
CS450	
 –	
 Introduc0on	
 to	
 Networking	

Lecture	
 16	
 –	
 TCP	
 (2)	

Phu	
 Phung	
 	

Feb	
 18,	
 2015	

TCP reliable data transfer

•  TCP creates rdt service
on top of IP’s unreliable
service
–  pipelined segments
–  cumulative acks
–  single retransmission

timer

•  retransmissions
triggered by:
–  timeout events
–  duplicate acks

let’s initially consider
simplified TCP sender:
–  ignore duplicate acks
–  ignore flow control,

congestion control

TCP sender events:
data rcvd from app:
•  create segment with seq

•  seq # is byte-stream

number of first data
byte in segment

•  start timer if not already
running
–  think of timer as for

oldest unacked segment
–  expiration interval:
TimeOutInterval

timeout:
•  retransmit segment that

caused timeout
•  restart timer
 ack rcvd:
•  if ack acknowledges

previously unacked
segments
–  update what is known to

be ACKed
–  start timer if there are

still unacked segments

TCP sender (simplified)

wait
for
event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

Λ	

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)
 start timer

data received from application above

retransmit not-yet-acked segment
 with smallest seq. #

start timer

timeout

if (y > SendBase) {
 SendBase = y
 /* SendBase–1: last cumulatively ACKed byte */
 if (there are currently not-yet-acked segments)
 start timer
 else stop timer
 }

ACK received, with ACK field value y

TCP: retransmission scenarios

lost ACK scenario

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X tim
eo

ut

ACK=100

premature timeout

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

TCP: retransmission scenarios

X

cumulative ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

TCP fast retransmit

•  time-out period often
relatively long:
–  long delay before

resending lost packet

•  detect lost segments
via duplicate ACKs.
–  sender often sends

many segments back-
to-back

–  if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
§  likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

X

fast retransmit after sender
receipt of triple duplicate ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Differences	
 between	
 TCP	
 reliable	
 data	

transfer	
 and	
 Go-­‐back-­‐N	

A.  TCP	
 only	
 retransmits	
 oldest	
 (single)	
 unacked	

segment,	
 GBN	
 retransmits	
 all	
 segments	
 in	
 the	

window	
 	

B.  TCP	
 uses	
 duplicate	
 ACK	
 to	
 retransmit,	
 GBN	
 does	
 not	

C.  TCP	
 uses	
 cumula0ve	
 ACK,	
 GBN	
 uses	
 single	
 ACK	
 	

D.  A	
 and	
 B	

E.  A,	
 B	
 and	
 C	

TCP segment structure

source port # dest port #

32 bits

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointer checksum
F S R P A U head

len
not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

What	
 the	
 “receive	
 window”	
 in	
 a	
 TCP	
 segment	

header	
 is	
 used	
 for?	
 	

A.  Pipelining	

B.  Size	
 of	
 window	

C.  Flow	
 control	

D.  A	
 and	
 B	

E.  A,	
 B,	
 and	
 C	

	

TCP flow control
application
process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

TCP flow control

buffered data

free buffer space rwnd

RcvBuffer

TCP segment payloads

to application process
•  receiver “advertises” free

buffer space by including rwnd
value in TCP header of
receiver-to-sender segments
–  RcvBuffer size set via

socket options (typical default
is 4096 bytes)

–  many operating systems
autoadjust RcvBuffer

•  sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

•  guarantees receive buffer will
not overflow

receiver-side buffering

Next	
 lecture	

•  Conges0on	
 control	

– Readings	
 3.6	

•  Guest	
 lecture	
 on	
 Monday	
 Feb	
 23rd	
 	

– DNS	
 Security	

•  iClickers	
 ques0ons	
 review	
 Friday	
 Feb	
 27th	
 	

•  Midterm	
 review	
 Wednesday	
 March	
 4th	
 	

•  Midterm	
 exam	
 in	
 class	

–  In	
 class:	
 1	
 PM	
 Friday,	
 March	
 6th	
 	

TCP	
 joke	
 J	
 	

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Copy right notice:
These slides are adapted from J.F Kurose and K.W. Ross’s ones

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

