
CS450	
 –	
 Introduc0on	
 to	
 Networking	

Lecture	
 21	
 –	
 Midterm	
 review	

Phu	
 Phung	

March	
 2,	
 2015	

The	
 midterm	
 exam	

•  6	
 ques0ons	
 =	
 28	
 points	

–  Maximum	
 point	
 for	
 midterm	
 is	
 25	
 (you	
 got	
 3	
 bonus	
 points)	

•  Only	
 one	
 leQer	
 sheet	
 of	
 notes	
 allowed	

•  Content	

–  HTTP	
 protocol	

–  Email	
 system	

–  DNS	

–  P2P	

–  Transport	
 layer	
 	

•  UDP/TCP	

•  Flow	
 control	
 and	
 conges0on	
 control	

Internet protocol stack
•  application: supporting network

applications
–  FTP, SMTP, HTTP

•  transport: process-process data
transfer
– TCP, UDP

•  network: routing of datagrams
from source to destination
–  IP, routing protocols

•  link: data transfer between
neighboring network elements
–  Ethernet, 802.111 (WiFi), PPP

•  physical: bits “on the wire”

application

transport

network

link

physical

Addressing processes

•  identifier includes both IP
address and port numbers
associated with process on
host.

•  example port numbers:
–  HTTP server: 80
–  mail server: 25

•  to send HTTP message to
www.cs.uic.edu web server:
–  IP address: 131.193.32.29
–  port number: 80

•  more shortly…

Internet transport protocols services

TCP service:
•  reliable transport between

sending and receiving
process

•  flow control: sender won’t
overwhelm receiver

•  congestion control: throttle
sender when network
overloaded

•  does not provide: timing,
minimum throughput
guarantee, security

•  connection-oriented: setup
required between client and
server processes

UDP service:
•  unreliable data transfer

between sending and
receiving process

•  does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup,

Q: why bother? Why is there
a UDP?

HTTP connections

non-persistent HTTP
•  at most one object sent

over TCP connection
– connection then

closed
•  downloading multiple

objects required
multiple connections

persistent HTTP
•  multiple objects can

be sent over single
TCP connection
between client, server

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into TCP
connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting for
TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response message
containing requested object, and
sends message into its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of 10
jpeg objects

4. HTTP server closes TCP
connection.

time

HTTP request message

•  two types of HTTP messages: request, response
•  HTTP request message:

–  ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
 lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

HTTP response message

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
data data data data data ...

User-server state: cookies

many Web sites use cookies
four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:
•  Susan always access Internet

from PC
•  visits specific e-commerce

site for first time
•  when initial HTTP requests

arrives at site, site creates:
–  unique ID
–  entry in backend

database for ID

Sample	
 ques0on	

Consider	
 the	
 following	
 HTTP	
 request,	
 issued	
 using	

telnet:	

~/>	
 telnet	
 www.somedomain.com	
 80	

GET	
 /	
 HTTP/1.0	

(empty	
 line	
 here)	

	

Say	
 the	
 domain	
 name	
 `www.somedomain.com'	

points	
 to	
 address	
 12.13.14.15.	
 Another	
 domain	

name,	
 `www.someother.com'	
 also	
 points	
 to	

12.13.14.15.	
 	

	

Say	
 the	
 owner	
 of	
 this	
 web	
 server	
 wants	
 to	
 display	

different	
 pages	
 for	
 the	
 two	
 different	
 domains,	
 even	

though	
 they	
 lead	
 to	
 the	
 same	
 IP	
 address,	
 and	

consequently	
 to	
 the	
 same	
 server.	
 This	
 is	
 a	
 very	

common	
 occurrence	
 today.	
 	

	

	

Ques0on:	
 Is	
 it	
 possible	
 to	
 do	
 what	
 the	
 owner	
 wants,	

given	
 a	
 request	
 issued	
 as	
 above?	
 If	
 so,	
 how	
 does	
 the	

web	
 server	
 dis0nguish	
 between	
 the	
 two?	
 If	
 it	
 is	
 not	

possible,	
 why	
 not?	
 	

Solu0on:	

It	
 is	
 not	
 possible	
 with	
 the	

request	
 as	
 provided	
 above,	

since	
 the	
 domain	
 name	
 is	
 not	

revealed	
 to	
 the	
 web	
 server	
 at	

any	
 point.	

