
CS450	 –	 Introduc0on	 to	 Networking	
Lecture	 16	 –	 TCP	 (2)	

Phu	 Phung	 	
Feb	 18,	 2015	

TCP reliable data transfer

•  TCP creates rdt service
on top of IP’s unreliable
service
–  pipelined segments
–  cumulative acks
–  single retransmission

timer

•  retransmissions
triggered by:
–  timeout events
–  duplicate acks

let’s initially consider
simplified TCP sender:
–  ignore duplicate acks
–  ignore flow control,

congestion control

TCP sender events:
data rcvd from app:
•  create segment with seq

•  seq # is byte-stream

number of first data
byte in segment

•  start timer if not already
running
–  think of timer as for

oldest unacked segment
–  expiration interval:
TimeOutInterval

timeout:
•  retransmit segment that

caused timeout
•  restart timer
 ack rcvd:
•  if ack acknowledges

previously unacked
segments
–  update what is known to

be ACKed
–  start timer if there are

still unacked segments

TCP sender (simplified)

wait
for
event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

Λ	

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)
 start timer

data received from application above

retransmit not-yet-acked segment
 with smallest seq. #

start timer

timeout

if (y > SendBase) {
 SendBase = y
 /* SendBase–1: last cumulatively ACKed byte */
 if (there are currently not-yet-acked segments)
 start timer
 else stop timer
 }

ACK received, with ACK field value y

TCP: retransmission scenarios

lost ACK scenario

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X tim
eo

ut

ACK=100

premature timeout

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

TCP: retransmission scenarios

X

cumulative ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

TCP fast retransmit

•  time-out period often
relatively long:
–  long delay before

resending lost packet

•  detect lost segments
via duplicate ACKs.
–  sender often sends

many segments back-
to-back

–  if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
§  likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

X

fast retransmit after sender
receipt of triple duplicate ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Differences	 between	 TCP	 reliable	 data	
transfer	 and	 Go-‐back-‐N	

A.  TCP	 only	 retransmits	 oldest	 (single)	 unacked	
segment,	 GBN	 retransmits	 all	 segments	 in	 the	
window	 	

B.  TCP	 uses	 duplicate	 ACK	 to	 retransmit,	 GBN	 does	 not	

C.  TCP	 uses	 cumula0ve	 ACK,	 GBN	 uses	 single	 ACK	 	

D.  A	 and	 B	

E.  A,	 B	 and	 C	

TCP segment structure

source port # dest port #

32 bits

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointer checksum
F S R P A U head

len
not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

What	 the	 “receive	 window”	 in	 a	 TCP	 segment	
header	 is	 used	 for?	 	

A.  Pipelining	

B.  Size	 of	 window	

C.  Flow	 control	

D.  A	 and	 B	

E.  A,	 B,	 and	 C	
	

TCP flow control
application
process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

TCP flow control

buffered data

free buffer space rwnd

RcvBuffer

TCP segment payloads

to application process
•  receiver “advertises” free

buffer space by including rwnd
value in TCP header of
receiver-to-sender segments
–  RcvBuffer size set via

socket options (typical default
is 4096 bytes)

–  many operating systems
autoadjust RcvBuffer

•  sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

•  guarantees receive buffer will
not overflow

receiver-side buffering

Next	 lecture	

•  Conges0on	 control	
– Readings	 3.6	

•  Guest	 lecture	 on	 Monday	 Feb	 23rd	 	
– DNS	 Security	

•  iClickers	 ques0ons	 review	 Friday	 Feb	 27th	 	
•  Midterm	 review	 Wednesday	 March	 4th	 	
•  Midterm	 exam	 in	 class	

–  In	 class:	 1	 PM	 Friday,	 March	 6th	 	

TCP	 joke	 J	 	

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Copy right notice:
These slides are adapted from J.F Kurose and K.W. Ross’s ones

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

