
CS450	
 –	
 Introduc0on	
 to	
 Networking	

Lecture	
 17	
 –	
 Conges0on	
 Control	

Phu	
 Phung	
 	

Feb	
 20,	
 2015	

Connection Management
before exchanging data, sender/receiver “handshake”:
•  agree to establish connection (each knowing the other willing

to establish connection)
•  agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size
 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size
 at server,client

application

network

Socket clientSocket =
 newSocket("hostname","port

number");

Socket connectionSocket =
welcomeSocket.accept();

Q: will 2-way handshake always
work in network?

•  variable delays
•  retransmitted messages (e.g.

req_conn(x)) due to message loss
•  message reordering
•  can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
 req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Agreeing to establish a connection
2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
 req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
 req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

TCP 3-way handshake: FSM

closed

Λ	

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =
 newSocket("hostname","port

number");

SYN(seq=x)

Socket connectionSocket =
welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)
create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)

ACK(ACKnum=y+1)

Λ	

TCP: closing a connection

•  client, server each close their side of connection
–  send TCP segment with FIN bit = 1

•  respond to received FIN with ACK
–  on receiving FIN, ACK can be combined with own FIN

•  simultaneous FIN exchanges can be handled

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
 wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=x can no longer
send but can
 receive data

clientSocket.close()

client state

server state

ESTAB ESTAB

How	
 much	
 0me	
 it	
 takes	
 for	
 sender	
 and	

receiver	
 in	
 TCP	
 to	
 establish	
 connec0on	
 state?	
 	

A.  1RTT	

B.  1.5RTT	

C.  2RTT	

D.  2.5RTT	

E.  3RTT	

congestion:
•  informally: “too many sources sending too much

data too fast for network to handle”
•  different from flow control!
•  manifestations:

–  lost packets (buffer overflow at routers)
–  long delays (queueing in router buffers)

•  a top-10 problem!

Principles of congestion control

Causes/costs of congestion: scenario 1

•  two senders, two
receivers

•  one router, infinite
buffers

•  output link capacity: R
•  no retransmission

•  maximum per-connection
throughput: R/2

unlimited shared
output link buffers

Host A

original data: λin

Host B

throughput: λout

R/2

R/2

λ o
ut

λin R/2
de

la
y

λin
v  large delays as arrival rate, λin,

approaches capacity

•  one router, finite buffers
•  sender retransmission of timed-out packet

–  application-layer input = application-layer output: λin = λout

–  transport-layer input includes retransmissions : λin λin

finite shared output
link buffers

Host A

λin : original data

Host B

λout λ'in: original data, plus
retransmitted data

‘

Causes/costs of congestion: scenario 2

idealization: perfect
knowledge

•  sender sends only when
router buffers available

finite shared output
link buffers

λin : original data
λout λ'in: original data, plus

retransmitted data
copy

free buffer space!

R/2

R/2

λ o
ut

λin

Causes/costs of congestion: scenario 2

Host B

A

λin : original data
λout λ'in: original data, plus

retransmitted data
copy

no buffer space!

Idealization: known loss
packets can be lost,
dropped at router due to
full buffers

•  sender only resends if
packet known to be lost

Causes/costs of congestion: scenario 2

A

Host B

λin : original data
λout λ'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion: scenario 2
Idealization: known loss

packets can be lost,
dropped at router due to
full buffers

•  sender only resends if
packet known to be lost

R/2

R/2 λin

λ o
ut

when sending at R/2,
some packets are
retransmissions but
asymptotic goodput
is still R/2 (why?)

A

Host B

A

λin
λout λ'in copy

free buffer space!

timeout

R/2

R/2 λin

λ o
ut

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

Host B

Realistic: duplicates
v  packets can be lost, dropped

at router due to full buffers
v  sender times out prematurely,

sending two copies, both of
which are delivered

Causes/costs of congestion: scenario 2

R/2

λ o
ut

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

“costs” of congestion:
v  more work (retrans) for given “goodput”
v  unneeded retransmissions: link carries multiple copies of pkt

§  decreasing goodput

R/2 λin

Causes/costs of congestion: scenario 2
Realistic: duplicates
v  packets can be lost, dropped

at router due to full buffers
v  sender times out prematurely,

sending two copies, both of
which are delivered

•  four senders
•  multihop paths
•  timeout/retransmit

Q: what happens as λin and λin
’

increase ?

finite shared output
link buffers

Host A λout

Causes/costs of congestion: scenario 3

Host B

Host C
Host D

λin : original data
λ'in: original data, plus

retransmitted data

A: as red λin
’ increases, all arriving

blue pkts at upper queue are
dropped, blue throughput g 0

another “cost” of congestion:
v  when packet dropped, any “upstream

transmission capacity used for that packet was
wasted!

