

CS450 – Introduction to Networking Lecture 8 – DNS

Phu Phung January 30, 2015

Domain Name System (DNS) provides translation services of

- A. Domain name to IP address
- B. Domain name aliases
- C. Mail server alias for a domain name
- D. A, B, C
- E. A, B

DNS: domain name system

people: many identifiers:

– SSN, name, passport #

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g.,www.yahoo.com -used by humans
- Q: how to map between IP address and name, and vice versa?

Domain Name System:

- distributed database implemented in hierarchy of many name servers
- application-layer protocol: hosts, name servers communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as applicationlayer protocol
 - complexity at network's "edge"

DNS: services, structure

DNS services

- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web
 servers: many IP
 addresses correspond
 to one name

why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

A: doesn't scale!

Select a wrong statement

- A. A name in DNS might be mapped with many IP addresses
- B. Multiple domain name might be pointed to one IP address
- C. DNS service can provide a reverse lookup from an IP address to a domain name
- D. DNS only uses TCP transport service

DNS reverse lookup

\$nslookup 8.8.8.8

Server: 192.168.0.1 Address: 192.168.0.1#53

Non-authoritative answer:

8.8.8.in-addr.arpa name = google-public-dns-a.google.com.

\$ nslookup 8.8.8.8 garcon.eecs.uic.edu

Server: garcon.eecs.uic.edu

Address: 131.193.32.254#53

Non-authoritative answer:

8.8.8.in-addr.arpa name = google-public-dns-a.google.com.

Authoritative answers can be found from:

8.in-addr.arpa nameserver = ns2.level3.net.

8.in-addr.arpa nameserver = ns1.level3.net.

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; Ist approx:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server


```
$ dig
; <<>> DiG 9.8.3-P1 <<>>
;; global options: +cmd
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38364
;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13
;; QUESTION SECTION:
                  IN
                       NS
;; ANSWER SECTION:
              100262
                            NS i.root-servers.net.
                       IN
              100262
                       IN
                            NS e.root-servers.net.
              100262
                            NS
                                c.root-servers.net.
                       IN
              100262
                       IN
                            NS
                                k.root-servers.net.
              100262
                            NS
                                d.root-servers.net.
                       IN
              100262
                       IN
                            NS
                                 b.root-servers.net.
              100262
                            NS
                                 l.root-servers.net.
                       IN
              100262
                            NS
                                i.root-servers.net.
                       IN
              100262
                       IN
                            NS
                                 h.root-servers.net.
              100262
                       IN
                            NS f.root-servers.net.
              100262
                       IN
                            NS
                                 m.root-servers.net.
              100262
                            NS g.root-servers.net.
                       IN
              100262
                       IN
                            NS
                                 a.root-servers.net.
```

TLD, authoritative servers

top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university)
 has one
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

DNS name resolution example

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

DNS name resolution example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

root DNS server

DNS: caching, updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be <u>out-of-date</u> (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire
- update/notify mechanisms proposed IETF standard
 - RFC 2136

hosts local database

```
##
# Host Database
#
# localhost is used to configure the
loopback interface
# when the system is booting. Do not
change this entry.
##
127.0.0.1 localhost
255.255.255.255 broadcasthost
         localhost
::1
fe80::1%lo0 localhost
172.252.120.6 facebook.com
```

- Unix-like (+Mac) /etc/hosts
- Windows%SystemRoot%\system32\drivers\etc\hosts

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of mailserver associated with name

DNS protocol, messages

query and reply messages, both with same message format

msg header

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

DNS protocol, messages

DNS query sample

```
[Response In: 20]
  Transaction ID: 0x0003

▼ Flags: 0x0100 Standard query
    0... .... .... = Response: Message is a query
    .000 0... .... = Opcode: Standard query (0)
    .... ..0. .... = Truncated: Message is not truncated
    .... 1 .... = Recursion desired: Do query recursively
    .... = Z: reserved (0)
    .... .... ...0 .... = Non-authenticated data: Unacceptable
  Ouestions: 1
  Answer RRs: 0
  Authority RRs: 0
  Additional RRs: 0

∇ Oueries

  > www.mit.edu: type A, class IN
```

DNS response sample

Domain Name System (response)

```
[Request In: 19]
  [Time: 0.016757000 seconds]
  Transaction ID: 0x0003
Flags: 0x8580 Standard query response, No error
  Ouestions: 1
  Answer RRs: 1
  Authority RRs: 3
  Additional RRs: 3

∇ Oueries

  www.mit.edu: type A, class IN
www.mit.edu: type A, class IN, addr 18.7.22.83
D mit.edu: type NS, class IN, ns BITSY.mit.edu
  Mit.edu: type NS, class IN, ns STRAWB.mit.edu
  D mit.edu: type NS, class IN, ns W20NS.mit.edu
D BITSY.mit.edu: type A, class IN, addr 18.72.0.3
  D STRAWB.mit.edu: type A, class IN, addr 18.71.0.151
  W20NS.mit.edu: type A, class IN, addr 18.70.0.160
```

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com

When lookup a domain name, your machine first sends a request to

- A. The local name server of your network
- B. Top-level name server
- C. Authoritative name server
- D. Root name server
- E. A name server set in your machine

Homework (optional)

- \$dig
- \$nslookup
- \$wireshark

Next lecture

- P2P
 - Readings 2.6