
CS450	 –	 Introduc0on	 to	 Networking	
Lecture	 5	 –	 HTTP	

Phu	 Phung	 	
January	 23,	 2015	

Live demo with HTTP (client side) using
telnet

1. Telnet to your favorite Web server:

opens TCP connection to port 80
(default HTTP server port) at www.cs.uic.edu.
anything typed in sent
to port 80 at www.cs.uic.edu

telnet www.cs.uic.edu 80

2.	 type	 in	 a	 GET	 HTTP	 request:	

GET /~phu/cs450.html HTTP/1.0
Host: www.cs.uic.edu

by typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3.	 look	 at	 response	 message	 sent	 by	 HTTP	 server!	

 telnet www.cs.uic.edu 80!
Trying 131.193.32.29...!
Connected to www.cs.uic.edu.!
Escape character is '^]'.!
GET /~phu/cs450.html HTTP/1.0!
Host: www.cs.uic.edu!
!
HTTP/1.1 200 OK!
Date: Fri, 23 Jan 2015 05:31:17 GMT!
Server: Apache/2.2.3 (Red Hat)!
Last-Modified: Tue, 20 Jan 2015 17:05:17 GMT!
ETag: "6f60b27-121-716e8d40"!
Accept-Ranges: bytes!
Content-Length: 289!
Content-Type: text/html; charset=UTF-8!
Connection: close!
!
<HTML>!
<BODY>!
 <h1>Welcome! </h1>!
 This is just a test page for HTTP protocol.!
</BODY>!
</HTML>!
Connection closed by foreign host.!

PhuMAC:~ phu$ 	

Q:	 To	 save	 data	 from	
a	 HTTP	 response,	 you	
should	 save	 from:	

A	
B	
C	

D	
E	

Live demo with wireshark

possible structure of applications:
1.  Install wireshark: $sudo apt-get install

(wireshark link on the course’s homepage)
2.  Run: $sudo wireshark

1.  Select the connected network interface (In
VirtualBox, configure Bridge Adaptor)

3.  Open a web browser and browse a URL
4.  Examine the captured HTTP request/

response in wireshark

HTTP overview

uses TCP:
•  client initiates TCP connection

(creates socket) to server,
port 80

•  server accepts TCP
connection from client

•  HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

•  TCP connection closed

HTTP is “stateless”
•  server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

v  past history (state) must be
maintained

v  if server/client crashes, their views
of “state” may be inconsistent,
must be reconciled

aside

HTTP connections

non-persistent HTTP
•  at most one object sent

over TCP connection
– connection then

closed
•  downloading multiple

objects required
multiple connections

persistent HTTP
•  multiple objects can

be sent over single
TCP connection
between client, server

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into TCP
connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting for
TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response message
containing requested object, and
sends message into its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of 10
jpeg objects

4. HTTP server closes TCP
connection.

time

Non-persistent HTTP: response time

RTT (definition): time for a small
packet to travel from client to
server and back

HTTP response time:
•  one RTT to initiate TCP

connection
•  one RTT for HTTP request and

first few bytes of HTTP
response to return

•  file transmission time
•  non-persistent HTTP response

time =
 2RTT+ file transmission

time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Persistent HTTP

non-persistent HTTP issues:
•  requires 2 RTTs per object
•  OS overhead for each TCP

connection
•  browsers often open

parallel TCP connections to
fetch referenced objects

persistent HTTP:
•  server leaves connection

open after sending response
•  subsequent HTTP messages

between same client/server
sent over open connection

•  client sends requests as
soon as it encounters a
referenced object

•  as little as one RTT for all
the referenced objects

Select	 a	 correct	 statement	
	
A.  Persistent HTTP uses more connections.

B.  Persistent HTTP sends fewer HTTP requests

C.  Persistent HTTP sends more HTTP requests

D.  Persistent HTTP uses less connections to improve
download time

E.  Both B and D are correct	

HTTP request message

•  two types of HTTP messages: request, response
•  HTTP request message:

–  ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
 lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Why	 \r\n	 (CRLF)	 is	 used	 in	 HTTP	
request?	