	

12	

Email	
 system	
 in	
 the	
 Internet	

13	

user
agent

Scenario: Alice sends message to Bob

1) Alice uses MUA to compose
message “to”
bob@someschool.edu

2) Alice’s MUA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail
server

mail
server

1	

2	
 3	
 4	

5	

6	

Alice’s mail server Bob’s mail server

user
agent

Mail access protocols

•  SMTP: delivery/storage to receiver’s server
•  mail access protocol: retrieval from server

–  POP: Post Office Protocol [RFC 1939]: authorization,
download

–  IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on server

–  HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
 IMAP)

user
agent

user
agent

Try SMTP interaction for yourself:

•  dig mx gmail.com
•  telnet gmail-smtp-in.l.google.com 25
•  see 220 reply from server
•  enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

above lets you send email without using email client (reader)

Sample	
 ques0on	

Overheard	
 in	
 the	
 campus	

cafeteria:	
 ``Sure	
 Dr.	
 Johnson,	
 just	

email	
 your	
 account	
 number	
 to	

jimbob@gmail.com	
 and	
 I'll	

transfer	
 the	
 money.''	
 How	
 could	

someone	
 exploit	
 this	
 informa0on	

to	
 get	
 some	
 free	
 cash?	
 What	
 if	

every	
 outgoing	
 email	
 server	

required	
 a	
 username	
 and	

password	
 -­‐	
 would	
 this	
 solve	
 the	

problem?	
 Would	
 it	
 be	
 beQer	
 if	

both	
 incoming	
 and	
 outgoing	

email	
 servers	
 required	
 user	

creden0als?	

	

Solu0on	

•  If	
 I	
 can	
 find	
 out	
 Dr.	
 Johnson's	

email	
 address,	
 I	
 can	
 easily	

exploit	
 the	
 unauthen0cated	

SMTP	
 protocol	
 to	
 create	
 a	
 fake	

email	
 from	
 him,	
 with	
 my	
 own	

account	
 number	
 in	
 it.	
 I	
 don't	

need	
 an	
 outgoing	
 email	
 server	

to	
 deliver	
 the	
 email	
 -­‐	
 I	
 can	

connect	
 directly	
 to	
 the	
 remote	

server.	
 Requiring	
 username	

and	
 password	
 on	
 the	
 remote	

server	
 is	
 not	
 feasible	
 -­‐	
 every	

email	
 server	
 would	
 need	
 to	

have	
 an	
 account	
 for	
 every	

Internet	
 user!	
 	

	

17	

Domain	
 Name	
 Service	
 (DNS)	

18	

DNS: services, structure
why not centralize DNS?
•  single point of failure
•  traffic volume
•  distant centralized database
•  maintenance

DNS services
•  hostname to IP address

translation
•  host aliasing

–  canonical, alias names

•  mail server aliasing
•  load distribution

–  replicated Web
servers: many IP
addresses correspond
to one name

A: doesn’t scale!

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

DNS name
resolution example

•  host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
v  contacted server

replies with name of
server to contact

v  “I don’t know this
name, but ask this
server”

4 5

6
3

recursive query:
v  puts burden of name

resolution on
contacted name
server

v  heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

DNS records

DNS: distributed db storing resource records (RR)

type=NS
–  name is domain (e.g.,

foo.com)
–  value is hostname of

authoritative name server
for this domain

RR format: (name, value, type, ttl)

type=A
§  name is hostname
§  value is IP address

type=CNAME
§  name is alias name for some

“canonical” (the real) name
§  www.ibm.com is really
 servereast.backup2.ibm.com
§  value is canonical name

type=MX
§  value is name of mailserver

associated with name

Peer-­‐to-­‐Peer	
 System	

23	

File distribution time: P2P

•  server transmission: must
upload at least one copy
–  time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

 DP2P > max{F/us,,F/dmin,,NF/(us + Σui)}

v  client: each client must
download file copy
§  min client download time: F/dmin

v  clients: as aggregate must download NF bits
§  max upload rate (limting max download rate) is us + Σui

… but so does this, as each peer brings service capacity
increases linearly in N …

