
slid
e

12

DNS Caching

❒ DNS responses are cached
❍ Quick response for repeated translations
❍ Other queries may reuse some parts of lookup

•  NS records for domains

❒ DNS negative queries are cached
❍ Don’t have to repeat past mistakes

•  For example, misspellings

❒  Cached data periodically times out
❍  Lifetime (TTL) of data controlled by owner of data
❍ TTL passed with every record

slid
e

13

Cached Lookup Example

Client
Local

DNS recursive
resolver

root & edu
DNS server

utexas.edu
DNS server

cs.utexas.edu
DNS server

ftp.cs.utexas.edu

slid
e

14

DNS “Authentication”

Client
Local

DNS recursive
resolver

root & edu
DNS server

utexas.edu
DNS server

www.cs.utexas.edu

NS utexas.edu www.cs.utexas.edu

NS cs.utexas.edu

cs.utexas.edu
DNS server

Request contains random 16-bit TXID

Response accepted if TXID is the same
Stays in cache for a long time (TTL)

slid
e

15

DNS Spoofing

Client
Local

resolver

ns.foo.com
DNS server

host1.foo.com

host1.foo.com is at 1.2.3.4

TXID, host1.foo.com

Trick client into looking up host1.foo.com (how?)

Guess TXID, host1.foo.com is at 6.6.6.6

6.6.6.6

Another guess, host1.foo.com is at 6.6.6.6
Another guess, host1.foo.com is at 6.6.6.6

Several opportunities to win the race
If attacker loses, has to wait until TTL expires
… but can try again with host2.foo.com, host3.foo.com, etc.
… but what’s the point of hijacking host3.foo.com?

slid
e

16

Exploiting Recursive Resolving

Client
Local

resolver

ns.foo.com
DNS server

host1.foo.com

host1.foo.com is at 1.2.3.4

TXID, host1.foo.com

Trick client into looking up host1.foo.com

Guessed TXID, very long TTL
I don’t know where host1.foo.com is
Ask the authoritative server at ns2.foo.com
It lives at 6.6.6.6

6.6.6.6

If attacker wins, all future DNS requests will go to 6.6.6.6
The cache is now poisoned… for a very long time!
No need to win future races!

[Kaminsky]

host2.foo.com

Triggering DNS Lookup

❒ Any link, any image, any ad, anything can cause
a DNS lookup
❍ No Javascript required, though it helps

❒ Mail servers will look up what bad guy wants
❍ On first greeting: HELO
❍ On first learning who they’re talking to: MAIL

FROM
❍ On spam check (oops!)
❍ When trying to deliver a bounce
❍ When trying to deliver a newsletter
❍ When trying to deliver an actual response from an

actual employee slid
e

17

slid
e

18

Reverse DNS Spoofing
❒ Trusted access is often based on host names

❍ E.g., permit all hosts in .rhosts to run remote shell
❒ Network requests such as rsh or rlogin arrive

from numeric source addresses
❍ System performs reverse DNS lookup to

determine requester’s host name and checks if it’s
in .rhosts

❒  If attacker can spoof the answer to reverse
DNS query, he can fool target machine into
thinking that request comes from an
authorized host
❍ No authentication for DNS responses and typically

no double-checking (numeric → symbolic →
numeric)

Pharming

❒ Many anti-phishing defenses rely on DNS
❒  Can bypass them by poisoning DNS cache

and/or forging DNS responses
❍ Browser: give me the address of www.paypal.com
❍ Attacker: sure, it’s 6.6.6.6 (attacker-controlled

site)
❒ Dynamic pharming

❍  Provide bogus DNS mapping for a trusted server,
trick user into downloading a malicious script

❍ Force user to download content from the real
server, temporarily provide correct DNS mapping

❍ Malicious script and content have the same origin! slid
e

19

slid
e

20

JavaScript/DNS Intranet attack
(I)
❒  Consider a Web server intra.good.net

❍  IP: 10.0.0.7, inaccessible outside good.net network
❍ Hosts sensitive Web applications

❒ Attacker at evil.org gets good.net user to
browse www.evil.org

❒  Places Javascript on www.evil.org that
accesses sensitive application on
intra.good.net
❍ This doesn’t work because Javascript is subject to

the “same-origin” policy
❍ … but the attacker controls evil.org DNS

slid
e

21

JavaScript/DNS Intranet attack
(II)

good.net
browser Evil.org

DNS

Lookup www.evil.org

222.33.44.55

Evil.org
Web

GET /, host www.evil.org

Response

Evil.org
DNS

Lookup www.evil.org

10.0.0.7

Web

POST /cgi/app, host www.evil.org

Response

– short ttl

Intra.good.net
10.0.0.7

– compromise!

slid
e

22

Other DNS Vulnerabilities

❒ DNS implementations have vulnerabilities
❍ Reverse query buffer overrun in old releases of

BIND
❍ MS DNS for NT 4.0 crashes on chargen stream

❒ Denial of service
❍ Oct ’02: ICMP flood took out 9 root servers for 1

hour
❒  Can use “zone transfer” requests to download

DNS database and map out the network
❍  “The Art of Intrusion”: NYTimes.com and

Excite@Home
❍ Solution: block port 53 on corporate name servers

See http://cr.yp.to/djbdns/notes.html

Solving the DNS Spoofing
Problem
❒  Long TTL for legitimate responses

❍ Does it really help?
❒  Randomize port in addition to TXID

❍ 32 bits of randomness, makes it harder for
attacker to guess TXID

❒ DNSSEC
❍ Cryptographic authentication of host-address

mappings

slid
e

23

slid
e

24

DNSSEC

❒ Goals: authentication and integrity of DNS
requests and responses

❒  PK-DNSSEC (public key)
❍ DNS server signs its data (can be done in advance)
❍ How do other servers learn the public key?

❒ SK-DNSSEC (symmetric key)
❍ Encryption and MAC: Ek(m, MAC(m))
❍ Each message contains a nonce to avoid replay
❍ Each DNS node shares a symmetric key with its

parent
❍ Zone root server has a public key (hybrid approach)

