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Connection Management 
before exchanging data, sender/receiver “handshake”: 
•  agree to establish connection (each knowing the other willing 

to establish connection) 
•  agree on connection parameters 

connection state: ESTAB 
connection variables: 

seq # client-to-server 
         server-to-client 
rcvBuffer size 
   at server,client  
            

application 

network 

connection state: ESTAB 
connection Variables: 

seq # client-to-server 
          server-to-client 
rcvBuffer size 
   at server,client  
            

application 

network 

Socket clientSocket =    
  newSocket("hostname","port 

number"); 

Socket connectionSocket = 
welcomeSocket.accept(); 



Q: will 2-way handshake always 
work in network? 

•  variable delays 
•  retransmitted messages (e.g. 

req_conn(x)) due to message loss 
•  message reordering 
•  can’t “see” other side 

2-way handshake: 

Let’s talk 

OK 
ESTAB 

ESTAB 

choose x 
 req_conn(x) 

ESTAB 

ESTAB 
acc_conn(x) 

Agreeing to establish a connection 



Agreeing to establish a connection 
2-way handshake failure scenarios: 

retransmit 
req_conn(x) 

 

ESTAB 

req_conn(x) 

half open connection! 
(no client!) 

client 
terminates 

server 
forgets x 

connection  
x completes 

retransmit 
req_conn(x) 

 

ESTAB 

req_conn(x) 

data(x+1) 

retransmit 
data(x+1) 

 

accept 
data(x+1) 

choose x 
 req_conn(x) 

ESTAB 

ESTAB 

acc_conn(x) 

client 
terminates 

ESTAB 

choose x 
 req_conn(x) 

ESTAB 

acc_conn(x) 

data(x+1) accept 
data(x+1) 

connection  
x completes server 

forgets x 



TCP 3-way handshake 

SYNbit=1, Seq=x 

choose init seq num, x 
send TCP SYN msg 

ESTAB 

SYNbit=1, Seq=y 
ACKbit=1; ACKnum=x+1 

choose init seq num, y 
send TCP SYNACK 
msg, acking SYN 

ACKbit=1, ACKnum=y+1 

received SYNACK(x)  
indicates server is live; 
send ACK for SYNACK; 

this segment may contain  
client-to-server data 

received ACK(y)  
indicates client is live 

SYNSENT 

ESTAB 

SYN RCVD 

client state 
 

LISTEN 

server state 
 

LISTEN 



TCP 3-way handshake: FSM 

closed 

Λ	



listen 

SYN 
rcvd 

SYN 
sent 

ESTAB 

Socket clientSocket =    
  newSocket("hostname","port 

number"); 

SYN(seq=x) 

Socket connectionSocket = 
welcomeSocket.accept(); 

SYN(x)  
SYNACK(seq=y,ACKnum=x+1) 
create new socket for  
communication back to client 

 
SYNACK(seq=y,ACKnum=x+1) 
  

ACK(ACKnum=y+1) 
 

 
ACK(ACKnum=y+1) 
 

Λ	





TCP: closing a connection 

•  client, server each close their side of connection 
–  send TCP segment with FIN bit = 1 

•  respond to received FIN with ACK 
–  on receiving FIN, ACK can be combined with own FIN 

•  simultaneous FIN exchanges can be handled 



FIN_WAIT_2 

CLOSE_WAIT 

FINbit=1, seq=y 

ACKbit=1; ACKnum=y+1 

ACKbit=1; ACKnum=x+1 
 wait for server 

close 

can still 
send data 

can no longer 
send data 

LAST_ACK 

CLOSED 

TIMED_WAIT 

 timed wait  
for 2*max  

segment lifetime 

CLOSED 

TCP: closing a connection 

FIN_WAIT_1 FINbit=1, seq=x can no longer 
send but can 
 receive data 

clientSocket.close() 

client state 
 

server state 
 

ESTAB ESTAB 



How	
  much	
  0me	
  it	
  takes	
  for	
  sender	
  and	
  
receiver	
  in	
  TCP	
  to	
  establish	
  connec0on	
  state?	
  	
  

A.  1RTT	
  

B.  1.5RTT	
  

C.  2RTT	
  

D.  2.5RTT	
  

E.  3RTT	
  



congestion: 
•  informally: “too many sources sending too much 

data too fast for network to handle” 
•  different from flow control! 
•  manifestations: 

–  lost packets (buffer overflow at routers) 
–  long delays (queueing in router buffers) 

•  a top-10 problem! 

