Datagram forwarding table review

4 billion IP addresses, so
rather than list individual
destination address

list range of addresses
(aggregate table entries)

routing algorithm

local forwarding table
dest address putput link

address-range 1 /23/
address-range 2

address-range{ 2
address-range 4 | 1

IP destination address in %
arriving packet’ s.header
&_' ey

Router architecture overview

two key router functions:

* run routing algorithms/protocol (RIP, OSPF, BGP)
* forwarding datagrams from incoming to outgoing link

forwarding .tables computed, routi ng
pushed to input ports processor
))
® high-seed o
® switching o
o fabric ®
4

router input ports

\ 4

v

router output ports

routing, management
control plane (software)

forwarding data
plane (hardware)

Input port functions

\ 4

line

termination

/

. lookup,
link forwarding

| layer L, , switch
protocol “""“I fabric

(receive) _
queueing

/.

physical layer: *
bit-level reception

data link layer:
e.g., Ethernet
see chapter 5

decentralized switching:

given datagram dest., lookup output port

using forwarding table in input port

memory (“match plus action™)

goal: complete input port processing at
line speed

queuing: if datagrams arrive faster than
forwarding rate into switch fabric

Switching fabrics

* transfer packet from input buffer to
appropriate output buffer

e switching rate: rate at which packets can be
transfer from inputs to outputs

— often measured as multiple of input/output line rate
— N inputs: switching rate N times line rate desirable

e three types of switching fabrics

|
ﬁ

i []H

= : = —
memo @

= ==

n
»
[
»

i

=t

memory bus crossbar @

Switching via memory

first generation routers:

* traditional computers with switching under direct control
of CPU

« packet copied to system’ s memory

* speed limited by memory bandwidth (2 bus crossings per
datagram)

é; ¢‘> mpUt OUtpUt é) ¢‘>
o memory e .
55555555 | Ethernet) Ethernet) |

system bus

Switching via a bus

e datagram from input port
memory to output port memory
via a shared bus

* bus contention: switching speed
limited by bus bandwidth

e 32 Gbps bus, Cisco 5600:
sufficient speed for access and
enterprise routers

i

Switching via interconnection network

overcome bus bandwidth limitations

banyan networks, crossbar, other
interconnection nets initially
developed to connect processors in

multiprocessor
advanced design: fragmenting

datagram into fixed length cells, crossbar

switch cells through the fabric.

Cisco 12000: switches 60 Gbps
through the interconnection network

Switching via memory handles one packet at the same
time

Switching via a bus is faster than switching via memory

Switching via a bus can handle multiple packets at the
same time

Switching via interconnection network can handle multiple
packets at the same time

CandD

A. Can handle multiple packets at the same time
B. Faster than switching via memory or a bus

C. Has no collision

D. Aand B

E. A,BandC

This slide in HUGELY important!

Output ports

datagram
switch buffer link _
fabric R o layer L I|_ne |
] I"""" protocol termination
queueing (send)

* buffering required when datagrams arrive from fabric faster than the

transmission rate

* scheduling discipline chooses among queued datagrams for transmission

Datagram (packets) can be lost
due to congestion, lack of buffers

Priority scheduling — who gets best
performance, network neutrality

10

Output port queueing

B - - - - > - - - — .
| I \] >
/ ARV
] ’ V1 o
e — 7__» | . / >
switch g ?;’Vt;:lih /\\
fabnc; p \
— e o o |
- -- |] [,

at t, packets more one packet time later

from input to output

* buffering when arrival rate via switch exceeds output

line speed
* queueing (delay) and loss due to output port buffer overflow!

How much buffering?

* RFC 3439 rule of thumb: average buffering
equal to “typical”’ RTT (say 250 msec) times
link capacity C
—e.g.,C = 10 Gpbs link: 2.5 Gbit buffer

* recent recommendation: with N flows,
buffering equal to RIT-C

IN

12

Input port queuing

fabric slower than input ports combined -> queueing may
occur at input queues

— queueing delay and loss due to input buffer overflow!

Head-of-the-Line (HOL) blocking: queued datagram at front
of queue prevents others in queue from moving forward

- === = = > [A
— il I |
\
= 1 N
e o _ _ 4
switchy ' switch , T~ —>
fabr}c‘ fabric/
| el il Y R —
10 . L, | |
output port contention: one packet time later:
only one red datagram can be green packet
transferred. experiences HOL

lower red packet is blocked blocking 13

The Internet network layer

host, router network layer functions:

|

network
layer

|

transport layer: TCP, UDP

routing protocols
* path selection
 RIP, OSPF, BGP

IP protocol
 addressing conventions
» datagram format

« packet handling conventions

forwarding
table ICMP protocpl
— * error reporting
* router “signaling”
link layer

physical layer

14

IP datagram format

IP protocol version

. 32 bits

number
header length
(bytes)
“type” of data—

<

head.| type of

service length

fragment

16-bit identifier flgs;

SE

max number __|
remaining hops

\time to | upper header
live // layer checksum

(decremented at
each router)

upper layer protocol/

AZ bit source IP address
Vd

32 bit destination IP address

to deliver payload to

options (if any)

how much overhead?
20 bytes of TCP
20 bytes of IP

=40 bytes + app
layer overhead

data
(variable length,
typically a TCP
or UDP segment)

total datagram
length (bytes)

reassembly

e.g. timestamp,
record route
taken, specify
list of routers
to visit.

15

IP fragmentation, reassembly

* network links have MTU
(max transmission unit) -
largest possible link-level — =&
frame :

fragmentation:
in: one large datagram

— different link types, out: 3 smaller datagrams

different MTUs N

* large IP datagram divided

(“fragmented”) within net
reassembly

— one datagram becomes
several datagrams

— “reassembled” only at
final destination

— |P header bits used to
identify, order related
fragments

16

IP fragmentation, reassembly

example:
4000 byte datagram
MTU = 1500 bytes

length
=4000

1D
=X

fragflag
=0

offset
=0

]

one large datagram becomes
several smaller datagrams

1480 bytes in length [ID [fragflag | offset
data field =1500 | =x =1

offset = / length [ID [fragflag | offset

1480/8 =1500 | = =1 =185

length |ID | fragflag | offset

=1040 | =x =0 =370

17

A. Very difficult
B. Difficult
C. It’s okay

D. Easy

E. Very easy

18

A. >=25

B. 21 <=your grade < 25
C. I8 <= your grade <21
D. 14 <=your grade < |8

E. <14

19

