(
e
x2

2 −1
)

,

which is our final answer.

17. This problem type will appear on the final as a bonus. We have not studied the material for this
problem type.

(a) The curve given in polar coordinates by r = 1 + sin 2θ is plotted below by computer. Find the area lying outside
of this curve and inside of the circle x2 + y2 = 1.

answer:a=2−π
4

(b) The curve given in polar coordinates by r = cos(2θ) is plotted below by computer. Find the area lying inside the
curve and outside of the circle x2 + y2 = 1

4 .

answer:π
6

+

√
3

4

(c) Below is a computer generated plot of the curve r = sin(2θ). Find the area locked inside one petal of the curve

and outside of the circle x2 + y2 =
1

4
.
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Solution. 17.a. A computer generated plot of the two curves is included below. The circle x2 + y2 = 1 has one-to-
one polar representation given by r = 1, θ ∈ [0, 2π). Except the origin, which is traversed four times by the curve
r = 1 + sin(2θ), the second curve is in a one-to-one correspondence with points in the r, θ-plane given by the equation
r = 1 + sin(2θ), θ ∈ [0, 2π). Since the two curves do not meet in the origin, we may conclude that the two curves may
intersect only when their values for r and θ coincide. Therefore we have an intersection when

1 + sin(2θ) = 1
sin(2θ) = 0

θ = 0, π2 , π,
3π
2 because θ ∈ [0, 2π)

Therefore the two curves meet in the points (0, 1)(−1, 0) and (0,−1), (1, 0).

Denote the investigated region by A. From the computer-generated plot, it is clear that when a point has polar
coordinates θ ∈ [π2 , π]∪ [ 3π2 , 2π], r ∈ [1+sin(2θ), 1] it lies in A. Furthermore, the points r, θ lying in the above intervals
are in one-to-one correspondence with the points in A.

Suppose we have a curve r = f(θ), θ ∈ [a, b] for which no two points lie on the same ray from the origin. Recall from
theory that the area swept by that curve is given by

b∫
a

1

2
f2(θ)dθ .

Therefore the area a of A is computed via the integrals

a =

π∫
π
2

1

2

 1︸︷︷︸
outer curve

2 −

1 + sin(2θ)︸ ︷︷ ︸
inner curve

2
 dθ +

2π∫
3π
2

1

2

(
12 − (1 + sin(2θ))2

)
dθ use the symmetry of A

=

π∫
π
2

(
12 − (1 + sin(2θ))2

)
dθ =

π∫
π
2

(
−2 sin(2θ)− sin2(2θ)

)
dθ use sin2 z = 1−cos(2z)

2

=

π∫
π
2

(
−2 sin(2θ)− 1

2
+

1

2
cos(4θ)

)
dθ =

[
cos(2θ)− 1

2
θ − 1

8
sin(4θ)

]π
π
2

= 2− π
4 .

Solution. 17.b A computer generated plot of the figure is included below. The circle x2 + y2 = 1
4 is centered at 0 and

of radius 1
2 and therefore can be parametrized in polar coordinates via r = 1

2 , θ ∈ [0, 2π].

Points with polar coordinates (r1, θ1) and (r2, θ2) coincide if one of the three holds:

• r1 = r2 6= 0 and θ1 = θ2 + 2kπ, k ∈ Z,

• r1 = −r2 6= 0 and θ1 = θ2 + (2k + 1)π, k ∈ Z,

• r1 = r2 = 0 and θ is arbitrary.

To find the intersection points of the two curves we have to explore each of the cases above. The third case is not
possible as the circle does not pass through the origin. Suppose we are in the first case. Then the value of r (as a
function of θ) is equal for the two curves. Thus the two curves intersect if

r = cos(2θ) = 1
2

2θ = ±π3 + 2kπ where k ∈ Z
θ = ±π6 + kπ where k ∈ Z
θ = π

6 ,
π
6 + π,−π6 + π,−π6 + 2π all other values discarded as θ ∈ [0, 2π]

θ = π
6 ,

7π
6 ,

5π
6 ,

11π
6
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This gives us only four intersection points, and the computer-generated plot shows eight. Therefore the second case
must yield new intersection points: the two curves intersect also when

r = cos(2θ) = − 1
2

2θ = ± 2π
3 + 2kπ where k ∈ Z

θ = ±π3 + kπ where k ∈ Z
θ = π

3 ,
π
3 + π, −π3 + π, −π3 + 2π all other values are discarded as θ ∈ [0, 2π]

θ = π
3 ,

4π
3 ,

2π
3 ,

5π
3 .

From the computer-generated plot below, we can see that the area we are looking for is 4 times the area locked between
the two curves for θ ∈

[−π
6 ,

π
6

]
. Therefore the area we are looking for is given by

4

π
6∫

−π6

1

2

(
cos2(2θ)−

(
1

2

)2
)

dθ .

We leave the above integral to the reader.

x

y

Solution. 17.c. The circle x2 + y2 = 1
4 is centered at 0 and of radius 1

2 and therefore can be parametrized in polar
coordinates via r = 1

2 , θ ∈ [0, 2π).

Points with polar coordinates (r1, θ1) and (r2, θ2) coincide if one of the three holds:

• r1 = r2 6= 0 and θ1 = θ2 + 2kπ, k ∈ Z,

• r1 = −r2 6= 0 and θ1 = θ2 + (2k + 1)π, k ∈ Z,

• r1 = r2 = 0 and θ is arbitrary.

To find the intersection points of the two curves we have to explore each of the cases above. The third case is not
possible as the circle does not pass through the origin. Suppose we are in the first case. Then the value of r (as a
function of θ) is equal for the two curves. Thus the two curves intersect if

r = sin(2θ) = 1
2

2θ = π
6 + 2kπ or 5π

6 + 2kπ where k ∈ Z
θ = π

12 + kπ or 5π
12 where k ∈ Z

θ = π
12 ,

13π
12 ,

5π
12 ,

17π
12

other values discarded as
θ ∈ [0, 2π]

This gives us only four intersection points, and the computer-generated plot shows eight. Therefore the second case
must yield 4 new intersection points. However, from the figure we see there are only two intersection points that
participate in the boundary of our area, and both of those were found above. Therefore we shall not find the remaining
4 intersections.

Both the areas locked by the petal and the area locked by the section of the circle are found by the formula for the
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area locked by a polar curve. Subtracting the two we get that the area we are looking for is:

Area =

θ= 5π
12∫

θ=− π
12

1

2

(
sin2(2θ)−

(
1

2

)2
)

dθ .

=
1

2

θ= 5π
12∫

θ=− π
12

(
1− cos(4θ)

2
− 1

4

)
dθ

=
1

2

[
1

4
θ − sin(4θ)

8

]θ= 5π
12

θ=− π
12

= 1
24π +

√
3

16 .
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