MAC addresses and ARP

- 32-bit IP address:
 - network-layer address for interface
 - used for layer 3 (network layer) forwarding
- MAC (or LAN or physical or Ethernet) address:
 - function: used 'locally' to get frame from one interface to another physically-connected interface (same network, in IP-addressing sense)
 - 48 bit MAC address (for most LANs) burned in NIC ROM (lately can be software settable)
 - e.g.: IA-2F-BB-76-09-AD

hexadecimal (base 16) notation (each "number" represents 4 bits)

MAC address

LAN addresses and ARP

each adapter on LAN has unique LAN address

LAN addresses (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- MAC flat address → portability
 - can move LAN card from one LAN to another
- IP hierarchical address not portable
 - address depends on IP subnet to which node is attached

ARP: address resolution protocol

Question: how to determine interface's MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has table

- IP/MAC address mappings for some LAN nodes:
 - < IP address; MAC address; TTL>
- TTL (Time To Live):
 time after which
 address mapping will
 be forgotten (typically
 20 min)

ARP protocol: same LAN

- A wants to send datagram to B
 - B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - dest MAC address = FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

ARP request:

who has 128.238.38.1 tell 128.238.38.160

```
Frame 13: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)

Ethernet II, Src: Ibm_10:60:99 (00:09:6b:10:60:99), Dst: Broadcast (ff:ff:ff:ff:ff:ff)

Address Resolution Protocol (request)

Hardware type: Ethernet (1)

Protocol type: IP (0x0800)

Hardware size: 6

Protocol size: 4

Opcode: request (1)

Sender MAC address: Ibm_10:60:99 (00:09:6b:10:60:99)

Sender IP address: 128.238.38.160 (128.238.38.160)

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00)

Target IP address: 128.238.38.1 (128.238.38.1)
```

ARP reply:

128.238.38.1 is at 00:00:0c:07:ac:00

```
    Frame 14: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)

    Ethernet II, Src: All-HSRP-routers_00 (00:00:0c:07:ac:00), Dst: Ibm_10:60:99 (00:09:6b:10:60:99)

    Address Resolution Protocol (reply)
    Hardware type: Ethernet (1)
    Protocol type: IP (0x0800)
    Hardware size: 6
    Protocol size: 4
    Opcode: reply (2)

    Sender MAC address: All-HSRP-routers_00 (00:00:0c:07:ac:00)
    Sender IP address: 128.238.38.1 (128.238.38.1)

    Target MAC address: Ibm_10:60:99 (00:09:6b:10:60:99)
    Target IP address: 128.238.38.160 (128.238.38.160)
```

ARP table

- A. Is formed and updated automatically by the ARP protocol
- B. Is used for same LAN
- C. Can be changed manually
- D. A and B
- E. A, B and C

Editing ARP table

walkthrough: send datagram from A to B via R

- focus on addressing at IP (datagram) and MAC layer (frame)
- assume A knows B's IP address
- assume A knows IP address of first hop router, R (how?)
- assume A knows R's MAC address (how?)

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram

- frame sent from A to R
- frame received at R, datagram removed, passed up to IP

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

How A knows IP address of R, MAC address of R

- A. DNS, DHCP
- B. IP, ARP
- C. DHCP, ARP
- D. DNS, IP

Ethernet

- "dominant" wired LAN technology:
- cheap \$20 for NIC
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- kept up with speed race: I0 Mbps I0 Gbps

Metcalfe's Ethernet sketch

Ethernet: physical topology

- bus: popular through mid 90s
 all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Coaxial cable and twister pair NIC

Ethernet frame structure

sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

preamble dest. source address caddress caddress

preamble:

 7 bytes with pattern 10101010 followed by one byte with pattern 10101011

Preamble is used in Ethernet

- A. To synchronize receiver, sender clock rates
- B. To "wake up" the receiving adapter, i.e. to announce there will be frame coming
- C. To identify which protocol is used
- D. A and B
- E. A, B and C

Ethernet frame structure (more)

- addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

Ethernet: unreliable, connectionless

- connectionless: no handshaking between sending and receiving NICs
- unreliable: receiving NIC doesnt send acks or nacks to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD wth binary backoff

802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - different physical layer media: fiber, cable

