Dijkstra’ s algorithm: another example
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Dijkstra’ s algorithm: example (2)
resulting shortest-path tree from u:
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resulting forwarding table in u:
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Dijkstra’ s algorithm, discussion

algorithm complexity: n nodes

* each iteration: need to check all nodes, w, notin N
* n(n+1)/2 comparisons: O(n?)

* more efficient implementations possible: O(nlogn)

oscillations possible:
e e.g., support link cost equals amount of carried traffic:
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Initially find new routing.... find new routing....  find new routing....
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Distance vector algorithm

Bellman-Ford equation (dynamic programming)
let

d,(y) := cost of least-cost path from x to y
then

d.(y) = min {CT(’V) + dT(Y) }

cost from neighbor v to destination y
cost to neighbor v

min taken over all neighbors v of x



Bellman-Ford example

clearly, d (z) =5, d,(z) =3, d,(z) =3

B-F equation says:
d,(z) = min { c(u,v) + d,(2),
c(u,x) + dy(z),
c(u,w) +d,(2) }
=min {2 + 5,
1+ 3,
5+3} =4

node achieving minimum is next
hop in shortest path, used in forwarding table



Distance vector algorithm

* D, (y) = estimate of least cost from x to y

— x maintains distance vector D_ = [D (y):y e N |

* node x:
— knows cost to each neighbor v: c(x,v)

. . . . ) .
— maintains its neighbors  distance vectors. For each
neighbor v, x maintains

D, =[D,(y):yeN]



Distance vector algorithm

key idea:

 from time-to-time, each node sends its own
distance vector estimate to neighbors

 when x receives new DV estimate from neighbor, it
updates its own DV using B-F equation:

D (y) < min {c(x,v) + D (y)} for each nodey €N

+ under minor, natural conditions, the estimate D (y)
converge to the actual least cost d, (y)



Distance vector algorithm

iterative, asynchronous:

each local iteration
caused by:

local link cost change

DV update message from
neighbor

distributed:

each node notifies
neighbors only when its
DV changes

— neighbors then notify their
neighbors if necessary

each node:

}

wait for (change in local link
cost or msg from neighbor)

|

recompute estimates

|

if DV to any dest has
changed, notify neighbors




node x
table

D,(y) = min{c(x,y) + D,(y), c(x,z) + D,(y)}
=min{2+0, 741} =2
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