Principles of congestion control 



Causes/costs of congestion: scenario 1  

•  two senders, two 
receivers 

•  one router, infinite 
buffers  

•  output link capacity: R 
•  no retransmission 

•  maximum per-connection 
throughput: R/2 

unlimited shared 
output link buffers 

Host A 

original data: λin  

Host B 

throughput: λout 

R/2 

R/2 

λ o
ut

 

λin R/2 
de

la
y  

λin 
v  large delays as arrival rate, λin, 

approaches capacity 



•  one router, finite buffers  
•  sender retransmission of timed-out packet 

–  application-layer input = application-layer output: λin = λout 

–  transport-layer input includes retransmissions : λin    λin 

finite shared output 
link buffers 

Host A 

λin : original data 

Host B 

λout λ'in: original data, plus 
retransmitted data 

‘ 

Causes/costs of congestion: scenario 2  



idealization: perfect 
knowledge 

•  sender sends only when 
router buffers available  

finite shared output 
link buffers 

λin : original data 
λout λ'in: original data, plus 

retransmitted data 
copy 

free buffer space! 

R/2 

R/2 

λ o
ut

 

λin 

Causes/costs of congestion: scenario 2  

Host B 

A 



λin : original data 
λout λ'in: original data, plus 

retransmitted data 
copy 

no buffer space! 

Idealization: known loss 
packets can be lost, 
dropped at router due  to 
full buffers 

•  sender only resends if 
packet known to be lost 

Causes/costs of congestion: scenario 2  

A 

Host B 



λin : original data 
λout λ'in: original data, plus 

retransmitted data 

free buffer space! 

Causes/costs of congestion: scenario 2  
Idealization: known loss 

packets can be lost, 
dropped at router due  to 
full buffers 

•  sender only resends if 
packet known to be lost 

R/2 

R/2 λin 

λ o
ut

 

when sending at R/2, 
some packets are 
retransmissions but 
asymptotic goodput 
is still R/2 (why?) 

A 

Host B 



A 

λin 
λout λ'in copy 

free buffer space! 

timeout 

R/2 

R/2 λin 

λ o
ut

 

when sending at R/2, 
some packets are 
retransmissions 
including duplicated 
that are delivered! 

Host B 

Realistic: duplicates  
v  packets can be lost, dropped 

at router due  to full buffers 
v  sender times out prematurely, 

sending two copies, both of 
which are delivered 

Causes/costs of congestion: scenario 2  



R/2 

λ o
ut

 

when sending at R/2, 
some packets are 
retransmissions 
including duplicated 
that are delivered! 

“costs” of congestion:  
v  more work (retrans) for given “goodput” 
v  unneeded retransmissions: link carries multiple copies of pkt 

§  decreasing goodput 

R/2 λin 

Causes/costs of congestion: scenario 2  
Realistic: duplicates  
v  packets can be lost, dropped 

at router due  to full buffers 
v  sender times out prematurely, 

sending two copies, both of 
which are delivered 



•  four senders 
•  multihop paths 
•  timeout/retransmit 

Q: what happens as λin and λin
’ 

increase ? 

finite shared output 
link buffers 

Host A λout 

Causes/costs of congestion: scenario 3  

Host B 

Host C 
Host D 

λin : original data 
λ'in: original data, plus 

retransmitted data 

A: as red  λin
’ increases, all arriving 

blue pkts at upper queue are 
dropped, blue throughput g 0 



another “cost” of congestion:  
v  when packet dropped, any “upstream 

transmission capacity used for that packet was 
wasted! 

Causes/costs of congestion: scenario 3  

C/2 

C/2 

λ o
ut

 

λin
’ 

Congestion collapse:  
dramatic reduction in throughput 	
  



Conges0on	
  collapse	
  



Why	
  does	
  conges0on	
  collapse	
  happen?	
  	
  

A.  Available	
  buffers	
  in	
  the	
  switching	
  nodes	
  are	
  full	
  and	
  
packets	
  must	
  be	
  dropped	
  

B.  The	
  switching	
  nodes	
  delay	
  forwarding	
  packets	
  

C.  The	
  receiver’s	
  buffer	
  is	
  full	
  that	
  cannot	
  receive	
  
more	
  packets	
  

D.  A	
  and	
  B	
  

E.  B	
  and	
  C	
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TCP Congestion Control: details 

•  sender limits transmission: 

•  cwnd is dynamic, function of 
perceived network congestion 

TCP sending rate: 
•  roughly: send cwnd 

bytes, wait RTT for 
ACKS, then send 
more bytes 

last byte 
ACKed sent, not-

yet ACKed 
(“in-
flight”) 

last byte 
sent 

cwnd 

LastByteSent- 
 LastByteAcked 

< cwnd 

sender sequence number space  

rate ~ ~ 
cwnd 

RTT 
bytes/sec 



TCP Slow Start  

•  when connection begins, 
increase rate exponentially 
until first loss event: 
–  initially cwnd = 1 MSS 
–  double cwnd every RTT 
–  done by incrementing cwnd 

for every ACK received 

•  summary: initial rate is slow 
but ramps up exponentially 
fast 

Host A 

one segment 

R
TT

 