	
A.  Just unnecessary protocol format

B.  They are automatically generated when user hits
ENTER

C.  They are used to indicate the end of a header field or
section

D.  None	 of	 above	 is	 correct	

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lf version URL

cr lf value header field name

cr lf value header field name

~ ~ ~ ~

cr lf

entity body ~ ~ ~ ~

Uploading form input

POST method:
•  web page often includes

form input
•  input is uploaded to

server in entity body
URL method:
•  uses GET method
•  input is uploaded in URL

field of request line:
 www.somesite.com/animalsearch?monkeys&banana

Method types

HTTP/1.0:
•  GET
•  POST
•  HEAD

–  asks server to leave
requested object out
of response

HTTP/1.1:
•  GET, POST, HEAD
•  PUT

–  uploads file in entity
body to path specified
in URL field

•  DELETE
–  deletes file specified in

the URL field

HTTP response message

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
data data data data data ...

HTTP response status codes

200 OK
–  request succeeded, requested object later in this msg

301 Moved Permanently
–  requested object moved, new location specified later in this msg

(Location:)

400 Bad Request
–  request msg not understood by server

404 Not Found
–  requested document not found on this server

505 HTTP Version Not Supported

v  status	 code	 appears	 in	 1st	 line	 in	 server-‐to-‐client	
response	 message.	

v  some	 sample	 codes:

Different	 features	 between	 	
HTTP	 1.0	 vs	 1.1	

•  Extensibility	
•  Caching	
•  Bandwidth	 op0miza0on	
•  Network	 connec0on	 management	
•  Message	 transmission	
•  Internet	 address	 conserva0on	
•  Error	 no0fica0on	
•  Security,	 integrity,	 and	 authen0ca0on	
•  Content	 nego0a0on	
Reference:	 hap://www8.org/w8-‐papers/5c-‐protocols/key/key.html	 	

Why	 cookies	 are	 used	 in	 HTTP	

A.  It	 is	 required	 by	 law	

B.  To	 improve	 non-‐persistent	 HTTP	

C.  Because	 HTTP	 is	 stateless	

D.  All	 above	 are	 correct	

User-server state: cookies

many Web sites use cookies
four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:
•  Susan always access Internet

from PC
•  visits specific e-commerce

site for first time
•  when initial HTTP requests

arrives at site, site creates:
–  unique ID
–  entry in backend

database for ID

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678 ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Cookies (continued)
what cookies can be used

for:
•  authorization
•  shopping carts
•  recommendations
•  user session state (Web e-

mail)

cookies and privacy:
v  cookies permit sites to

learn a lot about you
v  you may supply name and

e-mail to sites

aside

how to keep “state”:
v  protocol endpoints: maintain state at

sender/receiver over multiple
transactions

v  cookies: http messages carry state

Web caches (proxy server)

•  user sets browser: Web
accesses via cache

•  browser sends all HTTP
requests to cache
–  object in cache: cache

returns object
–  else cache requests

object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client origin
server

origin
server

More about Web caching

•  cache acts as both
client and server
–  server for original

requesting client
–  client to origin server

•  typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
•  reduce response time

for client request
•  reduce traffic on an

institution’s access link
•  Internet dense with

caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

Conditional GET

•  Goal: don’t send object if
cache has up-to-date cached
version
–  no object transmission delay
–  lower link utilization

•  cache: specify date of cached
copy in HTTP request
If-modified-since:
<date>

•  server: response contains no
object if cached copy is up-
to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Let’s	 see	 in	
wireshark	

A	 quick	 check	 on	 assignment	 1	
progress	

	
A.  I	 have	 completed/nearly	 completed	 the	 project	

B.  I	 have	 done	 about	 >=	 75%	

C.  I	 have	 done	 about	 >=	 50%	

D.  I	 have	 done	 about	 >=	 25%	

E.  I	 want	 the	 deadline	 extended	

Next	 lecture	

•  Client-‐Server	 Model	 and	 Assignment	 2	

•  SMTP	
– Readings	 2.4	

•  Ques0ons	 regarding	 Assignment	 1?	

•  Assignment	 2	 will	 be	 posted	 by	 next	 lecture	

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Copy right notice:
These slides are adapted from J.F Kurose and K.W. Ross’s ones

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

