
CS450	 –	 Introduc0on	 to	 Networking	
Lecture	 4	 –	 Network	 Applica0ons	 	

&	 HTTP	

Phu	 Phung	 	
January	 21,	 2015	

News:	 Discussion	 board	

•  Piazza	
hKps://piazza.com/uic/spring2015/cs450/home	 	

•  There	 will	 be	 bonus	 points	 up	 to	 5%	 	
–  for	 Piazza	 forums	

•  contribu0on	 of	 helpful	 code	 to	 the	 common	 good	 of	
the	 class	 (e.g.	 test	 cases	 and/or	 tes0ng	 scripts)	

–  	 ThoughSul	 discussions	 during	 lecture.	

A	 quick	 check	 on	 assignment	 1	
progress	

	
A.  I	 have	 completed/nearly	 completed	 the	 project	

B.  I	 have	 done	 about	 >=	 75%	

C.  I	 have	 done	 about	 >=	 50%	

D.  I	 have	 done	 about	 >=	 25%	

E.  I	 want	 the	 deadline	 extended	

Creating a network app
write programs that:
•  run on (different) end systems
•  communicate over network
•  e.g., web server software

communicates with browser
software

no need to write software for
network-core devices

•  network-core devices do not
run user applications

•  applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application architectures

possible structure of applications:
•  client-server
•  peer-to-peer (P2P)

Client-server architecture

server:
•  always-on host
•  permanent IP address
•  data centers for scaling

clients:
•  communicate with server
•  may be intermittently

connected
•  may have dynamic IP addresses
•  do not communicate directly

with each other

client/server

P2P architecture
•  no always-on server
•  arbitrary end systems directly

communicate
•  peers request service from

other peers, provide service in
return to other peers
–  self scalability – new

peers bring new
service capacity, as well
as new service
demands

•  peers are intermittently
connected and change IP
addresses
–  complex management

peer-peer

Processes communicating

process: program running
within a host

•  within same host, two
processes communicate
using inter-process
communication (defined by
OS)

•  processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

v  aside: applications with P2P

architectures have client
processes & server
processes

clients, servers

Sockets
•  process sends/receives messages to/from its socket
•  socket analogous to door

–  sending process shoves message out door
–  sending process relies on transport infrastructure on

other side of door to deliver message to socket at
receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process	

transport

application

physical

link

network

process	
socket

Addressing processes

•  to receive messages, process must have
identifier

•  host device has unique 32-bit IP address
•  Q: does IP address of host on which process

runs suffice for identifying the process?

§ A: no, many processes can be running on same host

Addressing processes

•  identifier includes both IP
address and port numbers
associated with process on
host.

•  example port numbers:
–  HTTP server: 80
–  mail server: 25

•  to send HTTP message to
www.cs.uic.edu web server:
–  IP address: 131.193.32.29
–  port number: 80

•  more shortly…

Process ports

•  16 bit integer
–  Port numbers: 0..65535

•  3 ranges
–  0..1023: for common, well-known services
–  1024..49151 - Registered port: vendors use for

applications
–  >49151 - dynamic / private ports

App-layer protocol defines
•  types of messages exchanged,

–  e.g., request, response
•  message syntax:

–  what fields in messages &
how fields are delineated

•  message semantics
–  meaning of information in

fields
•  rules for when and how

processes send & respond to
messages

open protocols:
•  defined in RFCs
•  allows for interoperability
•  e.g., HTTP, SMTP
proprietary protocols:
•  e.g., Skype

What transport service does an app need?
data integrity
•  some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

•  other apps (e.g., audio) can
tolerate some loss

timing
•  some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

throughput
v  some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

v  other apps (“elastic apps”)
make use of whatever
throughput they get

security
v  encryption, data integrity,

…

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s
msec

yes, few secs
yes, 100’s
msec
yes and no

Internet transport protocols services

TCP service:
•  reliable transport between

sending and receiving
process

•  flow control: sender won’t
overwhelm receiver

•  congestion control: throttle
sender when network
overloaded

•  does not provide: timing,
minimum throughput
guarantee, security

•  connection-oriented: setup
required between client and
server processes

UDP service:
•  unreliable data transfer

between sending and
receiving process

•  does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup,

Q: why bother? Why is there
a UDP?

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Securing TCP

TCP	 &	 UDP	 	
v no	 encryp0on	
v cleartext	 passwds	 sent	

into	 socket	 traverse	
Internet	 	 in	 cleartext	

SSL	 	
v provides	 encrypted	 TCP	

connec0on	
v data	 integrity	
v end-‐point	 authen0ca0on	

SSL is at app layer
•  Apps use SSL libraries,

which “talk” to TCP
SSL socket API
v  cleartext passwds sent

into socket traverse
Internet encrypted

v  See Chapter 7

Select	 a	 wrong	 statement	

A.  TCP	 and	 UDP	 are	 in	 transport	 layer	
	
B.  TCP	 provides	 reliable	 connec0ons	 while	 UDP	 is	

unreliable	 connec0ons	

C.  HTTP	 uses	 TCP	

D.  FTP	 uses	 UDP	

E.  All	 network	 applica0ons	 rely	 on	 either	 TCP	 or	 UDP	

A	 network	 applica0on	 process	 is	
iden0fied	 by	

A.  MAC	 address	
	
B.  IP	 address	

C.  IP	 address	 and	 port	 number	

D.  Domain	 name	 and	 IP	 address	

E.  MAC	 address	 and	 port	 number	

UDP	 is	 unreliable,	 why	 we	 s0ll	 need	 it?	

A.  Because	 TCP	 is	 bad	
	
B.  Because	 UDP	 is	 good	

C.  Because	 in	 some	 cases,	 UDP	 is	 beKer	 than	 TCP	

D.  Because	 UDP	 is	 speedy	

E.  C	 and	 D	 are	 both	 correct	

Next	 lecture	

•  HTTP	 (cont’)	
– Readings	 2.2	

•  Ques0ons	 regarding	 Assignment	 1?	

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Copy right notice:
These slides are adapted from J.F Kurose and K.W. Ross’s ones

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

