Datagram forwarding table review

4 billion IP addresses, so
rather than list individual
destination address

list range of addresses
(aggregate table entries)
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Router architecture overview

two key router functions:

* run routing algorithms/protocol (RIP, OSPF, BGP)
* forwarding datagrams from incoming to outgoing link

forwarding .tables computed, routi ng
pushed to input ports processor
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Input port functions

\ 4

line

termination

/

. lookup,
link forwarding

| layer L, ,  switch
protocol “""“I fabric

(receive) _
queueing

/.

physical layer: *
bit-level reception

data link layer:
e.g., Ethernet
see chapter 5

decentralized switching:

given datagram dest., lookup output port

using forwarding table in input port

memory (“match plus action™)

goal: complete input port processing at
line speed

queuing: if datagrams arrive faster than
forwarding rate into switch fabric



Switching fabrics

* transfer packet from input buffer to
appropriate output buffer

e switching rate: rate at which packets can be
transfer from inputs to outputs

— often measured as multiple of input/output line rate
— N inputs: switching rate N times line rate desirable

e three types of switching fabrics
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Switching via memory

first generation routers:

* traditional computers with switching under direct control
of CPU

« packet copied to system’ s memory

* speed limited by memory bandwidth (2 bus crossings per
datagram)
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Switching via a bus

e datagram from input port
memory to output port memory
via a shared bus

* bus contention: switching speed
limited by bus bandwidth

e 32 Gbps bus, Cisco 5600:
sufficient speed for access and
enterprise routers
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Switching via interconnection network

overcome bus bandwidth limitations

banyan networks, crossbar, other
interconnection nets initially
developed to connect processors in

multiprocessor
advanced design: fragmenting

datagram into fixed length cells, crossbar

switch cells through the fabric.

Cisco 12000: switches 60 Gbps
through the interconnection network



Switching via memory handles one packet at the same
time

Switching via a bus is faster than switching via memory

Switching via a bus can handle multiple packets at the
same time

Switching via interconnection network can handle multiple
packets at the same time
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A. Can handle multiple packets at the same time
B. Faster than switching via memory or a bus

C. Has no collision

D. Aand B

E. A,BandC



This slide in HUGELY important!

Output ports

datagram
switch buffer link _
fabric R o layer L I|_ne |
] I"""" protocol termination
queueing (send)

* buffering required when datagrams arrive from fabric faster than the

transmission rate

* scheduling discipline chooses among queued datagrams for transmission

Datagram (packets) can be lost
due to congestion, lack of buffers

Priority scheduling — who gets best
performance, network neutrality

10



Output port queueing
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at t, packets more one packet time later

from input to output

* buffering when arrival rate via switch exceeds output

line speed
* queueing (delay) and loss due to output port buffer overflow!



How much buffering?

* RFC 3439 rule of thumb: average buffering
equal to “typical”’ RTT (say 250 msec) times
link capacity C
—e.g.,C = 10 Gpbs link: 2.5 Gbit buffer

* recent recommendation: with N flows,
buffering equal to RIT-C

IN
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Input port queuing

fabric slower than input ports combined -> queueing may
occur at input queues

— queueing delay and loss due to input buffer overflow!

Head-of-the-Line (HOL) blocking: queued datagram at front
of queue prevents others in queue from moving forward

- === = = > [ A
— il I |
\
= 1 N
e o _ _ 4
switchy ' switch , T~ —>
fabr}c‘ fabric/
| el il Y R —
10 . L, | |
output port contention: one packet time later:
only one red datagram can be green packet
transferred. experiences HOL

lower red packet is blocked blocking 13



The Internet network layer

host, router network layer functions:

|

network
layer

|

transport layer: TCP, UDP

routing protocols
* path selection
 RIP, OSPF, BGP

IP protocol
 addressing conventions
» datagram format

« packet handling conventions

forwarding
table ICMP protocpl
— * error reporting
* router “signaling”
link layer

physical layer
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IP datagram format

IP protocol version

. 32 bits

number
header length
(bytes)
“type” of data—

<

head.| type of

service length

fragment

16-bit identifier flgs;

SE

max number __|
remaining hops

\time to | upper header
live // layer checksum

(decremented at
each router)

upper layer protocol/

AZ bit source IP address
Vd

32 bit destination IP address

to deliver payload to

options (if any)

how much overhead?
20 bytes of TCP
20 bytes of IP

=40 bytes + app
layer overhead

data
(variable length,
typically a TCP
or UDP segment)

total datagram
length (bytes)

reassembly

e.g. timestamp,
record route
taken, specify
list of routers
to visit.
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IP fragmentation, reassembly

* network links have MTU
(max transmission unit) -
largest possible link-level — =&
frame :

fragmentation:
in: one large datagram

— different link types, out: 3 smaller datagrams

different MTUs N

* large IP datagram divided

(“fragmented”) within net
reassembly

— one datagram becomes
several datagrams

— “reassembled” only at
final destination

— |P header bits used to
identify, order related
fragments
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IP fragmentation, reassembly

example:
4000 byte datagram
MTU = 1500 bytes

length
=4000

1D
=X

fragflag
=0

offset
=0

]

one large datagram becomes
several smaller datagrams

1480 bytes in length [ID [fragflag | offset
data field =1500 | =x =1

offset = / length [ID [fragflag | offset

1480/8 =1500 | = =1 =185

length |ID | fragflag | offset

=1040 | =x =0 =370
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A. Very difficult
B. Difficult
C. It’s okay

D. Easy

E. Very easy
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A. >=25

B. 21 <=your grade < 25
C. I8 <= your grade <21
D. 14 <=your grade < |8

E. <14
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