Dijkstra’ s algorithm: another example

Step N’ D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
0 2,U ‘S5u_ —1u o oo
1 ux /Z/ 4 X 2,X oo
2 uxy«—— 2,U 3,y 4,y
3 Uxyv < 3,y 4,y
4 UXYVW < 4,y
3 UXYVWZ “—

A. 5throughv

B. 4 through x

C. 3 throughx

D. 3throughy !

Dijkstra’ s algorithm: example (2)
resulting shortest-path tree from u:

Sw2

e

resulting forwarding table in u:

destination | Jink A. a=(uyv);b=(ux)
\Y
« . B. a=(u,u);b=(u,u)
y (u,x)
w | (ux) C. a=(ux);b=(uyv)
Z (u,x)

Dijkstra’ s algorithm, discussion

algorithm complexity: n nodes

* each iteration: need to check all nodes, w, notin N
* n(n+1)/2 comparisons: O(n?)

* more efficient implementations possible: O(nlogn)

oscillations possible:
e e.g., support link cost equals amount of carried traffic:

=
T o

itial] given these costs, given these costs, given these costs,
Initially find new routing.... find new routing.... find new routing....

resulting in new costs resulting in new costs resulting in new costs
3

Distance vector algorithm

Bellman-Ford equation (dynamic programming)
let

d,(y) := cost of least-cost path from x to y
then

d.(y) = min {CT(’V) + dT(Y) }

cost from neighbor v to destination y
cost to neighbor v

min taken over all neighbors v of x

Bellman-Ford example

clearly, d (z) =5, d,(z) =3, d,(z) =3

B-F equation says:
d,(z) = min { c(u,v) + d,(2),
c(u,x) + dy(z),
c(u,w) +d,(2) }
=min {2 + 5,
1+ 3,
5+3} =4

node achieving minimum is next
hop in shortest path, used in forwarding table

Distance vector algorithm

* D, (y) = estimate of least cost from x to y

— x maintains distance vector D_ = [D (y):y e N |

* node x:
— knows cost to each neighbor v: c(x,v)

. . . .) .
— maintains its neighbors distance vectors. For each
neighbor v, x maintains

D, =[D,(y):yeN]

Distance vector algorithm

key idea:

 from time-to-time, each node sends its own
distance vector estimate to neighbors

 when x receives new DV estimate from neighbor, it
updates its own DV using B-F equation:

D (y) < min {c(x,v) + D (y)} for each nodey €N

+ under minor, natural conditions, the estimate D (y)
converge to the actual least cost d, (y)

Distance vector algorithm

iterative, asynchronous:

each local iteration
caused by:

local link cost change

DV update message from
neighbor

distributed:

each node notifies
neighbors only when its
DV changes

— neighbors then notify their
neighbors if necessary

each node:

}

wait for (change in local link
cost or msg from neighbor)

|

recompute estimates

|

if DV to any dest has
changed, notify neighbors

node x
table

D,(y) = min{c(x,y) + D,(y), c(x,z) + D,(y)}
=min{2+0, 741} =2

cost to
XYy Zz

X
y
z

from

node y
table

02 7

0O 0O o0

0O 0O o0

from
N < X

node z
table

from
N <

cost to

from
N < X

v

D,(z) = min{c(x,y) +

time

D,(z), c(x,z) + D,(z)}

= min{2+1, 7+0} =3

e

node x
table

D,(y) = min{c(x,y) + D,(y), c(x,z) + D,(y)}
=min{2+0, 741} =2

cost to
XYy Zz

X
y
z

from

node y
table

02 7

cost to

from
N < X

node z
table

N < X

D,(z) = min{c(x,y) +
D,(z), c(x,z) + D,(z)}
= min{2+1, 7+0} =3

cost to
Xy z

N < X

02 3
2 0 1
310

from
N <

N < X

10