Causes/costs of congestion: scenario 3

C/2

C/2

λ o
ut

λin
’

Congestion collapse:
dramatic reduction in throughput 	

Conges0on	
 collapse	

Why	
 does	
 conges0on	
 collapse	
 happen?	
 	

A.  Available	
 buffers	
 in	
 the	
 switching	
 nodes	
 are	
 full	
 and	

packets	
 must	
 be	
 dropped	

B.  The	
 switching	
 nodes	
 delay	
 forwarding	
 packets	

C.  The	
 receiver’s	
 buffer	
 is	
 full	
 that	
 cannot	
 receive	

more	
 packets	

D.  A	
 and	
 B	

E.  B	
 and	
 C	

Next	
 lectures	

•  Guest	
 lecture	
 on	
 Monday	
 Feb	
 23rd	
 	

– DNS	
 Security	
 (no	
 iClickers)	

•  TCP	
 Conges0on	
 control	
 Wed	
 Feb	
 25rd	
 	

– Readings	
 3.7	

•  iClickers	
 ques0ons	
 review	
 Friday	
 Feb	
 27th	
 	

•  Midterm	
 review	
 Wednesday	
 March	
 4th	
 	

•  Midterm	
 exam	
 in	
 class	

–  In	
 class:	
 1	
 PM	
 Friday,	
 March	
 6th	
 	

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Copy right notice:
These slides are adapted from J.F Kurose and K.W. Ross’s ones

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

TCP Congestion Control: details

•  sender limits transmission:

•  cwnd is dynamic, function of
perceived network congestion

TCP sending rate:
•  roughly: send cwnd

bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-
 LastByteAcked

< cwnd

sender sequence number space

rate ~ ~
cwnd

RTT
bytes/sec

TCP Slow Start

•  when connection begins,
increase rate exponentially
until first loss event:
–  initially cwnd = 1 MSS
–  double cwnd every RTT
–  done by incrementing cwnd

for every ACK received

•  summary: initial rate is slow
but ramps up exponentially
fast

Host A

one segment

R
TT

Host B

time

two segments

four segments

TCP: detecting, reacting to loss
•  loss indicated by timeout:

–  cwnd set to 1 MSS;
–  window then grows exponentially (as in slow start) to threshold, then grows

linearly
•  loss indicated by 3 duplicate ACKs: TCP RENO

–  dup ACKs indicate network capable of delivering some segments
–  cwnd is cut in half window then grows linearly

•  TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

Q: when should the
exponential increase
switch to linear?

A: when cwnd gets to
1/2 of its value before
timeout.

Implementation:
•  variable ssthresh
•  on loss event, ssthresh is

set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

Λ	

cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK .

dupACKcount++

duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3 cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACK dupACKcount++

duplicate ACK

Λ	

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

TCP throughput
•  avg. TCP thruput as function of window size, RTT?

–  ignore slow start, assume always data to send

•  W: window size (measured in bytes) where loss occurs
–  avg. window size (# in-flight bytes) is ¾ W
–  avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 3
4

W
RTT bytes/sec

TCP Futures: TCP over “long, fat pipes”

•  example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput

•  requires W = 83,333 in-flight segments
•  throughput in terms of segment loss probability, L

[Mathis 1997]:

➜	
 to achieve 10 Gbps throughput, need a loss rate of L

= 2·10-10 – a very small loss rate!
•  new versions of TCP for high-speed

TCP throughput = 1.22 . MSS
RTT L

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router
capacity R

TCP Fairness

TCP connection 2

Why is TCP fair?
two competing sessions:
•  additive increase gives slope of 1, as throughout increases
•  multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Fairness (more)
Fairness and UDP
•  multimedia apps often

do not use TCP
–  do not want rate

throttled by
congestion control

•  instead use UDP:
–  send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP connections
•  application can open

multiple parallel
connections between two
hosts

•  web browsers do this
•  e.g., link of rate R with 9

existing connections:
–  new app asks for 1 TCP, gets rate

R/10
–  new app asks for 11 TCPs, gets R/2

