UIC Department of

A aicse GOmputer Science
COLLEGE OF ENGINEERING

CS450 — Introduction to Networking
Lecture 11 — Transport Layer and UDP

Phu Phung
Feb 6, 2015

Internet layers recall

message | M appli¢ation
segment |H,| M tran*port
datagram | H,| H,| ™ net\llork
frame [H[H[H,] M link ~
physical
link
physical I é@
switch
destination Hy Hi| ™M network
M pplication | Po| Fe| M ”nl_(Hol He| M
H| ™ | ||transport physical O
Hol He| M network
PRI ITA Ry router

Transport services and protocols

data link

* provide logical communication
between app processes
running on different hosts

* transport protocols run in
end systems

— send side: breaks app

messages into segments,
passes to network layer

— rcv side: reassembles
segments into messages,
passes to app layer

* more than one transport
protocol available to apps

— Internet: TCP and UDP

Transport vs. network layer

* network layer: logical
communication
between hosts

* transport layer:
ogical
communication
between processes

— relies on, enhances,

network layer
services

- household analogy:

|2 kids in Ann_s house sending

letters to |2 kids in Bill s
house:

hosts = houses
processes = kids

app messages = letters in
envelopes

transport protocol = Ann
and Bill who demux to in-
house siblings

network-layer protocol =
postal service

Internet transport-layer protocols

* reliable, in-order

delivery (TCP)

— congestion control
— flow control
— connection setup

* unreliable, unordered

delivery: UDP

— no-frills extension of
“best-effort” IP

services not available:

— delay guarantees
— bandwidth guarantees

application
< DO

netwo

) wokeroe
data lin
RN hysical
Py network
<< netwo data link
data link e, ysical é
physical O
o, LI (S
&I ph @
q network %
- Sy data link S
% 2 phy5|cal‘ >
|network @
data link
ealaa/Sica|
network
hysical
q PYVSICA” Inetwork nétwc;r.
~ data link
g physical data link
q ' ‘ ! physical
Q§¢ b
'g.y S R ‘

Multiplexing/demultiplexing

- multiplexing at sender:

handle data from multiple — demultiplexjng at receiyer: —

sockets, add transport header use header info to deliver

(later used for demultiplexing) reclelved segments to correct
socket

applicati

application application [.] socket
= Q process

transport transppfrt

network network

link
physical

1)

link
physic;

How demultiplexing works

host receives |IP datagrams

each datagram has source IP address,
destination |IP address

each datagram carries one transport-
layer segment

each segment has source, destination
port number

host uses IP addresses & port numbers
to direct segment to appropriate
socket

< 32 bits

v

source port #

dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception

{

create
input stream — BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));
create

client socket — DatagramSocket clientSocket = new DatagramSocket();

translate
hostname to IP — InetAddress IPAddress = InetAddress.getByName("hostname");

addr using DNS
byte[] sendData = new byte[1024];

byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Example: Java client (UDP)

create datagram with
data-to-send, —>DatagramPacket sendPacket =

length, IP addr, port new DatagramPacket(sendData, sendData.length,
’ ’ IPAddress, 9876);

send datagram

—clientSocket.send(sendPacket);
to server

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

read datagram

from server —clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.printIn("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

create {

datagram socket
at port 9876 — DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)

{

create space for _
received datagram —> DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

receive — serverSocket.receive(receivePacket);
datagram

Example: Java server (UDP)

String sentence = new String(receivePacket.getData());

ge;(y:t a#dg;—ﬂnetAddress IPAddress = receivePacket.getAddress();

sender ,
—>int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

create datagram

to send to client —>DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress,

| port);
write out
datagram — serversocket.send(sendPacket);
to socket

Y
) \
} end of while loop,

loop back and wait for
another datagram

Connectionless demultiplexing

* recall: created socket has hosts recall: when creating
datagram to send into

UDP socket, must specify
= destination |P address

" destination port #

local port #:

DatagramSocket mySocketl
= new DatagramSocket (12534);

* when host receives UDP IP datagrams with same
dest. port #, but different

segment:
8 o source IP addresses and/
— checks destination port # mmp " sort numbers
In segment will be directed to same
— directs UDP segment to socket at dest

socket with that port #

Connectionless demux: example

DatagramSocket serverSocket
= new DatagramSocket

DatagramSocket (6428) ; DatagramSocket
mySocket2 = new mySocketl = new
DatagramSocket DatagramSocket
(9157) ; (5775) ;

application

application application

m A. 6428,5775

i

source port: SP? -
B. 5775, 6428 . dest port: DP?
[e
source port: 9157 source port: ?
dest port: 6428 dest port: ?

A. Both TCP and UDP need connection setup
B. Delivery of UDP packets is unordered
C. TCP provides reliable transport protocol

D. TCP provides congestion control while UDP
does not

E. Neither TCP nor UDP has delay guarantees

UDP: User Datagram Protocol [RFC 768]

* “nofrills,” “bare bones”
Internet transport protocol

« “best effort” service, UDP
segments may be:

— lost

— delivered out-of-order to
app
e connectionless:

— no handshaking between
UDP sender, receiver

— each UDP segment
handled independently of
others

< UDP use;:

" streaming multimedia
apps (loss tolerant, rate
sensitive)

= DNS
= SNMP

< reliable transfer over
UDP:

" add reliability at
application layer

= application-specific error
recovery!

UDP: segment header

length, in bytes of
UDP segment,
including header

32 bits

source port #

length <~ | checksum

— why is there a UDP? —

* no connection establishment

zptplication (which can add delay)
dald
(payload) * simple: no connection state

at sender', receiver

* small header size

* no congestion control: UDP
UDP segment format can blast away as fast as
desired

UDP checksum

Goal: detect “errors’” (e.g., flipped bits) in transmitted
segment

sender: receiver:

* treat segment contents,
including header fields,

compute checksum of received

as sequence of |16-bit segment

integers * check if computed checksum
* checksum: addition equals checksum field value:

(one’ s complement — NO - error detected

sum) of segment

contents — YES - no error detected.

* sender puts checksum But maybe errors
value into UDP nonetheless? More later

checksum field

Internet checksum: example

example: add two |6-bit integers

1110011 001100110
110101010101 01O01

wraparound 101110111011 1011
P >

sum

1011101110111 100
checksum 0100010001 0O0OO0O0OT11

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

A. The segment is corrupted

B. The checksum is wrong
C. The data is correct

D. Band C

Next lecture

 Reliable Data Transfer
— Readings 3.4

e Midterm exam in 4 weeks
— In class: 1 PM Friday, March 6t

Copy right notice:

These slides are adapted from J.F Kurose and K.W. Ross’s ones

©

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking
A Top-Down Approach

KUROSE | ROSS

Computer
Networking: A Top
Down Approach

6t edition

Jim Kurose, Keith Ross
Addison-Wesley
March 2012