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

v file	
 divided	
 into	
 256Kb	
 chunks	

v peers	
 in	
 torrent	
 send/receive	
 file	
 chunks	

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Transport	
 Layer	

26	

Transport services and protocols
•  provide logical communication

between app processes
running on different hosts

•  transport protocols run in
end systems
–  send side: breaks app

messages into segments,
passes to network layer

–  rcv side: reassembles
segments into messages,
passes to app layer

•  more than one transport
protocol available to apps
–  Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Internet transport-layer protocols

•  reliable, in-order
delivery (TCP)
–  congestion control
–  flow control
–  connection setup

•  unreliable, unordered
delivery: UDP
–  no-frills extension of

“best-effort” IP

•  services not available:
–  delay guarantees
–  bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

UDP: segment header

source port # dest port #

32 bits

application
data
(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

•  no connection establishment
(which can add delay)

•  simple: no connection state
at sender, receiver

•  small header size
•  no congestion control: UDP

can blast away as fast as
desired

why is there a UDP?

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027
L / R

RTT + L / R
=

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts
–  range of sequence numbers must be increased
–  buffering at sender and/or receiver

•  two generic forms of pipelined protocols: go-Back-N,
selective repeat

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
 utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081
3L / R

RTT + L / R
=

Pipelined protocols: overview
Go-back-N:
•  sender can have up to

N unacked packets in
pipeline

•  receiver only sends
cumulative ack
–  doesn’t ack packet if

there’s a gap
•  sender has timer for

oldest unacked packet
–  when timer expires,

retransmit all unacked
packets

Selective Repeat:
•  sender can have up to N

unack’ed packets in
pipeline

•  rcvr sends individual ack
for each packet

•  sender maintains timer

for each unacked packet
–  when timer expires,

retransmit only that
unacked packet

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

•  full duplex data:
–  bi-directional data flow in

same connection
–  MSS: maximum segment

size

•  connection-oriented:
–  handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

•  flow controlled:
–  sender will not

overwhelm receiver

•  point-to-point:
–  one sender, one receiver

•  reliable, in-order byte
steam:
–  no “message

boundaries”

•  pipelined:
–  TCP congestion and

flow control set window
size

•  timeout interval: EstimatedRTT plus “safety margin”
–  large variation in EstimatedRTT -> larger safety margin

•  estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-β)*DevRTT +
 β*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

TCP sender events:
data rcvd from app:
•  create segment with seq

•  seq # is byte-stream

number of first data
byte in segment

•  start timer if not already
running
–  think of timer as for

oldest unacked segment
–  expiration interval:
TimeOutInterval

timeout:
•  retransmit segment that

caused timeout
•  restart timer
 ack rcvd:
•  if ack acknowledges

previously unacked
segments
–  update what is known to

be ACKed
–  start timer if there are

still unacked segments

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

TCP flow control

buffered data

free buffer space rwnd

RcvBuffer

TCP segment payloads

to application process
•  receiver “advertises” free

buffer space by including rwnd
value in TCP header of
receiver-to-sender segments
–  RcvBuffer size set via

socket options (typical default
is 4096 bytes)

–  many operating systems
autoadjust RcvBuffer

•  sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

•  guarantees receive buffer will
not overflow

receiver-side buffering

Conges0on	
 collapse	
 revisit	

Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

Λ	

cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK .

dupACKcount++

duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3 cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACK dupACKcount++

duplicate ACK

Λ	

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Exam:	
 1	
 PM	
 Friday	
 March	
 6,	
 2015	
 	

(in	
 class	
 -­‐	
 SES	
 238)	

•  6	
 ques0ons	
 =	
 28	
 points	

–  Maximum	
 point	
 for	
 midterm	
 is	
 25	
 (you	
 got	
 3	
 bonus	
 points)	

•  Only	
 one	
 leQer	
 sheet	
 of	
 notes	
 allowed	

•  Content	

–  HTTP	
 protocol	

–  Email	
 system	

–  DNS	

–  P2P	

–  Transport	
 layer	
 	

•  UDP/TCP	

•  Flow	
 control	
 and	
 conges0on	
 control	

Next	
 lecture	
 –	
 Wed,	
 March	
 4	

•  Network	
 Layer	
 Intro	

– Readings	
 4.1.1-­‐4.2.2	

43	