Host B 

time 

two segments 

four segments 



TCP: detecting, reacting to loss 
•  loss indicated by timeout: 

–  cwnd set to 1 MSS;  
–  window then grows exponentially (as in slow start) to threshold, then grows 

linearly 
•  loss indicated by 3 duplicate ACKs: TCP RENO 

–  dup ACKs indicate network capable of  delivering some segments  
–  cwnd is cut in half window then grows linearly 

•  TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks) 



Q: when should the 
exponential increase 
switch to linear?  

A: when cwnd gets to 
1/2 of its value before 
timeout. 

 
  

Implementation: 
•  variable ssthresh  
•  on loss event, ssthresh is 

set to 1/2 of cwnd just 
before loss event 

TCP: switching from slow start to CA 



Summary: TCP Congestion Control 

timeout 
ssthresh = cwnd/2 
cwnd = 1 MSS 
dupACKcount = 0 
retransmit missing segment  

Λ	


cwnd > ssthresh 

congestion 
avoidance  
 

cwnd = cwnd + MSS    (MSS/cwnd) 
dupACKcount = 0 
transmit new segment(s), as allowed 
 

new ACK . 

dupACKcount++ 
 

duplicate ACK 

  
 

fast 
recovery  
 

cwnd = cwnd + MSS 
transmit new segment(s), as allowed 
 

duplicate ACK 

ssthresh= cwnd/2 
cwnd = ssthresh + 3 

retransmit missing segment 
 

dupACKcount == 3 

timeout 
ssthresh = cwnd/2 
cwnd = 1  
dupACKcount = 0 
retransmit missing segment  

ssthresh= cwnd/2 
cwnd = ssthresh + 3 
retransmit missing segment 
 

dupACKcount == 3 cwnd = ssthresh 
dupACKcount = 0 

 
 

New ACK 

slow  
start 

timeout 
ssthresh = cwnd/2  
cwnd = 1 MSS 
dupACKcount = 0 
retransmit missing segment  

cwnd = cwnd+MSS 
dupACKcount = 0 
transmit new segment(s), as allowed 
 

new ACK dupACKcount++ 
 

duplicate ACK 

Λ	


cwnd = 1 MSS 
ssthresh = 64 KB 
dupACKcount = 0 

New 
ACK! 

New 
ACK! 

New 
ACK! 



TCP throughput 
•  avg. TCP thruput as function of window size, RTT? 

–  ignore slow start, assume always data to send 

•  W: window size (measured in bytes) where loss occurs 
–  avg. window size (# in-flight bytes) is ¾ W 
–  avg. thruput is 3/4W per RTT 

W 

W/2 

avg TCP thruput =  3 
4 

W 
RTT bytes/sec 



TCP Futures: TCP over “long, fat pipes” 

•  example: 1500 byte segments, 100ms RTT, want 
10 Gbps throughput 

•  requires W = 83,333 in-flight segments 
•  throughput in terms of segment loss probability, L 

[Mathis 1997]: 
 
 
 
➜	
 to achieve 10 Gbps throughput, need a loss rate of L 

= 2·10-10   – a very small loss rate! 
•  new versions of TCP for high-speed 

TCP throughput =  1.22 . MSS 
RTT L 



fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K 

TCP connection 1 

bottleneck 
router 
capacity R 

TCP Fairness 

TCP connection 2 



Why is TCP fair? 
two competing sessions: 
•  additive increase gives slope of 1, as throughout increases 
•  multiplicative decrease decreases throughput proportionally  

R 

R 

equal bandwidth share 

Connection 1 throughput C
on

ne
ct

io
n 

2 
th

ro
ug

hp
ut

 

congestion avoidance: additive increase 

loss: decrease window by factor of 2 

congestion avoidance: additive increase 
loss: decrease window by factor of 2 



Fairness (more) 
Fairness and UDP 
•  multimedia apps often 

do not use TCP 
–  do not want rate 

throttled by 
congestion control 

•  instead use UDP: 
–  send audio/video at 

constant rate, tolerate 
packet loss 

Fairness, parallel TCP connections 
•  application can open 

multiple parallel 
connections between two 
hosts 

•  web browsers do this  
•  e.g., link of rate R with 9 

existing connections: 
–  new app asks for 1 TCP, gets rate 

R/10 
–  new app asks for 11 TCPs, gets R/2  


